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D Geometry for Computer Vision



Camera Model

From World to Images



Image Formation: Pinhole Camera

Film or sensor




Pinhole Camera Model

C
Camera center: Located at the

aperture is, i.e. where the rays
intersect.

Image plane: does not correspond to a
‘physical” plane but the image is not reversed
(it is reversed on the sensor or film).



On the next slides:

C
Camera center



From the World to the Image

World coordinate
system |
M

L
C

Camera center

What is the relation between

- the 3D coordinates of a point M (expressed in a coordinate system
related to the world) and

- the corresponding pixel m in the image captured by the camera ?



Perspective Projection

World coordinate
system |

C
Camera center

The image formation is modeled as a perspective projection, which is realistic for standard
cameras:

All the rays passing through a 3D point M and the corresponding pixel m in the image
intersect at a single point C, the camera center.



World coordinate M.,
system |

C X
y Camera coordinate system

Step 1: Convert the coordinates of M, to the camera coordinate system as M..

This transformation corresponds to a Euclidean displacement (a rotation plus a translation):
M.=RM,, + T

where:

R is a 3X3 rotation matrix, and T is a 3- translation vector.



X X
World coordinate M= | Y. | 5> M, = P
system Zo (% )
}" 1
M.

cl X |
y v Camera coordinate system

Let's replace M,, by the 4- homogeneous vector M,,: This simply amounts adding a 1
as the fourth coordinate (also see next slides).

This will allow us to simplify the notations.
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A mathematical trick to express non-linear transformations such as translation or
projection as linear transformations.

A 3D point is expressed in homogeneous coordinates as a 4D vector:

¥ kX
M = (Y) M = kY for any k € R*
7 kZ
k

- A homogeneous vector is defined up to a scale factor:

kX k' X
/
IIZ}Z/ 2,; for any k, k' € R*
k k'
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A homogeneous vector is defined up to a scale factor:

kX
kY
kZ

k

Q.. O o9

k' X
K'Y
k' Z

for any k, k' € R*
k/

/
b and d # 0,d" # 0 then

~

d/

alo alo ale
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From Homogeneous Coordinates to
Euclidean Coordinates

- A/D
ifD#0 3D point (B/D)
-

C/D

S QW

the direction of vector | B
C

9 if D=0 m point at infinity in (A

|
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Using Homogeneous Coordinates (1)

Using homogeneous coordinates, we can write a Euclidean rigid motion
as a linear transformation in the homogeneous space:

0 1

— _/
Y

4 X 4 matrix

RMW+T%(R 1 )MW
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Applying the Motion to a Point at Infinity

The translation has no effect on points at infinity:

(1)) (8 0= mon ()

0
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Using homogeneous coordinates, we can write a Euclidean rigid motion as a
linear transformation in the homogeneous space:

R T \ —~

RMA4T — ( 0 1 ) M

— /
Y

4 X 4 matrix

In computer vision, the fourth coordinate (k) is usually setto 1, anda 3 X 4
matrix is used instead:

X. X );W
M.=|Y.|=RM,+T=R | Yy +T:(R T) W
Ly
ZC ZW 1

3 X 4 matrix
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World Coordinates to Camera Coordinates

World coordinate
system X,
c — ch
- )

X, o
Y. - ( R T ) ZW
y Camera coordinate System

Ri1 Ry Riz Th
= Ro1 Rax Rosz 1o
R31 Rsx Rsz 13

|

w

<

w

- 5

|
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The matrix

Ri1 Ry Rz Th
(R T )=|Rxn Ry Ry T
R31 Rza Rsz3 13

is called the "External calibration matrix", or the "extrinsic calibration matrix", or the "matrix of
external parameters".

It can be parameterized by 6 values: 3 for the rotation, 3 for the translation.
The parameterization of the translation is trivial, while parametrizing rotations is not.

We will detail the possible parameterizations of rotations in the 3D space.
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2 d

Lc
me. = Ye
y Camera “e
coordinate
system

Coordinates of m, (a 3D point!) in the camera coordinate
system: Simply use Thales' theorem

Xe
— = — c= f—
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N <
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c ®
’
i
’
’
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C Teo T
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From Projection to Image

Image coordinate U
system
v

Camera coordinate
system

X

xc:fZayc f_

Coordinates of m in pixels ?

21



. . Xc B Y*C
From Projection to Image te=fo v =Fo

C

Coordinates of my; in pixels ?

Image coordinate | U (expressed in pixels)

system
X
W T m./ my
:#
C _ Tuy !
Camera coordinate i
system fit
@
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From Projection to Image

1
— 1 | _
o , . size of a pixel along the X axis
1pixel | — “
P k.,
Image coordinate U u . x1?
system ¢
v mC — yC
Vo Zc
X1
I 9 U -7 T m
mjp = O @O—
(yx) ---------------
C _ Uy
Camera coordinate
system 1




From Projection to Image

1
Ky
1
1 pixel k_v
Image coordinate T
system ¢
v mC — yC

C
Camera coordinate

system

ki size of a pixel along the X axis

Ty = Ug + kuxc

X1
T m
-“ -

y uo I
a
o—
C T,
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From Projection to Image

1
Ky
1
1 pixel |7
ke L1 — U -+ ku
Image coordinate
system N Le Y1 = Vo + kyYe
v m: = | Yc
'Uo' ZC xI
m; = o o U o= 7T T~ .
vy, 0 - i ________________ I
C _ Uy
Camera coordinate
system 1




Overview

X
World coordinate M, = (}fw)
system w
Image coordinate I X
system VT
Ze
Lc
me = yc
Z
C o T1 C
I p—
Y Y1 X X, T .
Cam_era Yo |l =Yl = (0] = I
coordinate "
Lw Ze Ze

system
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Using Homogeneous Coordinates (2)

Xe { 1 = Uy + kyTe

Te = : —
C fZC yC f yI — ,UO _1_ kvyc

N $1_U0+kqu
yI—UO+ku

The transformation from (X,, Y., Z,)T to (x;, ;)T can be written in matrix form using
homogeneous coordinates:

U kuf 0 Uo XC
v - 0 kvf Vo Y.
w 0 0 1 Lo
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Using Homogeneous Coordinates (2)

xI:uO‘Fkuf)Z(_cc
yI:/UO'Fkvf}Z/_Z

The transformation from (X, Y., Z,)T to (x;, y;)* can be written in matrix form using
homogeneous coordinates:

u kuf 0 Uo Xc kquc + UOZc
v = 0 kvf Vo Y. = kvac+U0Zc
w 0 0 1 ZC ZC

_ _ kufXctuoZ:. FXC
xI - ,lun - f Zc 0 — UO k?u ZC
%

_ v __ kvac+U Zc _ Y.
yr= 2= befYornZe _ o p Y
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The 3 X 3 matrix

kuf 0 7]
0 kv f Vo
0 0 1

is called the "Internal calibration matrix", or the "intrinsic calibration matrix", or the "calibration matrix", or
the "matrix of internal parameters".

It is not possible to estimate k,, k,, and f separately, only their products, and the intrinsic matrix can be
parameterized by 4 values: a,, a,, ug, vo:

a, 0 ug

0 «, v
0 0 1

The number of parameters are often further reduced, under some assumptions:
® (ug, Vo) iS Often taken at the center of the image;
e Taking a, = a, assumes that the pixels are squared.
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The two previous transformations can be chained to form the full transformation from
a 3D point in the world coordinate system to its projection in the image:

u a, 0 wug Ri1 Ri2 Riz T )}fw
v = 0 a, wvo Ro1 Roa Rz 13 Zw
w 0 0 1 R31 R32 R33 T3 1W

Pi1 P12 P13 Py iiw

= Py1 Poy P3Py ZW

P31 Py P33 Psy 1W

~
3X4 projection matrix

The product of the internal calibration matrix and the external calibration matrix is a
3x4 matrix called the "projection matrix".

More exactly, any matrix proportional to this product is equivalent. It is defined up to

v a scale factor. 30



World coordinate
system

Overview L (

Image coordinate
system _ = = = = X
P

Camera

coordinate In short:
system '

~

m

Py
Py
Psy

0 1

Poy Pos Poy

Py P13 Py
P3y P33 Psy

K(R T)M,,

o~

PM,,

0 1w Ri1 R
Vo Ra1 Raa
R31  Rs

~NRE

Ry
Ro3
Rs3
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erspective Geometry

Lengths, angles are not preserved by
perspective projection.

[EnTT




Perspective Geometry

Lengths, angles are not preserved by
perspective projection.

Straight lines remain straight.

Parallel lines in the world intersect in the image
at a "vanishing point”




Vanishing Points and Lines

Vanishing Point
J Vanishing Point

Vanishing Line
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Some Relations

World coordinate

m = K(RTM,

—~—

PM,,

What is the 3D coordinates of C, the camera center, in
the world coordinate system?

Camera
coordinate
system

oy 36



Some Relations

World coordinate
system

=k
|
~
'
=
<
g

1
.
=
g

kv,

1M1 What is the direction of the line of sight from C
going though pixel m?

In the camera coordinate system:

Camera
coordinate
system
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Some

Camera
coordinate
system

Relations

World coordinate
system

=k
|
~
'
=
<
g

1
.
=
g

\%

1M1 What is the direction of the line of sight from C
going though pixel m?
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-stimating a

Between Poir

ransformation
tsS
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e An affine transformation between 2D points;

e A homography between 2D points;

e A projection from 3D points to 2D points.
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Estimating an affine transformation
between pairs of 2D points

Problem:
we have given a set M of pairs of 2D points:

M ={(m;,m;) | i € [0: n]}

We assume there is an affine transformation that, for each pair, transforms the
first point into the second one:

JA, T | Vi m; = Am; + T

How can we find the coefficients of A (a 2x2 matrix) and T (a 2-vector) 7

44



Affine transtormation applied to points



Affine transtormation applied to points

rotation scale symmetry

A:(Cf)sa —sina) T -0 A:(Sx 0),T:0 A:((l) _01>,T:0
sinaw  cosa /' 0 sy A
A A . .
] ‘ ‘ o | o
skew/shear

Any 2x2 matrix can be decomposed as:

310)R@>

0 S92

N
; A=ROR(-0)

fj.; (why? hint: SVD)
& L / 46




What does a pair of points give us”

m= (1) = () a= (5 1)om=(5)

& A linear system of 2 equations in unknowns (a, .., f)
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Minimal problem: (M| =3

With 3 pairs of points:

49



In practice, when |M| > 3, there is no guarantee that there are an A and a
T such that we have exactlym’;= Am,+ T for all 7 (for example, because

the points are inaccurately detected).

In that case, we minimize: oAmit T
’ . \.ml
m; (@)
)
5) ° ®
5)
o ° o
o
Q@
error(A, T) = Z |Am; + T — m}||?

\M\

We are looking for arg gn% error(A,T)
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—
8
—_
<
—
—_
-
-
-
——
—
S
—

()

M: a (2N)x6 matrix 00 0 o w1 . Y1
- overdetermined : il =1 :
problem when N >3 xy yy 1 0 0 O e 'y
/

\0 0 0 ax yv 1) \y) \vi

Consider x = M*b, with M* the pseudo-inverse of M: M+ = (M™)- 'MT

This gives the solution of our optimization problem: [why?]
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The transformation between a 3D plane and its
projection is a homography

2D point m in homogeneous

coordinates (so a 3-vector) 3D point M in homogeneous
/ coordinates (so a 4-vector)

—_

= PM
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The transformation between a 3D plane and its
projection is a homography

2D point m in homogeneous

coordinates (so a 3-vector) 3D point M in homogeneous
\ / coordinates (so a 4-vector)
m = PM
[ X
= K[R; Ry R3 T] }(; if M is on a 3D plane

| 1

]

1

X
= H|Y| =Hm,
\

1
2D point m,, in homogeneous
coordinates (so a 3-vector)

H: 3x3 matrix of the homography corresponding to 3D point M




Homography: Transformation between a 3D
plane and its projection

Example
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The transformation between 2 projections of a
3D plane is also a homography

m; = Hm, and my; = Hom,

~ _ _1 ~ _ ~
= 1INy = H2H1 m; = H; ,om;,

\

3x3 matrix

S/



The transtormation between 2 projections of a 3D
scene under rotation only is a homography as well
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Application: Constructing a Panorama

Ecole des Ponts
I}

b
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Transformation between 2D point m and 2D point m’ of the form:

m’ = Hm
. " a b c
With m = <y> ,m’ = (y’) ,andH=|d e f|,Vk,k'#0:
g h 1
k' x' a b c kx
— Ky | =|d e f ky
k' g h 1 k
[ akx + bky + ck kl;alsl aka-tbky + ok
— Ky | = | dke +eky+ [k | — (k, ,> = <Zkiiek5:;k> — (
k' gkx + hky + ik = gka+hky—+ik

axr+by—+tc
gxr+hy+i

dr+ey+f

gr+hy+i

)
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Homography in general

Transformation between 2D point m and 2D point m’ of the form:

—_—

m’ = Hm.

With m = (5”’) ,
y

ax+by+c
gr+hy-+1i

ar+by+c

~ gxthy+i

m’ =

(5

/

/

a
),andH: d
g

o B I

)
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What does a pair of points give us”

, a b c
m:<x),m’:(x,),H: d e f
Y y o b
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What does a pair of points give us”

, a b c
m:<x),m’:(x,),H: d e f
y y o b

64



What does a pair of points give us”

& A linear system of 2 equations in unknowns (a, .., 7)

66



Minimal problem: IM|=4

With 4 pairs of points

[why is 0 not a solution to our problem?]

Ecole des Ponts
(ST

68



Minimal problem: Solution

70



Minimal problem: Solution

H is defined up to a scale factor and we can choose ¢ =1

A linear system of 8 equations in 8 unknowns

Ecole des Ponts
12 lweh

/2



Mx =0

-> x is a singular vector of M, with singular value 0 (Mx = 0.x)

(In practice, we can obtain the singular vectors and their singular values with
an SVD operation for example.

There will be no singular value exactly equal to 0, and we consider the
singular value with the smallest absolute value.)

74



Estimating a 3D projection from
correspondences between 3D points and
their 2D projections

Wy
Vg

Eucl(PM;)




What does a correspondence give us?

X . P11 Pro

M = Y ,m:(>,P: P21 P22
A Y P31 P39

XY Z 1 0 0 0 0 —zX —zY

o 0 0 0 X Y Z 1 —yX —yY

2 linear equations in 12 unknowns

Pz Py
Pz Py

P33 Psy

/0



Minimal problem: |M| =6
Mx =0

Solution #2 (the one that relies on singular vectors) is called the Direct Linear
Transform algorithm.

’7



The 3D locations of the yellow points are =~ From the matches, we can estimate K in

known in the object coordinate system the object coordinate system
FAVEVEVEN



Can we retrieve K from P? [R T]?

Given a projection matrix:
P11 P P13 Py
P= | Py P3 Py
P31 P3g P33 Psy
can we retrieve its decomposition

a, 0 ug Ri1 Ria Ris Th

P=|10 a, v Ro1 Raa Raz I3
0O 0 1 R31 Rszx Ra3 13
v J U v J

K R T]

?  Why is it interesting in practice?

& 79



Using K, R, and T

R and T give the location and orientation of the camera. This
IS interesting for robot self-localization for example.

If R and T are in the coordinate system of an object, we know
the location and orientation of the camera with respect to the
object. This is interesting for grasping for example.

K, R, and T are also required to generate images in
Augmented Reality.

80



Can we retrieve K from P? [R T]?

Given a projection matrix:

Pi1 P P13 Py
P= | P Py Py
P31 P3g Ps3 Psy

can we retrieve its decomposition

P=|10 a, v Ro1 Raa Raz I3
1 R31 Rszx Ra3 13

0
K R T

=2 Yes! See ANNEX A.
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—stimating K in practice

using Zhengyou Zhang’s method and

using correspondences of 3D
multiple views of a planar pattern

points and their reprojections



Numerical Optimization

83



Non-minimal problems: when more correspondences than theoretically
needed are available.

It is interesting to exploit all the correspondences to compensate the
noise on the detection locations.

34



Non-Linear Least-Squares Optimization

arg mln |/\/l| Z |Eucl(Hm;) — m}||?

e  Minimizes a meaningful error (reprojection error, in pixels);
e Handles an arbitrary number of points;
e (Can be very accurate.

Hmi

89



error(H)

error(h)

with h =

AV

Wll >, [[Eucl(Hm;) — m/||?

o llf(h) — b2

_u(Eucl(HhrPl))_ u(m/,
L f(h) = |v(Bucl(Hpmy)) |y - o(m))




ertor(H) = o0/ (1) = bl

If we assume that fis linear, then f(h) = Mh. The problem becomes

IMh — bl

arg mm

|M|

and can be solved by using the pseudo-inverse of M, or (better) using the
numpy.linalg.lstsqgin Python or cvSolve in OpenCV.

AWA e
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error(H) = |M‘Hf() b||

In general, requires an iterative optimization: We start from a first estimate h,,
which we will try to improve iteratively.

h, can be given by a non-optimal solution, for example.

AV

92



The Gauss-Newton Algorithm
argmmmllf( ) —

How can we find a good A,?

b|*

93



error(R, T)

error(p)

with f(p) =

—~—

= a2 |Euc(K[R T]M;) — my
= malf(e)—b|?

u(Bucl(K[Rp, Tp|M,)) w(m,)
v(Bucl(K[Rp Tp]M;)) | . b = |v(m1)
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Parameterizing a Rotation Matrix

e Matrix coefficients [Ryy, ..., R33]":
9 values, needs additional constraints to get a rotation matrix.

e FEuler Angles:
3 values only, but some technical problems (gimbal lock).

e A unit quaternion:
4 values + 1 constraint.

e Exponential Map:
3 values.
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Toy Problem

1D camera under 2D
translation ° ° °

True camera position at (0, 0)

o °® o
P (]
o ° i Y P
° d -
____________ ° o ® ) °
M,L' o ° . o o
o °
reprojection error: o« ° °
1 N o
error(p) = T 3 [Eucl(K[R TIM,) — my|?, e °

100 "3D points" randomly sampled in
[400;1000] x [-500;+500]

: 1 0 X X
with R = [0 J,T— [Y},andp— [Y]
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Gaussian Noise on the Projections

White cross: true camera position;
Black cross: global minimum of the objective function.

In that case, the global minimum of the objective function is close to the true camera pose.

99



Numerical Optimization

100



What if there are outliers?

& — — 101



Gaussian Noise on the Projections
20% oultliers

White cross: true camera position;
Black cross: global minimum of the objective function.

The global minimum is now far from the true camera pose.
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Solution: Robust Estimators
Replace: argmm WH]‘( p) — b||?

1
by: arg min Yk p(f(p) —Db)

where p(.) is a robust estimator

103



A

\

A

/

—xamples of robust estimators

Least-squares (L2)
not a robust estimator,
here only for reference

Ecole des Ponts
[

L1

>

BANVAEN=

Huber Tukey
(“smooth L1%) p(@:{ 2 (1-(1- @) i <e,

2 .
% otherwise.
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Probabillistic interpretation

The least-squares estimator assumes the errors follow a
Gaussian distribution;

The Tukey estimator assumes that the errors follow a mixture of

J¥ a Gaussian distribution and a uniform distribution.

see ANNEX D.
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Gaussian Noise on the Projections + 50% outliers
and Tukey estimator

The global minimum is very close to the true camera pose again.
However, there are now many local minimums and regions where the function is flat.

& ~How can we find a good initialization for the numerical optimization despite the outliers? 106



Problem on 2D line fitting

final least-squares
solution

-
-
-
-
-

-
-
-
-
-

outlier

-
-
-
-
-

Ideal line
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RANSAC

|dea:
1. sample a minimal set of measures (2 here);

oG 108



|dea:
1. sample a minimal set of measures (2 2D points here);
2. compute the model parameters from these measures (line parameters here)

O
O
o® o —
e
%.%. 109



|dea:
1. sample a minimal set of measures (2 here);
2. compute the model parameters from these measures (line parameters here);

3. evaluate how well these parameters explain the other measures;
This is done by choosing a threshold and counting how many measures lie below this

threshold from the model. ..

O\ 110



|dea:

1. sample a minimal set of measures (2 here);

2. compute the model parameters from these measures (line parameters here);

3. evaluate how well these parameters explain the other measures;

4. iterate and keep the model parameters that explain the most measures.

When there is no outlier in the minimal set, the computed model parameters will be close to

the correct ones.

O\ 111



ANNEX A



Can we retrieve K from P? [R T]?

Given a projection matrix:

Pi1 P P13 Py
P= | P Py Py
P31 P3g Ps3 Psy

can we retrieve its decomposition

- Yes.
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Consider matrix P; made of the 3 first columns of P: P = [P; ¢,]

We have P=K[R T]=[KR KT], so P;= KR

What happens if we compute P;P;?

P;P: = (KR)(KR)! = KRR'K’! = KRR 'K’ = KK’

How can we use this equality?

114



We now know that P;P;7 =KK.
Given the coefficients of P, we can compute the coefficients of P;P;T:
L1y Lio Lis

P3P = | Lio Las Los
Li3 Los L3

These coefficients are the coefficients of KK (up to a scale factor):
Oéi + ’LL% UpVo Uo

KK! = UpVo a% + v% Vo
Ugp Vo 1

115



Retrieving K given P (3)

2 2
L11 L12 L13 o, + U UoVo Uo
2 2
ng L22 L23 =k UpUo a;, + Vg Vo
L1z Los L33 Ug Vo 1

Term identification gives us a system of equations:

( k(Ozi + U(Q)) = L1
k(uovg) = L12
kug = L3

k(ap +vg) = Lao
kvo = Los

k = L33

\
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Retrieving R and T from P and K

P=K|R T] /e. kP =KJ[R T] with £ an unknown factor, so[RT]=k K P

k can be estimated by using the fact the norms of the columns and rows of R
are equal to 1.

In practice, this does not give exact/y a rotation matrix, but it is possible to use
an orthogonalization method.
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ANNEX B



from pairs of 3

D points and their 2

orojections when K is known

—stimating a rotation and translation

D
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PnP: Perspective-n-Point " ./ 7.

Estimation of the Posmon and Or;entatlon (R and T) from 2D/3D point
correspondences when the mternai parameters (A) are known.
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PnP: Perspective-n-Point

Estimation of the Position and Orientation (R and T) from 2D/3D point
correspondences when the internal parameters (A) are known.

3 correspondences are sufficient (6 equations for 6 parameters),
BUT yield up to 4 solutions, generally only two.
A fourth correspondence is needed to remove the ambiguity. -~ - .

121



The P3P Problem

C

P3P: Pose estimation from 3 correspondences.
Yields up to 4 solutions, generally only two.
&; A fourth correspondence will be needed to remove the ambiguity. 122
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The P3P Problem

Each pair of correspondences M, =m; and M;=m; gives a constraint on the
(unknown) camera-point distances x; = ||M; - C|| and x=||M; - C||:

d;? = x? +x?— 2 x;x;C086,
where:
d; = |[M; - M| is the (known) distance between M, and M;

6, is the (also known) angle sustended at the camera center by M; and M..
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Overview of the P3P

1. Solve for the distances x; ;
2. The positions M, of the points M; in the camera coordinates system can be computed;
3. Rand T are computed as the Euclidean displacement from the M, to the M©.

& 125



cole des Ponts

Computation of cosH;

C
cosB,; must be_computed. It depends onl_y on the (known) 2D positions m; and m.,.
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Computation of cosH;

C

cosOij must be computed. It depends only on the (known) 2D positions m; and m;.

(Cm i )T (Cmi) (Cm i )T (Cmi)
cos6, = e = = =

[Cmflcm] —J(cm)) (cm))/(cm) (cm)
C—m; = A_lmi

.

cosf, = S 7 with o = (AAT)'1 the image of the absolute conic.

(mweom, )" (mcom, 127



d? =x7 +x7?—2x;x;,€088; — f(x; x;) = x7 +x7— 2 x;x;,¢080;;- d;? = 0

Ji2(x,x,) =0 Resultant I3 h(x,) [degree 8]

%) =0
S13(21:%5) Resultant |5 8(x,,x,) [degree 41—
S23(x5,x3) =0

h(x;): Polynomial of degree 8 in x; with (fortunately) only even terms
Degree polynomial of degree 4 in x=x,?:

At most 4 solutions for x;

Can be solved in closed form.
x, is positive and x; = Vx. X, and x; are uniquely determined from x;.

To obtain a unique solution, add one more point: Solve the P3P problem for
each subset of 3 points, and keep the common solution.
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Sylvester resultant (for two polynomials of a single unknown):

. a 0 - 0]
p1(x) = @, X+ @, X+ L+ ax + ag 0 a - a
m 0
pa(x)=b,x"+ b, x"1+ ...+ bix+ by :
am aO
Syl(p,,p,) =
b - b, O 0
0 b - b,
b, - b, |

p1 and p, have a common root iff determinant(Sy/(p:, p,)) = 0.

determinant(Syl(p,, p,)) is called the Sylvester resultant of p, and p..
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System of two polynomials of two
unknowns

Example:
pix, y)=6x2+3xy-x2+y+1 p(x,y)=0
Pax ) =Xy * e dy - Py (x,y)=0
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Example:

pi(x, y)=6x2+3xy-x2+y+1 p(x,y)=0
pa(x, y) =x%y +5x+4y - 1 p,(x,y)=0

Lets considers y as a constant, and write these two polynomials as

polynomials in x: 6 GBy—y) (y+1) 0
i, y)=6x2+@GBy-yx+(y+1) 0 6 Gy-y>) (y+1) 0
pax, y) =y x2+5x+ 4y - 1) y 5 (4y-1) o |
0 y S (4y-1)

determinant(Syl(p,, p,)) = 4y° - 20y5+ 153y*- 310)3+ 781)2-276 y + 36 Is a
polynomial in y only !

— First, solve 4y6 - 20y5+ 153y4- 3103+ 781)2- 276 y + 36 = 0
N Once y is known, x can be found from p,(x, y) or p,(x, y).
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3D points in the camera coordinates
system

The coordinates of the 3D points M, in the camera coordinates system can
now be computed:

. -1
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We now know:
- the coordinates of the 3D points M, in the world coordinate system (this is
given as input);
- their coordinates in the camera coordinate system (we just computed
them).

We can compute R and T as the rotation and translation that transform the
world coordinate system into the camera coordinate system (see ANNEX C).

AV
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ANNEX C



=St
from

nairs of 3

error(R, T) =

ating a rotation and translation

|M

D points

M,;=Rm;+T

| Z IRM; + T — M/ ||?

arg min  error(R,T)
ReSO(3),T
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/|2 ar min error(R, T
error(R, T) = ‘M’ ZHRM +T - M| 8 peimin | error(R, T)
M = Mean({M,})
derror __ _ __ /
From 5T —0 ,weget: T=M -RM M’ = Mean({M;})

- Once we know R, we can compute T.

By plugging expression T = M’ — RM into error(R, T), and by introducing
N, =M, - M N, =M. - M’
we obtain:

R = RN, — N/ ||
arg min ZH Al
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After some computations:
IRN; — Nj|I* = .. = N/N; — 2(N)TRN; + (N})' N

the first and last terms are constant wrt R, and thus have no influence on the
optimization problem and we can ignore them:

e g, SO

)

It can be shown that (just expand the two expressions):

> (N)TRN; = tr (R(N')"'N)

1

with N and N’ the matrices of the N; and N’;
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we are thus now looking for

arg max tr(RL) with L = (N)'N
ReSO(3)

By taking the SVDof L: L = UY VY

then R = UV’
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ANNEX D



Least-squares optimization assumes that the errors on the measures follow a
Gaussian distribution and are independent:

AWA e

. 1 AT e ]2
arg n%n AT %: |Eucl(PM;) — my]|
arg rriDin S (Bucl(PM;) — m;)T (Eucl(PM;) — m;)
- . —1
arg min > (Eucl(PM;) — m;)  S(Eucl(PM;) — m;) with ¥ = [0 91]

arg mfz}xz —(Eucl(PM;) — m;)TS(Eucl(PM;) — m;)

1

Arg max exp (Z —(Eucl(Pl\A/I/i) — mi)TE(Eucl(Pl\A/I/i) — mz))
arg max (H exp(BEucl(PM,) — m;)TE(Eucl(PM;) — mi))
arg mng exp (Eucl(Pl(\/I/i) — m;)TS(Eucl(PM;) — ml)>

arg max [TV (m; | Eucl(PM,), %)
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Normal distribution Uniform distribution _
(inliers) (outliers) Mixture

T —
25 25
2 2
1 5
—
—
* 1

4 - 2 L 2 4
5
lT
0

Least-squares Tukey estimator
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