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NetVLAD [Arandjelovic et al., CVPR 2016]:

Application to Camera Localization



Matching a query image against a database

Localization by Image Retrieval

[Larlus et al. 2017]



A popular approach: VLAD (Vector of Locally Aggregated Descriptors)

- Assign local descriptors to visual words;

- Concatenate vectors for individual words by computing residuals;

- Store a 2D vector per cluster as part of final descriptor.

Aggregating Local Representations

[Jégou et al. CVPR 2010]



NetVLAD: Apply VLAD on features learned end-to-end

Define a differentiable VLAD layer, append it to a Siamese Network

Improving VLAD: Learning to extract local features
and to aggregate them

[Arandjelovic et al. CVPR16]



NetVLAD in practice

W x H x D

Input xi

1 x 1 x 

K

W x H x K

(W * H) x K

Convolution

Reshape

K-dimensional

image 
features

Compute the residuals between
the features and the centroid of 

their clusters (as in VLAD)

+ Softmax

"Soft" assignment of features to 1 
of K cluster centers

(K × D) × 1
descriptors

Normalization



The network is trained on pairs of images, either positive or negative;

- For positive pairs, minimize the distance between the output 
descriptors. 
- For negative pairs, maximize it.

Training NetVLAD

[Radenovic et al. TPAMI2018]



NetVLAD: Results

[Arandjelovic et al. CVPR16]
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LIFT
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‟Differentiable glue”



SIFT. Average: 60.2 matches

LIFT (Ours). Average: 98.6 matches

+64%
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+162%

17

SIFT. Average: 23.1 matches

LIFT (Ours). Average: 60.6 matches
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The detector



Detection under Severe 
Illumination Changes



It’s not going to work well 

even using very good 

descriptors !

Detection under Severe 
Illumination Changes



Learning to Detect under 
Severe Illumination Changes



How the Detector is Used at 
Run-Time

non-maxima 

suppression

input image 'score map' feature points



All the other patches

Patches P where we 

want to detect a 

feature point

Cost Function (1)

P, y = +1

P, y = −1

Lclass(P) = max(0, 1− y max(DET(P)))2, y ∈ {−1,+1}

ax(DET(P)))

ax(DET(P)))



All the other patches

Patches P where we 

want to detect a 

feature point

Cost Function (1)

P, y = +1

P, y = −1

Lclass(P) = max(0, 1− y softmax(DET(P)))2, y ∈ {−1,+1}

ax(DET(P)))

ax(DET(P)))



Training with SfM Keypoints

• We need variability (illumination, perspective, etc). We build SfM 

reconstructions from photo-tourism sets.

• We keep only points with SfM correspondences as positive examples, 

that is, we learn to find repeatable points.

Piccadilly (pic) Roman Forum (rf)
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Cost Function (2)

P
1

P
2

Lpair(P
1
,P

2) = k DESC(Crop(P1
, softargmax(DET(P1)))) �

DESC(Crop(P2
, softargmax(DET(P2)))) k2

softargmax(S) =

P
x
exp(βS(x))x

P
x
exp(βS(x))

softargmax(DET(P2))

softargmax(DET(P1))
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Learning Orientations 
Implicitly

ORI

angle

We want the orientation estimator to provide consistent

results, regardless of imaging changes
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We want the orientation estimator to provide consistent

results, regardless of imaging changes

Learning Orientations 
Implicitly

ORI

ORI

angle
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Learning Orientations Implicitly:
A Siamese Network with a Twist

ORI

ORI DESC

DESC

bP
1

bP
2
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Learning Orientations Implicitly:
A Siamese Network with a Twist
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Learning Orientations Implicitly:
A Siamese Network with a Twist

ORI

ORI DESC

DESC

bP
1

bP
2

Lpair(bP
1
,
bP2) = k DESC(Rot(bP1

, angle(bP1))) �

DESC(Rot(bP2
, angle(bP2))) k2

with angle(bP) = arctan2(ORI(bP)[1],ORI(bP)[2])



Descriptor matching performances (mAP) with nearest 
neighbor matching (Mikolajczyk & Schmid, IJCV’04).

Average performancemA

P
(higher is 

better)

ours
w/ReLU

ours
w/GHH

ours w/ 
GHH

Performance Gain with 
Learned Orientations
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Our Learned Orientations

Dominant Gradient Orientations

Learned Orientations
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Learning the Descriptor

• Positive pairs:
ccP1 ccP2

Lpos(
ccP1

,

ccP2) = kDESC(ccP1)� DESC(ccP2)k2



Learning the Descriptor

• Positive pairs:

1
Hard example mining is very important for training

• Negative pairs:

ccP1 ccP2

Lpos(
ccP1

,

ccP2) = kDESC(ccP1)� DESC(ccP2)k2

ccP3ccP1

Lneg(
ccP1

,

ccP3) = max(0, 1� kDESC(ccP1)� DESC(ccP3)k2)

max(0, 1− x)
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A Single, Global Cost Function

min
{DET,ORI,DESC}

X

{(P,y)}

max(0, 1− y softmax(DET(P)))2 +

X

(P1,P2)

kDESC
�

G(P1, softargmax(DET(P1))
�

� DESC
�

G(P2, softargmax(DET(P2))
�

k2 +

G(P,x) = Rot (P,x, angleORI(Crop(P,x)))

X

(P1,P3)

max(0, 1� kDESC
�

G(P1, softargmax(DET(P1))
�

� DESC
�

G(P3, softargmax(DET(P3))
�

)k2)



Problem-Specific Training

LEARNING



Run-Time Pipeline

Detector 
§ is purely convolutional, efficiently applied to the whole image;

§ works in scale-space.



Run-Time Pipeline

The orientation estimator and the descriptor are applied only 
to keypoints.


