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Today: Interest Points
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straight lines segments interest points

superpixels

Features (~ caracteristigues): “Summary” of image content useful for computer
vision applications.

Il different from features in machine learning, and image features computed by

deep networks
LALN



Interest points

Also called feature points, keypoints, corners, corner points, ..
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Applications

& 3D Reconstruction / Photogrammetry



Interest Points for Photogrammetry

{
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1.

Detect interest points;

Match interest points across
Images;

Use these matches to find
the positions and
orientations of the cameras,
and the 3D locations of the
points.



Interest Points for Photogrammetry

. Detect interest points;

. Match interest points across
Images;

. Use these matches to find \

the positions and
orientations of the cameras,
and the 3D locations of the

oints.
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Lectures #4 and #6
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Image Mosaicing

Ecole des Ponts
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Image Mosaicing

Detect interest points

Match interest points
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Image Mosaicing

Match interest points

|dentify correct matches
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Image Mosaicing

Ecole des Ponts
Parlclivh

|dentify correct matches
(using geometric
. constraints, Lecture #4)

Compute the (2D) motion
between the 2 images
using the correct matches
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Applications

3D object detection
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Camera Localisation

Scenario:

1. we capture many images of a scene.

2. we use these images to reconstruct a 3D model of the scene. We also store
the images in a database.

3. we capture a new image of the scene and we want to estimate where the

camera ISs.
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Camera Localisation

|dea:
we look for an image in the database similar to the captured image,
we match interest points to compute the position and orientation of the camera.
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Desired Properties & Challenges

We want interest points that can be matched reliably:

1. We want to detect the same points in different images, even if the rotation,
scale, perspective, lighting changed.

2. We want to correctly match the points, even if the rotation, scale, perspective,
lighting changed.




Different Expectations for Different Applications

Short Baseline Wide Baseline

Ecole des Ponts
Parl<livh 1 9



Interest Points for Short Baseline
Problems:

Detection and Matching

20



—eature Point Extraction

How can we extract the same physical points in the two images?

& o
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Introduced by Harris and Stephens in 1988.

Basic assumption:
Shifting a local patch in any direction should give a /arge
change in intensity.

X

X
!




—ormalisation

Assumption: shifting a local patch in any direction should give
a large change in intensity

23



—ormalisation

Assumption: shifting a local patch in any direction should give
a large change in intensity

E(x,y; Au, Av) = Y [I (z+i+Au,y+j+Av) — I (z+i,y+5)]
X L]
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—ormalisation

Assumption: shifting a local patch in any direction should give
a large change in intensity
E(z,y; Au, Av) = Y (I (z+i+Au,y+j+Av) — I (z+i,y+5))

4

v
Correlation between image patch centered on

(x, y) and image patch centered on (x+Au, y+Av)

We are looking for (x, y) images locations such
that the correlation

E(x, vy, Au, Av)

is large for a// directions (Au, Av)
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Small Motion Assumption

Taylor Series expansion:

1 I
Iz + Au,y + Av) = I(x,y) + %(az, y)Au + g—(az, y)Av + higher order terms
Y

If the motion is small, then the higher order terms can be ignored:

I(x+ Au,y + Av) = I(z,y) + [%(w,y) g—é(x,y)} [iﬂ
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Parlclivh Y
& Q: "auto-correlation matrix”
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2
E(z,y; A, Av) ~ [ Au Av ]| ) [ I[?y I%y ] [ ¥
0] v Y
\ J
Y

0

We are looking for (x, y) images locations such that E(x, y; Au, Av) is large
for all directions [Au, Av]

Eigenvalues ., and L., of O reveal the amount of intensity change in
the two principal orthogonal gradient directions within the patch
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flat region edge corner
Q R both eigenvalues small one small, one large both eigenvalues large



Geometric Interpretation of O

E(z,y; Au, Av) = Z I (z4i+Au,y+j+Av) — I (z+i,y+75)]° ~ | Au Av | Q [

(2]

1

Au
Av

Q flat region edge corner
both eigenvalues small one small, one large both eigenvalues large

|
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Recall: Corners as distinctive interest points

‘edge”: ‘corner’: “flat” region
Ay >> A, OF A, and A, are large, A, and X, are
A >> 0, A~ A small
A1 A2 Q)

Ways to measure the “cornerness” min(Aq, Ag), or = —

)\1—|->\2 B trQ
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- NP COof _ . fath) —f@) _ . fl@th)— fz—-h)
Approximation by finite differences: %_flfﬂ% - = lim oh

Convolution [+1 —1] = I will shift the derivative by 2 pixel.
Convolution [+1 0 —1] x I is better.

Convolving the image with a Gaussian kernel will make the computation more robust to
noise, and the full operation can be seen as the convolution of the image by the derivative
of the Gaussian kernel:

[+10 1] % (Go*xI)=([+10 —1]*xG,) x [

+1 | 0 | -1
Thefilter [..] o [ 2| from Lecture #1 is a good approximation of the derivative of a
4| o | 1| Gaussian kernel.
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| ) ar\”
for each pixel: »_ 17 or G I

(2]



+ NON Maximum
suppression
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Non Maximum Suppression

keep only the pixels with cornerness
larger than their 3x3 (or 5x5) neighbors as
Interest points
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Interest Point Matching (short baseline)

Possible correlation measures:

C=> (h(z+iy+j) — L +iy +j)

0]
Sy (W(z+iy+7)— L) (L2 +4,y +j) — L)
B i A/0102

Point 1 Point 2 Point 3 Point 4 Point 5

& o
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o-% (L(x+i,y+7) — L) (L(x + i,y +j) — I2)
B i A\/O0109

« Invariant to affine changes of the lighting; [Why?]
« Between -1 (completly different patches) and +1 (equal patches); [Why?]

In practice: accept matches when C > 0.8
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Matching

For each point, search for the correspondent that maximizes the correlation. Limit search to a Region of
Interest centered on the point.
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Feature Point Matching

1. For each point, search for the correspondent that maximizes the correlation. Search limited to a Region
of Interest.
Keep the best correspondent according to the correlation.

& o
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1.

2.

& o

Feature Point Matching

For each point, search for the correspondent that maximizes the correlation. Search limited to a Region of
Interest.

Reverse the role of the images.
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Feature Point Matching

Keep the points that choose each other.

41



FAST

Rosten, Edward; Drummond, Tom. "Machine Learning for High-speed Corner
Detection'. ECCV 2006.

Ecole des Ponts
Farldlish
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FAST

* Relies on tests
I(center) > I, +t
or
I(center) < I, —t

e (Create a training set of corners and non-corners using heuristics;

e Use machine learning to find the tests that reject the pixels that
are non-corners as fast as possible.

& o
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_earning

Decision Tree (ID3) to learn to reject non-corners quickly:

Outlook
P ay Sunny Overcast Rain
Tennis? e ~
Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes



FAST

Tracker:




Correlation is the (squared) Euclidean distance between the vector of image
intensities around the first point and the vector of image intensities around the
second point:

. . . A 2
C = ¥, (h@+iy+y) — L@ +iy +j))

=112

Lx— . y—..) Lz — .y —..)

Li(z+.,y+.)]  |L0@+.,y+.)]
% 5\ . Y

.
description vector or “descriptor”

Can we imagine better vectors / better similarity measures between vectors?



BRIEF Descriptor

1]_ 1 it l(x+i11,y+711) > Iz 4412,y + J1.2)
| 0 otherwise

1

0

0

1

BRIEF descriptor

« very robust to light changes;
« computing distance between descriptors is very fast (Hamming distance).



Duplicate the Descriptors: 18 rotations x 3 scales
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Interest Points for Wide
Baseline Problems




|

n'y | ;

s

We need
« to detect the same points in the two images, and

« to compute the same descriptors for corresponding points
(correlation of image intensities does not work here);

despite scale, rotation, perspective, light changes.
Y S
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We want the descriptors to be (ideally) /nvariantto scale, rotation, light,
perspective changes:

descriptors(transform(image)) = descriptors(image)

Ecole des Ponts
Farldlish
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It is possible to have descriptors that are direct/y invariant to scale and rotation:
descriptors(scale+rotation(image)) = descriptors(image)

to some extent.

However, the descriptors then become less discriminant.

Ecole des Ponts
Farldlish
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Covariance / Invariance

We want the descriptors to be (ideally) /invariantto scale, rotation, light,
perspective changes:

descriptors(transform(image)) = descriptors(image)
A better solution is to use a point detector covariant with the image transformation



A Rotation and Scale Covariant Point Detector

Point detector covariant to scale and rotation:

the detector provides a scale and an angle for each keypoint;

the detector should detect the same points even if the image undergoes a
scale and/or a rotation, and

the scale and angle provided should change with the transtormation applied to
the image:

scale k

rotation B

scale s, angle a scale ks, angle a+f3 5/



SIFT

e Scale and rotation covariant detector;

e Descriptor is invariant to affine transformation of image intensities,
and more;

e Descriptor is also robust to perspective changes (ie not perfectly
invariant to perspective changes).



The Harris detector Is invariant to rotation, but not to scale:

e “Cornerness” based on the eigenvalues of the auto-
correlation matrix = the points detected after rotating
the image will be the same.

e Not scale invariant - the points detected after
scaling the image will NOT be the same.

/ e )

corner

All points will be
classified as edges

560



|dea:
Find a function fof image position and scale that gives local maxima in

both position and scale. The scales of the local maxima should be
consistent with the scale changes.

® @

/1 /1

Image 1 , Image 2 = k Image 1
/\ :
k Sq

%2 reglon SIZG reg|on SIZG
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Successive convolutions
with a Gaussian filter or
Gaussian derivative filter
while increasing o

\\\ \\
W X

Original image =

[Lindeberg 9*]

FAVA
AN
A A
LD



Laplacian of Gaussian (G,, + G,,): scale = ¢ of the Gaussian kernels

convolution by Laplacian of Gaussian,
increasing o:

R o R

X
e

Laplacian operator

Ecole des Ponts
Parlclivh



Fast Approximation of the Laplacian of Gaussian

Convolution with Laplacian of Gaussian is slow.
the Laplacian of Gaussian can be approximated by the difference of two Gaussians:

G(c) - G(o)

60



Properties of the Gaussian Convolution

1. The Gaussian kernel is separable:

A 2D Gaussian kernel is equal to the convolution of a 1D horizontal Gaussian
kernel and a 1D vertical Gaussian kernel:

2. The convolution of a Gaussian kernel by a Gaussian kernel is a Gaussian
kernel. The variance (0?) of the resulting kernel is the sum of the variances.

Why"?

Why is it interesting?



DoG — Efficient Computation

(next

octave)
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Keypoint locations: Extrema of Difference-of-Gaussian in scale space

Prar=e The size of the image region used to
compute the descriptor is

"”’ .
scale a proportional to the scale of the
”@?ﬂ’

extremum.

s 7 L L L LS

Sub-pixel and sub-scale interpolation. The Taylor expansion around point is:
oD7T 1 +0°D

Dx)=D+ — x+ =xT

(%) =D+ ox + 2 8x2

= Offset of extremum (use finite differences for derivatives): % = —

92D oD
ox2 0Ox




Keypoint Covariance to Rotation

ldea: Introduce a heuristics to compute a canonical orientation that varies
with the image rotation

64



Keypoint Covariance to Rotation

|ldea: Introduce a heuristics to compute a canonical orientation that varies with the image rotation

e (Create histogram of local gradient directions computed over the image patch;
e Each gradient contributes for its norm, weighted by its distance to the patch center;

e Assign canonical orientation at peak of smoothed histogram.

If the image is rotated, the gradient directions will be rotated by the same angle, et so will the

canonical orientation.
& .
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Results

Detection
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Affine Region Detectors:
Covariant to Affine Transformations
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& -1 degree-of-freedom remains - use canonical orientation from SIFT 68



Invariance to Lighting & Small Transformations

69



Descriptor
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SIFT Descriptor

Made of local histograms of gradients:

In practice: 8 orientations x 4 x 4 histograms = 128
dimensions vector.

Ecole des Ponts
Parlclisch
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for du in [-d;+d]

for dv in [-d:+d]

weight <- exp (- (du?+dv?)/ (2s?))

mag <- welght * gradient magnitude (u+du, v+dv)

ori <- gradient orientation (ut+du, v+dv)

u bin,v bin,orli bin <- bin index(du,dv,ori)
u frac,v frac,ori frac <- fractional part(du,dv,ori)

for r in {0,1}
for ¢ in {0,1}
for o in {0,1}

Histogram[u bin+r] [v bin+c] [orl bin+o] +=

mag * ((r == 0) ? (l-u frac) : u frac) *
((c == 0) ? (1-v _frac) : v _frac) *
((o == 0) ? (l-ori frac) : ori frac);

/2



Handling Lighting Changes

e (ains do not affect gradients;
e Normalization to unit length removes contrast;

e Saturation affects gradient magnitudes much more than their orientations: magnitudes are
thresholded.

/3



Results

f'_. ¥y

B
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Other Example

Ecole des Ponts
Paridlivh

NASA Mars Rover images
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Other Example

Ecole des Ponts
Paridlivh

NASA Mars Rover images
with SIFT feature matches

/0



Other Example

NASA Mars Rover images
with SIFT feature matches

Ecole des Ponts
Parlclivh 7 7



Why Local Histograms of Gradients”

SIFT is motivated by the theory of Hubel and Wiesel (1962, Nobel Prize in 1981):

In V1:

v J

Some neurons (“simple cells”) have a high response when presented with oriented gradients. Each
simple cell is specialized for a specific location and gradient orientations.

Some neurons (“complex cells”) are connected to simple cells with similar gradient orientation and
location specializations. A complex cell has a high response when at least one simple cell has a high
response.

gradient is important.
it is also important to be tolerant to some orientation and position shift.

T S
“sam-Single cells
- complex cell

/8



Why Local Histograms of Gradients”

SIFT is motivated by the theory of Hubel and Wiesel:

In SIFT:
gradient detection plays the role of the single cells;
local histograms play the role of the complex cells.

“ap-Single cells ?./'
, complex cell
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Convolutional Neural Networks (CNNs)

CNNs have also a mechanism inspired by complex cells: Pooling layers.
CNNs learn convolutional filters on which the pooling layers are applied.

On the first convolutional layer, CNNs tend to learn to detect oriented image gradients!
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