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Typical Datasets

LineMOD Occluded-LineMOD



Predicting a 3D Pose

3D pose:

CN N 5 a 3D rotation +
a 3D translation




Object Coordinates to Camera Coordinates
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Parameterizing the Rotation Matrix



Possible Parameterizations of the Rotation Matrix

Rotation in 3D space has only 3 degrees of freedom.
Using the nine elements as its parameters would not be a good idea.

Possible parameterizations:
e FEuler Angles;

e  Quaternions;

e Exponential Map;

All have singularities, can be avoided by locally reparameterizing the rotation.



Rotation defined by angles of rotation around the X-, Y-, and Z- axes.
Different conventions. For example:
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Quaternions are hyper-complex numbers that can be written as the linear combination
a+bi+cj+dk, with 2 = j? = 2 = ijjk = -1.

Can also be interpreted as a scalar plus a 3- vector: (a, v).

A rotation about the unit vector w by an angle 6 can be represented by the unit quaternion:

( 6 .9)
g =|CoS—,wsin—
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A Unit Quaternion

Quaternions are hyper-complex numbers that can be written as the linear combination a+bi+cj+dk, with i? =2 = k? = jjk = -1.
Can also be interpreted as a scalar plus a 3- vector: (a, v). 0 0
A rotation about the unit vector w by an angle 6 can be represented by the unit quaternion. q = (COSE W SinE)

To rotate a 3D point M: write it as a quaternion p = (0, M), and take the rotated point p’to be

o 6 . 0
p'=q.pq with g = COSE’_WSIHE

No gimbal lock.

Parameterization of the rotation using the 4 coordinates of a quaternion g¢:
q

1. No constraint and rotation performed using W — singularity: kq yields the same rotation whatever the value of k > 0;
q
2. Additional constraint: norm of ¢ must be constrained to be equal to 1, for example by adding the quadratic term
K(1 - |lq1P%).



No gimbal lock;
No additional constraints;
Singularities occur in a region that can easily be avoided.

Parameterization by a 3D vector w = [w;,w,,w;3]T: Rotation around the axis of direction w of an amount of ||w||




0 -w, w
Q=|w. 0 -w,
-w, w, 0

The rotation matrix is given t-)y:

1 1
R(Q) =exp(ﬂ)=l+ﬂ+5ll2 +§ﬂ3 +...
sian+ (I—CSSQ)
0 v,

Not singular for small values of 8 even if we divide by 6 (see Taylor expansions).

=1+

Q° (Rodrigues' formula)



D [ 2 vectors

¢ = L
lea]]2

el — e N ey
le2][2

e, = e5 N ey,

Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation
representations in neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2019) 5745-5753 13



Predicting the Pose: Loss

min )
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Alternative Pose Representations (1)

the 2D projections of the 8
corners of the 3D bounding box

— CNN

BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of
& Challenging Objects without Using Depth. Mahdi Rad and Vincent Lepetit. ICCV 2017.



3D Pose Estimation from Correspondences

» Predicting 2D locations from an image is an
easier regression task;

* We do not need a representation of the 3D
rotation:;

We can compute the 3D pose from these 2D

locations.
8§ Camera center



Alternative Pose Representations (2)
>

E. Brachmann, A. Krull, F. Michel, S.

Y - B Gumbhold, J. Shotton, and C. Rother.
7‘( Learning 6D Object Pose Estimation using . . .
’/&’ri_ﬂ._ 3D Object Coordinates. ECCV 2014. Normalized Object Coordinate Space for
'(.-,)J ﬁ,f X Category-Level 6D Object Pose and Size
Estimation. Wang et al., CVPR 2019.
(c) ' ! 1? 11 q&

Taylor et al. The Vitruvian Manifold: Inferring Dense
Correspondences for One-Shot Human Pose
Estimation. CVPR 2012.

AN " 3D model Colored ; L
(without texture) coordinate model Pix2Pose estimation
Pix2Pose: Pixel-Wise Coordinate Regression of

location fields. Wang etal., ECCV 2018 Objects for 6D Pose Estimation. Park et aI., CVPR

E 2019.




How to use 3D coordinate maps




Symmetrical Objects
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Symmetrical Objects Can Be Problematic




Symmetrical Objects: Solution

D(T7T5) = — T —T:
(11, T2) = smé?z) |Xz| Z |1 T1.5% — Tox|2



Training Set:
About 200 Real Images + ...




. Data Augmentation (1)







How Domain Randomization Works
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3D model rendered from
the current pose estimate
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Predicting the Pose: Loss

min )

© (I,par)

|lpcT — f1(1; @)’\2

fi




Refining the Pose: Loss

Ap = f2(I, rendering(p); {2)

/>




Ap = fo(I,rendering(p); §2)

L
rendering(p)

min > > |lp—par

2 (I,par) PEN (PaT)

with p’ = p + f2(I, rendering(p); 2) Ap

/>




Ap = fo(I,rendering(p); 2) H—Ap

L
rendering(p)

min >, >, max(0,|[p’ —parll — Allp — par|)
(I,pcT) PEN (PcT)
with p’ = p + fo(I, rendering(p); 2)
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Object Detection: How"?




Object Detection: How"?
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cole des Ponts

3-CNN (1)

Input Image Region Proposals
No learning (yet)

R.B. Girshick et al. “Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation”. In: Conference on
Computer Vision and Pattern Recognition. 2014, pp. 580-587.



0.01 Airplane

- o5 person

0.00 Bicycle

rescaled
image region

Ecole des Ponts
RS



R-CNN (3)

Problem: In practice, many region proposals. R-CNN inefficient
since image locations are processed many times.




Fast-RCNN (1)

Convolutions are applied only once to the image to extract image
features: Much faster.

Feature Maps

S Ross B. Girshick. “Fast R-CNN". In: International Conference on
& Computer Vision. 2015.
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Fast

R-CNN: Loss Function (1)

C i bbox

softmax regressor
. lTrc FC
u

Feature Maps

Loss function for 1 region:

L(@) = - logpc(fd (X; @)) + Al[czl]ﬁbbox ) (15)
where:

» x is the rescaled region in the feature maps;
» c is the true class for x. ¢ =0 corresponds to the background.

» Lpbox is a loss term to refine the region bounding box (see
next slide);
» ) is a weight.



Fast

R-CNN: Loss Function (2)

N GROUND TRUTH REGION (u*, .«r)( o) |

Lpbox is a loss term to refine the region bounding box:
Libox = (41 + fobox (3 0)[0] — ud*) 2+ (v1+ fobox(X; ©)[1] —v") % +

where (u1,v1) X (uz,'vz) are the coordinates of the region bounding

box, and (ud*,v?") x (ug’,v3") are the coordinates of the region
bounding box.



Faster R-CNN

Learns to predict the region proposals:

Proposal

?

Feature Maps

Challenges: the number of regions varies with the image, each
region has a different size.

S. Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
ﬁ Ecle des Ponts with Region Proposal Networks". In: Advances in Neural
Information Processing Systems. 2015.



Faster R-CNN: Region Proposal Network

For each 2D location in the feature maps: consider 3 “anchor
boxes” and predict for each anchor box:

» If the anchor box overlaps with an object;
» An offset to adapt the anchor box.

Feature Maps

Loss function for 1 image x with B ={B;}; ground truth bounding
boxes:
L(B2) =— ) 10gpe(ap) (9(x;02)[A]) + Ac(A,B)Lobox, (16)
AcA

% with ¢(A,B) =1 if Anchor box A overlaps with at least one
bounding box B; in B, 0 otherwise.



Kaiming He et al. “Mask R-CNN". In: International Conference
Computer Vision. 2017.

on



Mask-RCNN (2)

In addition to predicting the class and the “delta bounding box”,
predict a binary mask for each possible class.

Z Faster R-CNN
/ w/ReNl[lQ]

clas:
\

x7
1024, 5 2043 IZO“B bt

For each region 14x14, 14x14
%256 x80
additional “head"” mask

Loss function for one region:
‘C(@) = logpc(fcl (X; @)) + )‘1[ch] (‘Cbbox + )\2£mask) ) (17)

where:

» c is the true class for x. ¢ =0 corresponds to the background.
» Lmask is a loss term to refine the region bounding box:

Linask = ”fmask(X; @)[C] - m“2

» m is the ground truth mask for the region.



Mask-
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3D model
embedding

Alexander Grabner, Peter M. Roth, and Vincent Lepetit. “3D Pose

Estimation and 3D Model Retrieval for Objects in the Wild". In:
Q CVPR. 2018.
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DeeplM:

Decoupled Coordinates (T)
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Dealing with Partial Occlusion




Avoid Occlusions in the Input




Voting for the corners

Result

& - Segmentation-driven 6D Object Pose Estimation. Hu et al.



(b) Vectors

N
(d) 2D keypoints (e) 3D keypoints (f) Aligned model

PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation. Peng et al.



Training set;

Pose representation:;
Symmetrical objects;
Partial occlusions.



Object Categories




3D Pose Prediction for Object Categories

1 Ml’
- ‘r‘n[ il T llllllﬂ"" “’ |

3D Pose Estimation and 3D Model Retrieval for Objects in the Wild. Alexander Grabner, Peter M. Roth,
and Vincent Lepetit. CVPR 2018. 52 citations. Patented.




3D Pose Prediction for Object Categories
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2D bounding boxes from Mask-RCNN



Qualltatwe Results
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3D Geometry Retrieval for Object Categories




3D Model Retrieval for Object Categories
Possible options: Predicting a point cloud, voxels, 3D planes, ..

We look for a man-made 3D model similar to the object.

& ShapeNet [Chang et al, 2015]



shared embedding space

[Chang et al, 2015]

ShapeNet
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Pose Invariant Embeddings & Metric Learning

network

Rendering,
random pose

network

Rendering,
random pose

network

Rendering,
random pose

network




For each pixel: the 3D coordinates on the object’s
surface, in the object’s coordinate system:

RGB X Y Z

K>
P>

65



Pose Invariant Embeddings & Metric Learning

Location Field
prediction
network

Y
1 -
s

Rendering,
random pose

Rendering,
random pose

v

Rendering,
random pose

A Fd ENE

network

network

network

network




Pose Invariant Embeddings & Metric Learning:
Loss (called contrastive loss)

Margin
I:/
1 2 :
Limilar(T1,22) = §Dw (21, 22) LDissimilar(xla x3)

= 5max(0,m — Dy (21, 22))]?

Dy (21, 72) = |Gy (1) — G (22)]]

Ecole des Ponts
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Qualitative Results

S e
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Total3DUnderstanding

[Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image. Yinyu
Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian Chang, Jian Jun Zhang. CVPR 2020] 69



Total3DUnderstanding

Input: an RGB image

y

Layout Estimation
Network

2D bounding box
detections

cole des Ponts

3D Object
Detection Network

Mesh Generation

—
Network ‘
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Embeding T

= Object distance
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éﬁ Object mesh
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Total3DUnderstanding: 3D object pose prediction

Element-wise

Target sum Target

(T I |@—»| HII_.]I

. dresseq

Bed, sz
i 2o dresser ‘ :
ighEStand " 7.8 — ResNet >[I | mee
= L o (L T
e A\ = L e T Relational feature
I | 7 fg zil;?:ce —+ Object distance

<> Object orientation
<> Object size

EI Projection center
of objects

W

Geometry
feature

Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation Networks for Object Detection. CVPR
2018.

Analogy with NLP: the appearance features correspond to the embeddings of the words of a sentence, the
&; . geometry features correspond to the positions of the words in the sentence. = Use attention!

71



Total3DUnderstanding:

ResNet

3D object pose prediction

Target

H N

Element-wise

sum Target

Appearance
feature

[ |
[ W | T
[

Attention
sum

>

Geometry
feature

fR (n

7
.

Ewmn (WV fm

MLP

Relatlonal feature 1

|@—»| [T 1

—+ Object distance

<> Object orientation
<> Object size

Projection center
of objects

Ecole des Ponts
& o Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation Networks for Object Detection. CVPR 2018.
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Total3DUnderstanding: 3D object pose prediction

Appearance
feature

Element-wise

V

E/ ]

L
S

fr(n) =) W™ - Wy -}

Wy, Wi, Wy, W are learned G;cr:wtry
eature
WM — Wa eXp Wy

Zk exp(w ")

Ecole des Ponts
& o Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation Networks for Object Detection. CVPR 2018.
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Total3DUnderstanding: 3D object pose prediction

Element-wise
sum Target

®O—[I1 ]
Attention
sum =~ 1

Relational feature

R / =+ Object distance
feature
\ <> Object orientation
m

<> Object size

- (Wy - 1) [« ] Projection center

Geometry fR(n
Wy, Wi, Wy, W are learned of objects

feature

mn __ wTGnn eXp(wmn) wmn = dOt(WKfZ%7WQfX)

“ Zk " - exp(wh \)/A Vi

Ecole des Ponts
& o Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation Networks for Object Detection. CVPR 2018. 74




Total3DUnderstanding: 3D object pose prediction

Element-wise
sum Target

O—-[1T1 11
Attention
sum [ [T [T]
- Relational feature
Appearance / —+ Object distance
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ﬂ <_> Object orientation
; <> Object size
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& spatial encoding
& o Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation Networks for Object Detection. CVPR 2018. 75



Total3DUnderstanding: 3D object pose prediction

Element-wise
sum Target

O—-[1T1 11
Attention
sum [ [T [T]
- Relational feature
Appearance / —+ Object distance
feature
ﬂ <_> Object orientation
; <> Object size

Wy, Wi, Wo, W are learned Ge°mNR(") Zwm”'(WV £7) ||EE) Projecticaieerze

feature of objects

N

/ mn mn) ‘ dot(Wit3', Wofh) P

e wmmn exp(w mn _ wg™ = max{0, Wg - Ec (&, £5)}

w = Zk exp(w\)/wA o Vi W, ] )
T
— (log(W),log(W),log(ﬁ—;),log(ﬁ—;))

& spatial encoding
& o Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation Networks for Object Detection. CVPR 2018. /6




Training data

SUN-RGBD dataset, ~10°000 images annotated manually,
2000+ hours for initial annotations + time for error correction

ﬁ gy 77



3D model prediction from an image



Voxels

Decoder

Encoder

Image

Voxels

Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S. 3D-R2N2: A unified approach for single
@ «eenn@nd multi-view 3D object reconstruction, ECCV 2016



Unstructured Points

Image Points

Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S. 3D-R2N2: A unified approach for single
@ «eenn@nd multi-view 3D object reconstruction, ECCV 2016



AtlasNet
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AtlasNet
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AtlasNet: Qualitative comparisons

(a) Input (b) 3D-R2N2  (c) HSP (d) PSG (e) Ours



