
Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization

Anil Armagan, Martin Hirzer, Peter M. Roth and Vincent Lepetit

Institute of Computer Graphics and Vision

Graz University of Technology, Austria

{armagan,hirzer,pmroth,lepetit}@icg.tugraz.at

Abstract

We present an efficient method for geolocalization in ur-

ban environments starting from a coarse estimate of the lo-

cation provided by a GPS and using a simple untextured

2.5D model of the surrounding buildings. Our key contri-

bution is a novel efficient and robust method to optimize the

pose: We train a Deep Network to predict the best direction

to improve a pose estimate, given a semantic segmentation

of the input image and a rendering of the buildings from this

estimate. We then iteratively apply this CNN until converg-

ing to a good pose. This approach avoids the use of refer-

ence images of the surroundings, which are difficult to ac-

quire and match, while 2.5D models are broadly available.

We can therefore apply it to places unseen during training.

1. Introduction

As recent challenges and benchmarks such as [8, 21]

show, dealing with urban scenarios is of increasing inter-

est, including important applications such as autonomous

driving and Augmented Reality. One of the key prob-

lems for these tasks is the accurate geolocalization of im-

ages, which is not easy to solve in practice. Even though

sufficient for navigation, GPS information is not accurate

enough for many other tasks, especially, if the exact camera

pose should be estimated.

Thus, typically image-based localization techniques in-

cluding for example [22, 23] were introduced. However,

they rely on pre-registered images of the surrounding.

Therefore, we are facing two problems. First, a large

amount of images needs to be captured and registered,

which is very cumbersome. Even large collections such

as Google Street View1 are rather sparsely sampled. Sec-

ond, such data only reflects a very specific appearance of

the scene, making a robust matching rather hard under dif-

ferent illumination conditions [30].

1https://maps.google.com/help/maps/streetview
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Figure 1. Overview of our approach. We can correct the initial

sensor pose (a) to an accurate estimate (b) in locations unseen at

training time as long as a 2.5D map (c) of the neighborhood is

available. In other words, we learn to align the map with the input

image given a coarse estimate of the pose provided by the sensors.

To overcome these drawbacks, we propose a method

that, starting from a crude initialization provided by a GPS

and orientation sensors, estimates the camera pose from a

perspective, non-panoramic input image given 2.5D maps 2

only. This is illustrated in Fig. 1, where we show an exam-

ple for the initial sensor pose and the corresponding pose

recovered with our method along with the used 2.5D map.

In contrast to pre-registered street view data, 2.5D maps

are broadly available and easy to obtain, and have been al-

ready considered for localization (e.g., [1]). However, as

these maps are reduced to the outline and the height of the

buildings, our task is getting more difficult. In fact, there

is no texture available, which could be used for matching.

Therefore, we adopt recent advances in semantic segmenta-

tion based on Deep Learning [3,14,20] to extract the façades

2In particular, we build on https://www.openstreetmap.org.



and the edges of buildings in the input images. We also use

3D renderings of this map, changing the input image and the

2.5D map into representations that are easier to compare.

However, robustly aligning the input image and the map

remains challenging: The initial pose from the sensors can

be far away from the correct pose, and direct comparisons

between the semantic segmentation of the image and the 3D

rendering is getting difficult. Therefore, our contribution is

a robust method to optimize the camera pose and to estimate

a good alignment between the image and the corresponding

map. As gradient methods cannot be applied, using the se-

mantic segmentation and a rendering of the map as input,

we train two deep networks – one for the translation and one

for the rotation – predicting directions that will improve the

current estimate for the pose. By invoking these networks

multiple times, we can iteratively improve the estimate of

the pose. However, if the initial error is very large, it is

not possible to predict a reliable direction. We then run our

algorithm from poses sampled around the sensor pose and

select the best one. The efficiency and robustness of our ap-

proach is demonstrated on a complex real world scenario,

where even though starting from a sub-optimal initializa-

tions, finally, the correct poses can be estimated.

The remainder of the paper is organized as follows. First,

in Section 2, we discuss the related work. Next, in Sec-

tion 3, we detail our approach and discuss the segmentation

step, the prediction models as well as the pose estimation

algorithm. Experimental results demonstrating the benefits

of the approach are given in Section 4. Finally, we give a

conclusion and an outlook in Section 5.

2. Related Work

The main goal of our work is to estimate an accurate

and robust localization from a mobile device. A plausible

way for doing so would be to use the available GPS posi-

tion [10], which, however, is often not sufficient to finally

obtain accurate results. Thus, given one or more input im-

ages and optionally a sensor prior (e.g., GPS or compass in-

formation), existing approaches use similar, pre-registered

images from a database to compute the pose of the input

image. For instance, [23] demonstrates image-based local-

ization using databases that contain 20km of urban street-

side imagery, organized in a vocabulary tree to handle the

massive amount of data. Later works such as [22] improve

upon both, accuracy and performance. Very recently, [13]

uses a CNN to predict a 6 DoF camera pose directly from an

image, where the idea of transfer learning – from large scale

data classification to the task of re-localization – is adopted.

However, the underlying network has to be re-trained for

each new scene, typically limiting the approach to a certain

restricted area that was used for training.

In general, all of these image-based localization ap-

proaches do not scale very well. Indeed, many images need

to be captured for each new location, and, even with suffi-

ciently dense sampling, it is still very challenging to match

images under changing conditions due to illumination, sea-

son or construction activity. To avoid these problems and

to avoid the time consuming generation of scene databases,

[31] and [27] build their approaches on publicly available

existing image collections such as Google Street View and

Microsoft StreetSide. However, also these databases are not

universally suited for localization, as they are only sparsely

sampled and are not available for certain regions and coun-

tries.

From a practical point of view, we want to totally avoid

the creation of databases on our own and to be more flexible,

that is, not being limited by sparsely sampled areas. One

way to overcome these problems is to use 2.5D maps (i.e.,

untextured 2D cadastral maps augmented with height infor-

mation). For instance, [18] registers an image with respect

to a 2.5D model by matching 3D and 2D lines and points.

However, in this case a second image, which has already to

be registered, is required to establish the 3D-2D correspon-

dences. Consequently, the first image of a sequence needs

to be manually annotated. Similarly, [16] establishes line

correspondences between the input image and a 2.5D map

of the scene. However, due to insufficient accuracy regard-

ing the image orientation, additionally, some kind of user

interaction is required. In contrast, our method is not only

fully automatic, but also requires only a single input image.

A different approach is to register panoramic images

with 2D maps, where the large field-of-view information

significantly improves the localization capabilities. For in-

stance, [9] proposes a façade orientation descriptor, how-

ever, since mobile devices typically have a rather narrow

field of view, such a descriptor is often not discriminative

enough. In contrast, [5] aims at detecting vertical building

outlines and façade normals, finally yielding 2D fragments,

which are then matched against a 2D map. Similarly, [6]

matches a descriptor computed from vertical building out-

lines in perspective input images with a 2D map. As a draw-

back, however, partially manual input is required to ease the

detection of vertical edges and vanishing points.

[17, 29] also consider the buildings’ edges, however,

[17] relies on orthographic aerial images, which makes the

task easier, and [29] assumes that the façades are highly

repetitive. [12] uses Auto-context for façades segmentation,

where the method is, however, applied to very repetitive

façades. In addition, grammar methods are used and com-

plex, handcrafted features are introduced. By contrast, we

take advantage of recent advances in semantic segmentation

based on CNNs to identify the buildings’ edges. In contrast

to most of these approaches, our method is fully automatic.



As we do, [24] adopts ideas from segmentation. To find

the 3D pose, the façades in the input image are segmented

and aligned to a 2.5D map, requiring an optimization in the

6D pose space. In addition, the approach relies on a very

detailed 2.5D model and high resolution panoramas from

Google Street View in order to provide an accurate initial

geolocation. In contrast, [2] registers semantically labeled

images with respect to labeled 3D digital terrain models,

however, restricting them to simple classes (i.e., water, set-

tlement, other). Moreover, the approach allows only for

computing the orientation of the image with respect to the

model, but not for estimating its 3D position.

Considering a slightly different problem, semantic infor-

mation has also been used in the field of 3D scene recon-

struction [4, 28], allowing for an interaction between 3D

depth estimation and semantic segmentation. In particu-

lar, [28] fuses depth images from stereo pairs with a com-

mon 3D map using visual odometry, and [4] proposes a

large-scale 3D scene reconstruction approach by jointly rea-

soning about 3D shape and semantic labels. In contrast to

these approaches, we show that adopting semantic segmen-

tation to extract the edges of buildings can avoid most of

these restrictions and that our method computes both, the

absolute orientation and the 3D location.

Different approaches also consider parsing of façades

[7, 11, 15, 19, 25], using procedural shape priors and gram-

mars. However, they mostly focus on frontal views of a

single façade. By contrast, we consider general images, and

our final goal is also very different as we aim at the geo-

localization of the camera.

3. Geolocalization with 2.5D Maps

Let be given an input image Iinput and corresponding sen-

sor information as well as a 2.5D map M (describing the

buildings’ outlines and their heights) of the surrounding.

Then our goal is to geolocalize a camera in an urban outdoor

scene, starting from the initially provided pose estimate p̃.

In particular, we generate an intermediate representation

for Iinput based on semantic segmentation to link it with the

given 2.5D map (see Sec. 3.1). This information is then

used in order to train two deep networks to improve the cur-

rent pose estimate. The first network predicts a direction

in space and the second one a direction in orientation (see

Sec. 3.2). Finally, these networks are used to estimate the

final pose p (see Sec. 3.3).

3.1. Semantic Segmentation

We use a fully convolutional network (FCN) [14] to seg-

ment Iinput into c semantic classes. We only consider classes

that are relevant to our problem and that correspond to el-

ements of the 2.5D map. More exactly, we extract the

façades, the vertical and horizontal edges of the façades and

a background class (i.e., the sky and the ground plane). In

particular, edges are usually not considered in typical se-

mantic segmentation problems, however, they will be useful

in our case to disambiguate the pose when, for example, the

façades of the buildings are aligned.

3.2. Learning to Predict a Direction

The initial sensor pose p̃ gives us a coarse estimate of

the pose. In practice, the angles with respect to the gravity

are well defined via the sensors, giving us two angles of

the camera orientation, namely the roll and pitch. As we

are using a handheld device, we can also assume a fixed

camera height (we use 1.6 m in practice). Thus, only three

degrees-of-freedom (along the ground plane) are remaining,

two for the location and one for the orientation. However, as

these estimates can be very far away from the ground truth,

correcting them is challenging.

To deal with this problem, we train two networks to pre-

dict directions to improve the pose estimates. The first net-

work predicts a direction for the location. We initially tried

to predict a 2D vector pointing to the correct location. This,

however, did not succeed, as this problem was too difficult

to learn. In fact, the length of the vector would depend on

the distances to the buildings, which are lost at least to some

extent because of the perspective projection.

Instead, we relax the task and solve a simpler classifica-

tion problem: We discretize the directions along the ground

plane into 8 possible directions, defined in the camera co-

ordinate system. Then, given the semantic segmentation of

the image and a rendering of the 2.5D map from the cur-

rent estimate, we train a network CNNt to predict the di-

rection that improves the estimated location. We also add

a class indicating that the location is already correct and

should not be changed. The network CNNt thus returns a

9-dimensional vector:

dt = CNNt(RF, RHE, RVE, RBG, SF, SHE, SVE, SBG) , (1)

where SF, SHE, SVE, SBG are the probability maps computed

by the semantic segmentation for the input image Iinput for

the classes façade, horizontal edge, vertical edge, and back-

ground, respectively. RF, RHE, RVE, RBG are binary maps

for the same classes, created by rendering the 2.5D map for

the current pose estimate. Examples of these probability

and binary maps are shown in Fig. 2. The direction corre-

sponding to the largest value in the output dt is the direction

predicted by the network.

In addition, we train a second network CNNo to estimate

an update for the orientation:

do = CNNo(RF, RHE, RVE, RBG, SF, SHE, SVE, SBG), (2)

where the three values of do indicate if it is best to rotate

the camera to the right, to the left, or do not rotate at all.
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Figure 2. Illustrative example of the inputs to our localization networks: (a) Input image (top) and its segmentation (bottom). (b)–(e):

Probability maps SF, SHE, SVE, SBG (top row) and the binary masks RF, RHE, RVE, RBG (bottom row).

We use the same architecture for both networks, CNNt

and CNNo. Each pair made of a probability map and a

rendering for a class is fed to the network along a separate

stream. Each stream consists of 2 convolutional layers with

64 and 128 filters, respectively. The sizes of the filters are

5× 5 and 3× 3. The outputs from the streams are concate-

nated and fed to fully connected layers: We use three fully

connected layers with 1024, 512 and 128 units. The last

layer implements a linear logistic regressor. We optimize

both networks using the RMSprob [26] algorithm.

How these two networks are applied for pose estima-

tion is described in Sec. 3.3 in more detail. Applying two

networks solving separated problems has two main advan-

tages: (1) We do not need to balance between translation

and orientation. (2) The resulting optimization problem is

easier and can thus be also solved on computationally less

powerful devices.

3.3. Pose Estimation Algorithm

Starting from the initial estimate p̃, we iteratively apply

CNNt and CNNo and update the current pose after each

iteration. In practice, p̃ can be far away from the correct

pose. Moreover, the networks CNNt and CNNo introduced

above are able to predict a good direction in practice, but do

not provide a magnitude.

We therefore use a line search strategy to decide the mag-

nitude of the update. To evaluate the quality of a pose as

in [1], we use the maximum log-likelihood:

sp =
∑

c∈{F,HE,VE,BG}

∑

i∈Rc

logSi
c , (3)

where Si
c is the probability at location i for class c from the

semantic segmentation, and {i ∈ Rc} is the set of locations

that are set to 1 in the rendered binary mask Rc.

Given one direction by one of the two networks, we eval-

uate several poses along this direction, and keep the one that

maximizes the log-likelihood in Eq. (3). We then switch to

the other network. These steps are iterated, and we stop

when the two networks predict not to move any more. The

overall procedure is summarized in Alg. 1.

Algorithm 1

1: procedure OPTIMIZEPOSE(Iinput, p̃,M)

2: S = (SF, SVE, SHE, SBG)← FCN(Iinput)
3: p← p̃

4: repeat

5: R = (RF, RVE, RHE, RBG)← render(p,M)
6: dt ← argmaxi CNNt(S,R)[i]
7: if dt 6= ‘do not move’ then

8: p← lineSearcht(p, dt, S,M)
9: end if

10: do ← argmaxi CNNo(S,R)[i]
11: if do 6= ‘do not move’ then

12: p← lineSearcho(p, do, S,M)
13: end if

14: until dt = ‘do not move’ and do = ‘do not move’

15: end procedure

16:

17: procedure LINESEARCHt(p, d, S,M)

18: steps← fixed set of step sizes

19: for stepj in steps do

20: pj ← updatePose(p, d, stepj)
21: (RF, RVE, RHE, RBG)← render(pj ,M)
22: scorej =

∑
c∈{F,HE,VE,BG}

∑
i∈Rc

logSi
c

23: end for

24: j ← argmaxj scorej
25: return pj

26: end procedure

Illustrative examples showing the progress over time

from the initial sensor pose to the finally obtained pose are

given in Fig. 3.



Figure 3. Visualization of iteration steps taken by our algorithm for several scenes. Starting from the initial pose (first column) our method

keeps iterating until it reaches the final pose (last column).

4. Experimental Results

To demonstrate the benefits of our approach, we first give

an overview of the used benchmark and training data and

then give results for artificial and real world scenarios.

4.1. Training and Evaluation Data

For training of these deep networks we used 50000 sam-

ples virtually generated from 95 images with known ground

truth poses and computed the semantic segmentation for

each image. To generate these samples, we added random

noise on the ground truth poses, sampled from a uniform

distribution: We sampled the location noise in the inter-

val [−10m; +10m] and the rotation noise in the interval

[−5◦; +5◦].

If the distance between the ground truth pose and the

random pose was smaller than a threshold the desired out-

put was set to the ‘do not move’ class; otherwise, we set it

to the discretized direction closest to the direction between

the ground truth and the random pose. The corresponding

2.5D models for each image were downloaded from Open-

StreetMap, and we registered the images into the 3D world

manually to obtain the ground truth poses.

For testing our approach, we used an extended version of

the dataset proposed in [1] consisting of 40 images, where

the orientation error of the sensors varies from 0.25◦ to 49◦;

the location error varies from 0.25m to 23m.

4.2. Converging from a Close Initial Estimate

Fig. 4 shows several examples of applying our algorithm

for an initial pose that is within a radius of 5m from the

ground truth location, and an orientation in the range of

[−5◦; +5◦].

4.3. Converging from an Estimate Provided by Real
Sensors

Real sensors can provide measurements with very large

errors, in the order of 25 meters and 50 degrees. This makes

convergence hard, since comparing the rendering from such

a noisy pose and the input image cannot provide meaning-

ful information for a pose update. In such a case, our strat-

egy is to sample initial poses around the pose predicted by

the sensors. We then run our iterative algorithm from each

of these initial poses and keep the best final pose accord-

ing to the log-likelihood. Fig. 5 shows examples of sensor

poses and our finally estimated poses. Starting from the sen-

sor data, our method decreases the average orientation error

from 11.3◦ to 3.2◦. At the same time, the positioning error

decreases from 13.4m to 3.1m. Fig. 6 shows the orientation

and the position errors for each image for both, real sensor

poses and poses obtained by our method.
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Figure 4. Converging from a close initial estimate. (a) Test image with the ground truth pose overlaid, (b) segmented image, (c) noisy pose

rendering used to initialize our algorithm, (d) pose found with our method.

5. Conclusion

We showed that we can train networks to predict good

directions to refine poses. We believe that such an approach

is general: It is useful when it is not possible to differentiate

an objective function as it is the case for our problem with

the image likelihood, or when it is not clear which objective

function should be optimized to reach a desired goal. An-

other advantage of this approach is that the training set can

be augmented very easily, by generating estimates around

real data: In our case, we could easily sample poses around

the sensor poses, but this sampling strategy will also work

for other problems.



(a) (b) (c) (d) (e)

Figure 5. Converging from an estimate provided by real sensors. (a) Test image with the ground truth pose overlayed, (b) segmented image,

(c) real sensor pose, (d) pose where the optimization started the search to find the best estimated pose, (e) final pose found by our method.

Figure 6. Orientation and position errors for sensor poses and

poses obtained by our method.
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