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Instructors

Vincent Lepetit Pascal Monasse

vincent.lepetit@enpc.fr pascal. monasse@enpc.fr

+ Teaching assistants for the TP/TD

s Don’t hesitate to contact us!



¢ |ntroduce computer vision;

¢ |ntroduce important mathematical tools for computer
vision;

e (Getting use to work with images.



e Atthe ENPC

— Traitement du signal et Analyse spectrale

— Recherche opérationnelle (flot dans un graphe et coupe
minimale)

— Machine Learning

e Preparation for the MVA master (Mathématiques, Vision,
Apprentissage).




Planed Schedule

Alternating between lectures and exercise sessions;

2 last sessions dedicated to the projects presentations.



Resources

¢ Slides on Educnet.

e Book online

http://szeliski.org/Book/

Include most of the lectures content
Support for many projects

e More references on Educnet

I llllllllllllllllllllll

Computer Vision

Algorithms and Applications



http://szeliski.org/Book/

e TP/TD every 2 weeks

60% of the final grade;

In Python:;

To return for the next session on Educnet.

Do not spend more than 4-5 hours on each TP!

* Project, group of 3-4 students:

40% of the final grade

Reading/summarizing/presenting an important topic in
Computer Vision

Choice in a list on Educnet.

sessions at the end of the lectures and the end of the
semester.



Send an archive with both your code and a report.
Make full sentences, be clear.

Your code must be clean and commented.

Use explicit names for variables.

More instructions on Educnet.



Collaboration Policy for the TD/TP

PERSONNAL, NO PLAGIA

— You can discuss the TP/TD but each report/code must be done
INDIVIDUALLY.

— Write on your report the people you worked with.

— Plagiarism is easy to detect.



e \What is Computer Vision?
— applications and challenges

* |mage formation;

e |mage filtering.
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What Is Computer Vision”?

processing of digital
images by a computer “offline” or “real-time”
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What Is Computer Vision”?

=}
B

s @

possibly several cameras
or images simultaneously

!

possibly using a
cluster of computers

12



What Is Computer Vision”?

——>
the camera can be in motion,
the scene can be dynamic
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object detection, recognition, segmentation
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ééihm

action recognition / scene recognition
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(video from
Pix4D)

3D reconstruction from multiple images [3D geometry]




Applications

,& 3D pose estimation from a single image [Machine Learning] .



3D Scene Understanding

. A

‘ from unstructured 3D geometry to 3D “semantic” [3D geometry +
& Machine Learning]
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Image and Video Manipulation

+ Deep Fakes
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Style Transfer

Iput
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& low-level techniques or Machine Learning
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Image Retrieval

Infos:
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, / (active) depth sensors
Other Imaging Sensors

RGB-D cameras

~

MR segmentation
—— medical imagery —




Computer Vision is Already Here

RURCRL NSO RN OO

oecos

S
or2aesasnfl

= Control {GA0) Wiring.
= Etherrat cabing

Augmented / Virtual Reality
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Vision and Other Fields / Communities

Computer Graphics
SIGGRAPH, SIGGRAPH Asia, TOG...)

Machine Learning
(NeurlPS, ICML, ICLR...)

Computer Vision
PR, ICCV, ECCV, IJCV, PAMI...)

Robotics
(IROS, ICRA...)

& 24



Today

e \What is Computer Vision?
— applications and challenges

* |mage formation;

* |mage filtering.

Ecole des Ponts
RS
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Challenges

Vision is Hard!

20



Human Vision

The visual cortex represents about 20-50%
of our brain.

Human vision is unconscious (most of the
time).

INntuitions about how human vision works
are often wrong...

27



The

Retina

Optic Nerv

Receptors
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The Visual Cortex

V7
V3A

V3
V2
V1, also called primary visual cortex

VP

V4

from [Logothetis, N., November 1999. Vision: A window on
consciousness. Scientific American]
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Too much data:

A color image of resolution 1000 x 1000 is made of

1000 x 1000 x 3 x 8 = 2.4 107 bits.

123 | 034 | 089 | 045 | 145 | 178 | 009 | 078 | 044 084 | 245 | 190 | 066 | 008 | 055 | 094 | 046 | 098
045 | 145 | 178 | 009 | 078 | 066 | 008 | 055 | 123 | 034 | 089 | 059 | 044 | 084 | 245 | 066 | 008 | 055
034 | 089 | 045 | 145 | 123 | 034 | 089 | 094 046 | 098 | 123 | 034 | 089 | 178 | 009 | 078 | 034 | 009
084 | 245 | 190 | 044 | 084 | 055 | 094 | 084 | 245 | 190 | 078 | 044 | 084 | 044 084 | 245 | 190 | 123
123 | 034 | 089 | 078 | 044 | 084 | 055 | 094 046 | 123 | 034 | 089 | 009 | 078 | 044 | 084 | 143 | 162
033 | 178 | 055 | 094 | 046 | 098 | 145 | 178 | 009 | 078 | 044 | 084 | 123 | 034 089 | 045 | 145 | 178
084 | 245 | 190 | 044 | 084 | 055 | 094 | 046 | 098 | 009 | 078 | 044 | 084 | 078 | 123 | 034 | 089 | 056
066 | 008 | 055 | 009 | 078 | 009 | 078 | 044 034 089 | 045 | 145 | 178 | 078 | 044 | 066 | 008 | 055
012 | 034 | 089 | 045 | 145 | 178 | 098 | 078 | 123 | 034 | 089 | 034 | 089 | 045 | 145 | 178 | 067 | 034
098 | 084 | 245 | 190 | 178 | 009 | 078 | 044 084 044 | 084 | 245 | 190 | 044 084 | 084 | 245 | 190
055 | 094 | 046 | 098 | 034 | 089 | 045 | 145 | 178 | 084 | 009 | 078 | 044 | 084 | 245 | 190 | 201 | 206
190 | 156 | 123 | 034 | 089 | 009 | 078 | 034 089 | 045 | 145 | 123 | 034 | 089 | 009 | 078 | 044 | 084
018 | 055 | 094 046 | 098 | 078 | 044 | 084 034 089 | 045 | 044 | 084 | 245 | 190 | 009 | 078 | 075
234 | 084 | 245 | 190 | 078 | 044 | 084 | 245 | 190 | 055 | 094 | 046 | 098 | 078 | 044 | 123 | 034 | 089
157 | 044 | 084 | 245 | 190 | 046 | 098 | 123 | 034 089 | 078 | 044 | 084 | 044 084 | 245 | 190 | 012
066 | 008 | 055 | 084 | 245 | 190 | 034 | 089 | 045 | 145 | 178 | 009 | 078 | 044 044 | 084 | 245 | 190
084 | 245 | 190 | 044 | 034 | 089 | 045 | 145 | 178 | 009 | 044 | 084 | 245 | 190 | 044 | 084 | 089 | 043
044 | 084 | 245 | 190 | 178 | 009 | 078 | 055 | 044 084 | 245 | 190 | 034 | 089 | 044 | 084 | 245 | 190

a small image
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Why Is Vision So Hard?

Not enough information

31



Why [s VISIOH SO Hard7
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Not enough information
3D information is lost

?

Given an image, there is an infinite family of 3D scenes that could create this image;
How do we should which one is correct?
Context (e.g. car washing video);
» Prior information (e.g. lines tend to be orthogonal or parallel);
« etc.

AD 35




umans

3D Perception in H

\\ '._.'
i)
A

Distant
object

binocular
cues

2
) &Y
. from binocular parallax from convergence J monocular cues
(" o R A
from geometric cues from context ‘from motion
from atmospheric effects
& .y from focus and defocus from shading and cast shadows )

36



Why Is Vision So Hard?

Not enough information
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Why Is Vision So Hard?

Not enough information

The crater/dome illusion;
We are expecting the ground to be below us, and the light coming from above.

Ecole des Ponts
RS 3 8



Contrast

Edward H. Adelson

Ecole des Ponts
[
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Contrast

Edward H. Adelson

Ecole des Ponts
RS
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Why Is Vision So Hard"”

Not enough information

Partial occlusions.

Ecole des Ponts
[EnTT
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Why Is Vision So Hard’?

“Varying” information

17874
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different orientations

e68559 9
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different lights

& | d fferent deformations



Why Is Vision So Hard"”

Intra-class variations

44



ffects

Complex Light

45

vilweh
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One of the abilities of our visual cortex:

Fast inference for “typical” scenes;
Unusual scenes can still be understood with more time.
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Computer Vision

e \We know it is possible.
e We know it is difficult.

e \We don't know how to do it. Well, we are starting to know...
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A Short History of Computer Vision

~2000: beginning of
Machine Learning being
used in Computer Vision

1966: MIT undergrads
project

\ A .

AN
\ Y / .
1980s-:

~1958: Perceptron ~1992: first Deep low-level Computer ~2010: new beginning
S Learning sygtgms in Vision (edge, of Deep Learning in

Computer Vision segment, keypoint Computer Vision

==ST57T detection, etc.);

» [3D] object tracking;

50




"The primary goal of the project is to construct a system of programs which will
divide a vidisector picture into regions such as likely objects, likely background
areas and chaos. We shall call this part of its operation FIGURE-GROUND
analysis. It will be impossible to do this without considerable analysis of shape
and surface properties, so FIGURE-GROUND analysis is really inseparable in
practice from the second goal which is REGION DESCRIPTION. The final goal is

OBJECT IDENTIFICATION which will actually name objects by matching them

with a vocabulary of known objects.”

A 5



Image and signal processing, Fourier analysis in Vision

Introduction to 3D reconstruction

Energy minimization, graph cuts, MRFs for segmentation and stereo
Overview of many important topics/methods (projects)

Little recognition (except in projects) to minimize overlap with ML

52



Today

e \What is Computer Vision?
— applications and challenges

e |mage formation;

* |mage filtering.

Ecole des Ponts
RS
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Image Formation

54



Image Formation

Film

Let’'s design a camera
— ldea 1: put a piece of film in front of an object
— Do we get a reasonable image?

& o0



Image Formation

Film

Let’'s design a camera
— ldea 1: put a piece of film in front of an object
— Do we get a reasonable image?

&;”.‘ij.ﬁ” 5 6



Image Formation: Pinhole Camera

Film

|dea 2: add a barrier to block off most of the rays
— This reduces blurring
— The opening is known as the aperture

B\ 57



Camera Obscura

Camera Obscura, Gemma Frisius, 1558

Solis debignim A Chrisfs 154
Di zf%ﬂ«’anﬂur’y‘ Iglmy* S
. .

already mentioned in the 5t century in China

58



Accidental Cameras

oG What S happenlng’?

59



From Light to Sensor

Film

60



From Light to Sensor

Film

61



From Light to Sensor

Film

62



Modelling Interaction between Light and Surfaces

Lin (X7 6)ina (bin)

Lout (X7 00ut7 ¢out)

Bidirectional Reflectance Distribution Function (BRDF):
the ratio of the radiance in the outgoing direction to the incidence

Lout (X, eouty ¢out) — /

& @ BRDF

p(eouty ¢Out7 07 ¢)Lin (X7 07 ¢) COS 9d9d¢
Y

J

63



Cameras

A — Viewfinder

Pentaprism
Focusing + "
screen : Film

Angled

mirror

- Internal lens
elements

e
~—— Light from subject

| enses:

allow to focus the light

Introduce artefacts: chromatic aberration,
distortion, vignetting, etc...

64



Chromatic Aberration

Different wave lengths are refracted at different angles:

This is the main reason lenses are so complex:

65



Distortion

Bl e
il ] L‘Luc
= e r ""“-J
_..J-o“""“‘ l""ﬁ-Jj
= ot 8 - "
5 >
L~
-‘—:‘ et

image distorted by the

camera lenses

- 2D transformation

.‘:‘P'A. :

e

undistortion possible with a 2D

transformation

66



Vignetting

SRRl

Also due to the lenses: The image tends to be brighter at
the center than on the borders

Ecole des Ponts
[
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Depth of Field

DEFTH OF FIELD
DEPTH OF FIELD

DEPTH OF FIELD

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

68



e EXxposure time:
— The recording is not done instantly;

— During the exposure time, the camera can move or the scene can
change, leading to motion blur.

69



From ldeal to

CCD sensor:

Discrete - quantization;

Bayer filter mosaic;

Limited dynamic range - saturation;
Sensor noise.

Real Camera...

Bayer filter mosaic

70



From ldeal to Real Camera...

Rolling shutter:
on cheap sensors, the image is captured line by line.

71



(except from very expensive ones, ) cameras have a much shorter dynamic range as
the human eye:

Mark Fairchild's
HDR Photographic
Survey 79




e \What is Computer Vision?
— applications and challenges

* |mage formation;

e |mage filtering.

/3



Image Filtering

example for denoising:

74



Edge Detection

75



L et’'s Formalize

Captured images are discrete: 7:{0...w—1}x{0...h —1} — {0...255}(%)
Grayscale image: 8 bits per pixel. 0 = noir, 128 - gray, 255 - white.

Color image: 3x8=24 bits per pixel. In RGB space (Red-Green-Blue):
(255, 0, 0) 2 red; (0O, 255, 0) =2 green; (0, 0, 255) - blue

(255, 255, 0) - yellow; (255, 0, 255);

(255, 255, 255) > whie

Other color representations exist (Lab, HSV...).




Captured images are discrete: 1:{0...w —1} x {0...h —1} = {0...255}(%)

After some computations, it is possible to obtain images with floating point
values for each pixel.

A%A e 7



Image Noise
e Model of an image with noise: O = I + N

e Real photos tend to have noise:

/8



Noise Models
Model of an image with noise: O = + N

O
l

|deal image / + Gaussian noise N

79



Salt-and-Pepper/Impulse Noise

Some pixels are randomly assigned black or white

ldeal image 1 + Gaussian noise N + Salt- and Pepper noise

& 30



Continuous convolution in 1D:

f,g: R—R
+00 00
Fro)@) = [ fage-wdu= [ fo - wglwdn= g+ @
Discrete convolution in 1D:
f,9g:7Z — R
“+oo +oo
(f*g)n)= > fim)gln—m)= Y f(n—m)g(m)=(g*f)(n)

.if the integrals/sums exist. In our case, fand g are compactly supported and
- bounded, so the integrals/sums exist. 81



Discrete Convolution in 2D

(f*9)i, ) = Z Zfz—kj—l )g(k, 1)

k=—o0 l=—00
= Z Zfz—l—k]—l—l g(—k, 1)
k=—ocol=—00

Used e.g. for image filtering, and in Convolutional Neural Networks...

Can be done efficiently with Fourier Transform.
Can now also be implemented very efficiently on GPUs.

82



“+00

(f*g)(i5) = ) Yfz+ky+l) (—k, 1)

k=—oc0 l=—0o0

== J
Linear filter g E

Image f Result f* g ?



(f*xg)(i,7) =

“+00

M S“fz+k]+m(—h—o

k=—oc0 l=—0o0

Image f

mme

Linear filter g

i

Result f*g?

34



(f *

“+00

= ) S“fz+k]+l(—h—o

k=—oc0l=—c0

i

Image f

Result f*g?

85



if

- ignore the borders, but then the result has a different size than the original image;

- pad with O (or other constant), wrap (loop around), clamp (replicate pixels on the borders), mirror (reflect
pixels across edges). Results in some artefacts.

mirror

wrap clamp

% examples : ‘
12 iclmech E
blurred: zcro normalized zero clamp MIror

saunds e OTOE Aqsn02s




Practice with Linear Filters

Image

0

0

0

0

1

0

0

0

0

Filter

Result?

Source: D. L8ovZ



Practice with Linear Filters

Image

0

0

0

0

1

0

0

0

0

Filter

Result (no change)

Source: D. L8ov§



Practice with Linear Filters

Image

0

0

0

1

0

0

0

0

0

Filter

Result?

Source: D. L8ov%



Practice with Linear Filters

0

0

0

1

0

0

0

0

0

Image

Filter

Result: shifted /eft by one pixel

Source: D. gowe



Practice with Linear Filters

Image

|+

1

1

1

1

1

1

1

1

1

Filter

Result?

Source: D. gowe



Practice with Linear Filters

Image

|+

1

1

1

1

1

1

1

1

1

Filter

Result: blurred

Source: D. gowe



Practice with Linear Filters

01210 - Result?

O+

Filter

Image



Practice with Linear Filters

Image

Filter

O+

Result: Sharpened image



S h a r p e n I n g | gray here corresponds to O, black

to a negative value, white to a
What does blurring take away? postive value !

Adding it to the original image:

X N




GaUSS|an Convolution

1
X 20
Y) 27702
X
1 ‘
\ \|

\ Gaussian filter with ¢ = 1.0
(normalized: black = 0O,
white = max value)

Common approximation:

1 2 1

1716 | 2 4 2

8 ' 1] 2| 1




1 _P4y?
e 202

gg(x,y) — S —

Gaussian filter with o = 2
(normalized: black = 0O,

S " - white = max value)




gU(va):

1 _xP4y?
e 202

2w o2

Gaussian filter with ¢ = 3
(normalized: black = 0O,
white = max value)

98



Practice with Linear Filters

X e

B +2 | 0 | -2
+1 | 0 | -1
Filter
Image Result



Practice with Linear Filters

Image

+1 0 -1

+2 0 -2

+1 0 -1
Filter

Result
(gray corresponds to 0)

100



Fourier Transform and Convolutions

101



Fourier Transtform: High Level Description (1)

Decomposes image finto a weighted sum of 2D orthogonal basis functions:

102



Fourier Transtform: High Level Description (2)

+oo +o0 .
f(x,y) = / / F(u, v)ed2mwetvy) dudy

fa 2D image, F its Fourier transform;
F(u, v) is complex in general;

ulavl |F U2, V2 |
UQ

frequence: \/u? —I—v

phase. atan2(Flm(u1, ’01), Fre (ula vl)) 103



Fourier Transform: Example

* |F(u,v)| generally decreases with higher spatial frequencies;
e phase appears less informative,

104



High and Low Frequencies

original low pass

AN
N \\':

A

[F(w,v)|

105



intensity image

The product of convolution can be replaced by a regular product
in the Fourier space.

Slide: Hoiem

& 106



The Convolution Theorem [N

FFT

intensity image

FFT

log fit magnitude

Slide: Hoiem

107



The Convolution Theorem

FFT

Inverse FFT

 —

Slide: Hoiem

108




|ls Convolution Invertible?

Slide from J. Hay&s



It convolution is just multiplication in the Fourier domain,
isn’t deconvolution just division?

Sometimes, it clearly is invertible (e.g. a convolution with
an identity filter)

In one case, it clearly isn’t invertible (e.g. convolution with
an all zero filter)

What about for common filters like a Gaussian?

Slide from J. Héyk@



Deblurring and

Denoising

111



O: Observed (blurred) image, I Ideal image, K: blurring filter/kernel:

O=1xK

then deblurring is possible if the Fourier Transform K of K is never 0 (this
Is the case when K is a Gaussian kernel (why?):

I=0/K

because the coefficients of the Fourier Transform of the inverse of a
function are the inverse of the coefficients of the Fourier Transform of the

ngtion. 15



In practice, there is noise in the observed image:

O=I1I«xK+ N
Then:
P=0/k - N/K

But noise N is unknown. We could try to ignore it, as it is smaller than the
image values. However, the Fourier Transform K has also small values
(why?), and ignoring the term N /K would result in large errors.

113



Denoising

Blurring an image removes the noise: why?

114



O=I1+N

with N: noise iid, mean 0 and standard deviation o2

With K a constant window kernel:

1

K(ZJ) — (25 — 1)2 Ilma..X('zl.j)<S

Blurred image: K+«O =K I+ K x N
v 115



Denoising

KxO=KxI+K=xN

with N: noise iid, mean 0 and standard deviation o2

1

and: K(i,j) =
( > N(i—k,j- 1)1{(;;.1)) ]
kJEZ

(25 — 1)2 ]lmax(i,j)<5
E[K * N} =0 1 S—1 °
= TE- 1)11113:. ( Y N@E-—kj l))
: kl=—S+1

1 )

& - @2s-127 116

E[K * N(i,j))] = E




Denoising

e [fSislarge enough: K * O ~ K x [
e NO more noise, but blurred image

4 »How to preserve edges/texture? 117



Denoising with Convolution: Limits

Blurring salt-and-pepper noise:
3x3 9x5 x7

Source: L. LazJoJiIB



Alternative: Median filtering

A median filter operates over a window by selecting the
median intensity in the window:

10

15

20

3

90

27

Lo | 9

3

Median value

31

30

T——

10 15 20 23

27

l Sort

30 31 33 90

10

15

20

73

27

27

33

31

30

l Replace

Source: K. Grguﬂna



Median Filter

filters have width 5 :

INPUT

L B B B L B

MEDIAN

MEAN

Source: K. GrlgrQn



Gaussian vs. Median filtering

3x3 5x5 X7

Median /7%

Source: L. Laz;o%(‘]



Median Filtering: Limitations

e Remove fine details:
e Slow with large windows.

& 1922



Bilateral Filter

ﬁ With slides from Sylvain Paris and Frédo Durq:lgg



Gaussian Smoothing

Smooth the image, but remove edges:

124



Gaussian Smoothing
Smooth the image, but remove edges:

125



SBilateral Filter
Smooth image while preserving the main edges

Tomasi 98 126



Bilateral Filter
Smooth image while preserving the main edges

Tomasi 98 127



Gaussian Smoothing - Bilateral Filter

We would like to “stop” the Gaussian
kernel at edges.
How do we formalize that”?

Pav:N 128



e Gaussian smoothing:
Gl]p = ZGUS (P —a) x Iq
q

e Bilateral Filter:

BF[I]p = ZGas(P_Q)

q

X Iq

129



e Gaussian smoothing:
Gl]p = ZGUS (P —a) x Iq
q
e Bilateral Filter:

BF[I], = ZGUS‘ (P—a) X Gop(lp — Iq) X Iq

q

130



e Gaussian smoothing:
Gll]p = ZGUS (P —q) X Iq
q

e Bilateral Filter:

1
BF[[]P — WZGU*S(p_q) X GUR(IP - [q) X Iq
P q

Wp = Z Gos(P—a) X Gop(lp — 1g)
9

131



input image 1 seen
as a surface

output image BFI[I]

Gos(Pp—q) X Gop(Ip — Ig)

1
BF|I]p = W ZGas(P —q) X Gop(Ip — Iq) % Iq
P g 132



Bilateral Filter for

Denoising

134



1
BF[I]I) — WZGUS(I)_q) X GUR(IP o [q) X Iq
P aq

/

Depends from the image value at each pixel:
cannot easily be pre-computed, no Fourier Transform
- slow to compute a priori, but see 2 next slides

135



ldea: Can be seen as filtering with an additional dimension
1) - J(p.0) with J(p.1) ={ ) P

0 otherwise
if /is seen as a 2D array, Jis a 3D array.
To a row of image I:

N [ T T T T T T T T T T T 1711
corresponds a 2D array in J.

Akl

(should be 256 rows, 1 for each
possible intensity value)

v

136



I(p) — J(p,!)

Fl](Pu; Pv)

with J(p, 1) = {

Wip ZGUS(p - q) X GUR(IP
q

[ if I(p) =1
0 otherwise

— Iy) X Iq

stexp( M)k]:gexp (- %) X I

20% 20R

2 72
WLP Z kSkR exp ( _Alp—=dall® (Up gq) ) % Iq
q

_ 2 _ 2 _ 2
WLP Z kSkR eXp ( _ (pu (;lu) _ (pu C21v) . (Ip gq) ) % Iq
q

20 20 20

S S R

o2 0 07" (Pu — qu)
Wip S kskrexp [ —2d" | 0 o} O d| xIq withd = [ (P, — qv)
q

WLP(GOS,Us,O'R * ‘])) (puapvalp)

Gaussian filtering can be computed very efficiently (see Lecture #2).

137



Array J.

Gaussian convolution with kernel (os, o)

A4

i
Keep only the pixels in red to build the bilateral filter output:

\4

138



Non-Local Means for

Denolising

139



Non Local Means

Observation: Images are self-repetitive

140



Non Local Means

For each pixel: use the mean of intensity values of the
neighbors that have similar appearance (can be seen as
an extension of the BF)

Basis for state of the art denoising
141



Wikipedia
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