Deep Learning for Augmented Reality

Vincent Lepetit

Processing Point Clouds

The problem with point clouds

PointNet

End-to-end learning for **scattered**, **unordered** point data **Unified** framework for various tasks

C.R. Qi et al. "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation". In: Conference on Computer Vision and Pattern Recognition. 2017.

PointNet

- Unordered point set as input: Model needs to be invariant to N! permutations;
- Also, model needs to be invariant under geometric transformations.

Permutation invariance:

$$f(x_1, x_2, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}).$$
(19)

Examples:

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
 (20)

$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n \tag{21}$$

How can we construct a family of symmetric functions with neural networks?

PointNet: Invariance to ordering

$$f(x_1, x_2, ..., x_n) = \gamma(g(h(x_1), h(x_2), ..., h(x_n)))$$

is symmetric if g is symmetric.

Use neural networks for h, γ , and max-pooling for g.

PointNet: Intuition

PointNet: Invariance to geometric transformation

PointNet: Full network

Classification Network

n: number of points;

k: number of possible objects;

m: number of possible segments.

PointNet: some results

VoteNet

Hough Transform (not Deep Learning)

VoteNet

VoteNet: Some results

MinkowskiNet

