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Qingfu Wan10, Shile Li11, Linlin Yang12, Dongheui Lee11, Angela Yao13, Weiguo

Zhou14, Sijia Mei14, Yunhui Liu15, Adrian Spurr16, Umar Iqbal17, Pavlo
Molchanov17, Philippe Weinzaepfel18, Romain Brégier18, Grégory Rogez18,

Vincent Lepetit3,19, and Tae-Kyun Kim1,21

Abstract. We study how well different types of approaches generalise in
the task of 3D hand pose estimation under single hand scenarios and hand-
object interaction. We show that the accuracy of state-of-the-art methods
can drop, and that they fail mostly on poses absent from the training set.
Unfortunately, since the space of hand poses is highly dimensional, it is
inherently not feasible to cover the whole space densely, despite recent
efforts in collecting large-scale training datasets. This sampling problem
is even more severe when hands are interacting with objects and/or
inputs are RGB rather than depth images, as RGB images also vary with
lighting conditions and colors. To address these issues, we designed a
public challenge (HANDS’19) to evaluate the abilities of current 3D hand
pose estimators (HPEs) to interpolate and extrapolate the poses of a
training set. More exactly, HANDS’19 is designed (a) to evaluate the
influence of both depth and color modalities on 3D hand pose estimation,
under the presence or absence of objects; (b) to assess the generalisation
abilities w.r.t . four main axes: shapes, articulations, viewpoints, and
objects; (c) to explore the use of a synthetic hand models to fill the
gaps of current datasets. Through the challenge, the overall accuracy has
dramatically improved over the baseline, especially on extrapolation tasks,
from 27mm to 13mm mean joint error. Our analyses highlight the impacts
of: Data pre-processing, ensemble approaches, the use of a parametric 3D
hand model (MANO), and different HPE methods/backbones.
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1 Introduction

3D hand pose estimation is crucial to many applications including natural
user-interaction in AR/VR, robotics, teleoperation, and healthcare. The recent
successes primarily come from large-scale training sets [48], deep convolutional
neural networks [11,25], and fast optimisation for model fitting [17,26]. State-
of-the-art methods now deliver satisfactory performance for viewpoints seen
at training time and single hand scenarios. However, as we will show, these
methods substantially drop accuracy when applied to egocentric viewpoints for
example, and in the presence of significant foreground occlusions. These cases are
not well represented on the training sets of existing benchmarks [6,23,24]. The
challenges become even more severe when we consider RGB images and hand-
object interaction scenarios. These issues are well aligned with the observations
from the former public challenge HANDS’17 [47]: The state-of-the-art methods
dropped accuracy from frontal to egocentric views, and from open to closure hand
postures. The average accuracy was also significantly lower under hand-object
interaction [6].

Given the difficulty to interpolate and extrapolate poses from the training set,
one may opt for creating even larger training sets. Unfortunately, an inherent
challenge in 3D hand pose estimation is the very high dimensionality of the
problem, as hand poses, hand shapes and camera viewpoints have a large number
of degrees-of-freedom that can vary independently. This complexity increases
even more when we consider the case of a hand manipulating an object. Despite
the recent availability of large-scale datasets [48], and the development of com-
plex calibrated multi-view camera systems to help the annotation or synthetic

(a) Task 1 (b) Task 2 (c) Task 3
Fig. 1. Frames from the three tasks of our challenge. For each task, we show the input
depth or RGB image with the ground-truth hand skeleton (top) and a rendering of
the fitted 3D hand model as well as a depth rendering of the model (bottom). The
ground-truth and estimated joint locations are shown in blue and red respectively.
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Fig. 2. Visualization of ground-truth hand pose and poses with varying level of MJEs,
< 5mm, < 10mm, < 20mm, < 30mm, < 40mm, < 60mm. MJE (mm) of the visualized
poses are 1.75, 6.88, 13.94, 15.32, 35.67, 52.15, respectively. Best viewed in color.

data [15,32,52], capturing a training set that covers completely the domain of
the problem remains extremely challenging.

In this work, we therefore study in depth the ability of current methods to
interpolate and extrapolate the training set, and how this ability can be improved.
To evaluate this ability, we consider the three tasks depicted in Fig. 1, which vary
the input (depth and RGB images) or the camera viewpoints, and introduce the
possible manipulation of an object by the hand. We carefully designed training
and testing sets in order to evaluate the generalisation performance to unseen
viewpoints, articulations, and shapes of the submitted methods.

HANDS’19 fostered dramatic accuracy improvement compared to a provided
baseline, which is a ResNet-50 [11]-based 3D joint regressor trained on our training
set, from 27mm to 13mm. Please see Fig. 2 for visualization of varying level
of hand pose errors. This paper provides an in-depth analysis of the different
factors that made this improvement possible.

2 HANDS 2019 Challenge Overview

The challenge consists of three different tasks, in which the goal is to predict
the 3D locations of the hand joints given an image. For training, images, hand
pose annotations, and a 3D parametric hand model [30] for synthesizing data are
provided. For inference, only the images and bounding boxes of the hands are
given to the participants. These tasks are defined as follows:

Task 1: Depth-Based 3D Hand Pose Estimation: This task builds on Big-
Hand2.2M [48] dataset, as for the HANDS 2017 challenge [46]. No objects appear
in this task. Hands appear in both third person and egocentric viewpoints.

Task 2: Depth-Based 3D Hand Pose Estimation while Interacting with
Objects: This task builds on the F-PHAB dataset [6]. The subject manipulates
objects with their hand, as captured from an egocentric viewpoint. Some object
models are provided by [6].



4 Armagan et al.

Task 3: RGB-Based 3D Hand Pose Estimation while Interacting with Objects:
This task builds on the HO-3D [9] dataset. The subject manipulates objects with
their hand, as captured from a third person viewpoint. The objects are used from
the YCB dataset [42]. The ground truth wrist position of the test images is also
provided in this task.

The BigHand2.2M [48] and F-PHAB [6] datasets have been used by 116
and 123 unique institutions to date. HANDS’19 received 80 requests to access
the datasets with the designed partitions, and 17, 10 and 9 participants have
evaluated their methods on Task 1, Task 2 and Task 3, respectively.

3 Evaluation Criteria

We evaluate the generalisation capability of HPEs in terms of four “axes”:
Viewpoint, Articulation, Shape, and Object. For each axis, frames within a
dataset are automatically annotated by using the ground-truth 3D joint locations
and the object information to annotate each frame in each axis. The annotation
distribution of the dataset for each axis are used are used to create a training
and a test set. Using the frame annotations on each axis, the sets are sampled in
a structured way to have the test frames that are similar to the frames in the
training data (for interpolation) and also the test frames where axes’ annotations
are never seen in the training data (for extrapolation). More details on the dataset
are given in Section 4. To measure the generalisation of HPEs, six evaluation
criteria are further defined with the four main axes:

Viewpoint, Articulation, Shape and Object are respectively used for
measuring the extrapolation performance of HPEs on the frames with articulation
cluster, viewpoint angle, hand shape and object type (axis annotations) that
are not present in the training set. Extrapolation is used to measure the
performance on the frames with axis annotations that do not overlap/present in
the training set. Lastly, Interpolation is defined to measure the performance
on the frames with the axis annotations present in the training set.

Extrapolation Interpolation Shape
Evaluation criteria
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Fig. 3. Left: The six evaluation criteria used in the challenge. For each axis (Viewpoint,
Articulation, Shape, Object), we indicate if hand poses in an evaluation criterion are
also available (green) in the training set or not (red). Right: MJE comparison of the
best methods for the Extrapolation, Interpolation and Shape criteria on each task.
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Fig. 4. Distributions of the training and test datasets for Task 1 (top), Task 2 (bottom
left), and Task 3 (bottom right). The splits are used to evaluate the extrapolation power
of the approaches and decided based on the viewpoints, the articulation clusters of the
hand pose, the hand shape, and the type of the object present.

The challenge uses the mean joint error (MJE) [26] as the main evaluation
metric. Results are ranked according to the Extrapolation criterion which
measures the total extrapolation power of the approaches with MJE on all axes.
We also consider success rates based on maximum allowed distance errors for
each frame and each joint for further analysis.

Fig. 3 (left) summarises the six evaluation strategies, and Fig. 3 (right) shows
the accuracies obtained by the best approaches, measured for the three evaluation
criteria that could be evaluated for all three tasks. Articulation and viewpoint
criteria are only considered for Task 1 since the joint angles are mostly fixed
during object interaction and hence the Articulation criteria is not as meaningful
as in Task 1 for the other tasks. The Viewpoint criteria is not meaningful for Task
2 which is for egocentric views since the task’s dataset constrains the relative
palm-camera angle to a small range. For Task 3, the data scarcity is not helping
to sample enough diverse viewpoints. The extrapolation errors tend to be three
times larger than the interpolation errors while the shape is a bottleneck among
the other attributes. Lower errors on Task 3 compared to Task 2 are likely due
to the fact that the ground truth wrist position is provided for Task 3.

4 Datasets

Given a task, the training set is the same and the test frames used to evaluate
each criterion can be different or overlapped. The number of training frames are
175K, 45K and 10K for Task 1, 2 and 3 respectively. The sizes of the test sets for
each evaluation criterion are shown in Table 1.

Fig. 4 shows the distributions of the training and test data for each task.
The viewpoints are defined as elevation and azimuth angles of the hand w.r.t .
the camera using the ground-truth joint annotations. The articulation of the
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Table 1. Detailed analytics on the number of frames provided on the training and test
sets for the different tasks.

#Frames

Dataset Task id Total Ext. Int. Art. View. Sha. Obj. #Subjects #Objects #Actions #Seq.

Test
1 125K 20% 16% 16% 32% 16% ✗ 10 ✗ ✗ ✗

2 25K 14% 32% ✗ ✗ 37% 17% 4 37 71 292
3 6.6K 24% 35% ✗ ✗ 14 27% 5 5 1 5

Training
1 175951 5 ✗ ✗ ✗

2 45713 4 26 45 539
3 10505 3 4 1 12

hand is defined and obtained by clustering on the ground-truth joint angles in
a fashion similar to [20], by using binary representations (open/closed) of each
finger e.g . ‘00010’ represents a hand articulation cluster with frames with the
index finger closed and the rest of the fingers open, which ends up with 25 = 32
clusters. Examples from the articulation clusters are provided in Appendix A.3.
Note that the use of a low-dimensional embedding such as PCA or t-SNE is not
adequate here to compare the two data distributions, because the dimensionality
of the distributions is very high and a low-dimensional embedding would not be
very representative. Fig. 4 further shows the splits in terms of subjects/shapes,
where five seen subjects and five unseen subjects are present. Similarly, the data
partition was done on objects. This way we can control the data to define the
evaluation metrics.

Use of 3D Hand Models for HPEs. A series of methods [1,3,8,10,49] have
been proposed in the literature to make use of 3D hand models for supervision
of HPEs. Ge et al. [8] proposed to use Graph CNNs for mapping RGB images to
infer the vertices of 3D meshes. Hasson et al. [10] jointly infers both hands and
object meshes and investigated the effect of the 3D contact loss penalizing the
penetration of object and hand surfaces. Others [1,3,49] attempted to make use of
MANO [30], a parametric 3D hand model by learning to estimate low-dimensional
PCA parameters of the model and using it together with differentiable model
renderers for 3D supervision. All the previous works on the use of 3D models
in learning frameworks have shown to help improving performance on the given
task. Recently, [18] showed that fitting a 3D body model during the estimation
process can be accelerated by using better initialization of the model parameters
however, our goal is slightly different since we aim to explore the use of 3D
models for better generalisation from the methods. Since the hand pose space
is huge, we make use of a 3D hand model to fill the gaps in the training data
distribution to help approaches to improve their extrapolation capabilities. In
this study, we make use of the MANO [30] hand model by providing the model’s
parameters for each training image. We fit the 3D model for each image in an
optimization-based framework which is described in more details below.

Gradient-based Optimization for Model Fitting. We fit the MANO [30]
models’ shape s = {sj}

10
j=1, camera pose c = {cj}

8
j=1, and articulation a =
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{aj}
45
j=1 parameters to the i-th raw skeletons of selected articulations z = {zi}

K
i=1,

by solving the following equation:

(si∗, ci∗,ai∗) = arg min
(s,c,a)

O(s, c,a, zi)), ∀i ∈ [1,K] , (1)

where our proposed objective function O(s, c,a, zi) for the sample i is defined as
follows:

O(s, c,a, zi) = ||freg(V (s, c,a))− zi||22 +

10∑

j=1

‖sj‖
2
2 +RLap(V (s, c,a)) . (2)

V (s, c,a) denotes the 3D mesh as a function of the three parameters s, c,a.
Eq. (2) is composed of the following terms: i) the Euclidean distance between
3D skeleton ground-truths zi and the current MANO mesh model’s 3D skeleton
values freg(V (s, c,a))1; ii) A shape regularizer enforcing the shape parameters s
to be close to their MANO model’s mean values, normalized to 0 as in [30], to
maximize the shape likelihood; and iii) A Laplacian regularizer RLap(V (s, c,a))
to obtain the smooth mesh surfaces as in [16]. Eq. (1) is solved iteratively by
using the gradients from Eq. (2) as follows:

(st+1, ct+1,at+1) = (st, ct,at)− γ · ∇O(st, ct,at, z
i), ∀t ∈ [1, T ] , (3)

where γ = 10−3 and T = 3000 are empirically set. This process is similar to the
refinement step of [39,1], which refines estimated meshes by using the gradients
from the loss. In Fig. 5, both the target and the fitted depth images during the
process described by Eq. (3) are depicted. Minor errors of the fitting are not a
problem for our purpose given that we will generate input and output pairs of
the fitted model by exploiting fitted meshes’ self-data generation capability while
ignoring original depth and skeletons. Here the aim of fitting the hand model
is to obtain a plausible and a complete articulation space. The model is fitted
without optimizing over depth information from the model and the input depth
image since we did not observe an improvement on the parameter estimation.
Moreover, the optimization needs to be constrained to produce plausible hand
shapes and noise and other inconsistencies may appear in the depth image.

5 Evaluated Methods

In this section, we present the gist of selected 14 methods among 36 participants
(17 for Task 1, 10 for Task 2, 9 for Task 3) to further analyze their results
in Section 6. Methods are categorized based on their main components and
properties. See Tables 2,3 and 4 for a glance of the properties of the methods
in HANDS’19.
2D and 3D supervision for HPEs. Approaches that embed and process 3D
data obtain high accuracies but less efficient [47] in terms of their complexity
compared to 2D-based approaches. 3D-based methods use 3D convolutional
layers for point-clouds input similar to NTIS which uses an efficient voxel-based

1 freg geometrically regresses the skeleton from the mesh vertex coordinates. It is
provided with the MANO model and the weights are fixed during the process.
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(a) (b) (c)

Fig. 5. Depth renderings of the hand model for different iterations in gradient-based
optimization fitting. Target image (joints) (a), optimization iterations 0, 100, 300, 400,
600, 700 (b), final fitted hand pose at iteration 3000 (c).

representation V2V-PoseNet [22] with a deeper architecture and weighted sub-
voxel predictions on quarter of each voxel representations for robustness. Some
other approaches adopts 3D as a way of supervision similar to Strawberryfg [40]
which employs a render-and-compare stage to enforce voxel-wise supervision for
model training and adopts a 3D skeleton volume renderer to re-parameterize an
initial pose estimate obtained similar to [36]. BT uses a permutation invariant
feature extraction layer [19] to extract point-cloud features and uses a two branch
framework for point-to-pose voting and point-to-latent voting. 3D supervision
is employed by point-cloud reconstruction from a latent embedding in Task 1
whereas 3D hand model parameters are estimated and used in a differentiable
model renderer for 3D supervision for the other tasks.

2D CNN-based approaches has been a standard way for learning regression
models as used by Rokid [50] where they adopt a two stage regression models.
The first regression model is used to predict an initial pose and the second
model built on top of the first model. A2J [43] uses a 2D supervised method
based on 2D offset and depth estimations with anchor points. Anchor points
are densely set on the input image to behave as local regressors for the joints
and able to capture global-local spatial context information. AWR [13] adopts
a learnable and adaptive weighting operation that is used to aggregate spatial
information of different regions in dense representations with 2D convolutional
CNNs. The weighting operation adds direct supervision on joint coordinates
and draw consensus between the training and inference as well as enhancing the
model’s accuracy and generalisation ability by adaptively aggregating spatial
information from related regions. CrazyHand uses a hierarchically structured
regression network by following the joints’ distribution on the hand morphology.
ETH NVIDIA [34] adopts the latent 2.5D heatmap regression [14]; additionally
an MLP is adopted for denoising the absolute root depth. Absolute 3D pose in
scale-normalized space is obtained with the pinhole camera equations. NLE [29]
first performs a classification of the hand into a set of canonical hand poses
(obtained by clustering on the poses in the training set), followed by a fine
class-specific regression of the hand joints in 2D and 3D. NLE adopts the only
approach proposing multiple hand poses in a single stage with a Region Proposal
Network (RPN) [28] integration.
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Table 2. Task 1 - Methods’ Overview

Username Description Input Pre-processing Post-processing Synthetic Data Backbone Loss Optimizer

Rokid [50]
2D CNN

joint regression

Depth

224× 224

Initial pose

est. to crop
✗

570K Synthetic

+ Mixed Synthetic
EfficientNet-b0 [37] Wing [5] Adamax

A2J [43]

2D CNN, offset + depth

regression with anchor

points and weighting

Depth

384× 384
Bbox crop

Scale+rotation,

10 backbone

models ensemble

✗ ResNet-152 Smooth L1 Adam

AWR [13]

2D CNN, dense direction

& offset rep.

Learnable adaptive weighting

Depth

256× 256 segm.

128× 128 pose est.

Bbox crop

ESPNet-v2 [21]

for binary segm.

iter. refinement of CoM

Ensemble

from 5 models
✗

ResNet-50&101

SRN [27]

HRNet [35]

Smooth L1 Adam

NTIS [22]

3D CNN

Deeper V2V-PoseNet [22]

Weighted sub-voxel

prediction

Voxels

88× 88× 88

Multi-scale

CoM refinement

hand cropping

Models from

6 training epochs

N confident

sub-voxel pred.

Truncated SVD refinement

✗ V2V-PoseNet L2 RMSProp

Strawberryfg [40]

Integral Pose

Regression [36]

3D supervision

voxels +volume rendering

Depth image 256× 256

3D point proj.

Multi-layer depth

Voxels

Coarse-to-fine

hand cropping

by thresholding

✗ ✗ ResNet-50 L1 RMSProb

BT [19]

3D supervision

with cloud reconst.

Permutation invariant [19]

Point-to-pose +

point-to-latent voting.

Point cloud

512 3D vectors
View correction [19] ✗ ✗

ResPel [19]

for feat. extract

FoldingNet [45]

for reconstruction

L2

Chamfer and EMD

KL constraint

Adam

Table 3. Task 2 - Methods’ Overview

Username Description Input Pre-processing Post-processing Synthetic Data Backbone Loss Optimizer

NTIS [22]

3D CNN

Deeper V2V-PoseNet [22]

Weighted sub-voxel

prediction

Voxels

88× 88× 88

Multi-scale

com-ref-net

for hand cropping

Models from

6 training epochs

N sub-voxel pred.,

Truncated SVD and

temporal smoothing refinement

✗ V2V-PoseNet L2 RMSProp

A2J [43]

2D CNN offset and

depth regression

with anchor points

and weighting

Depth

256× 256
Bbox crop

Ensemble predictions

from 3

training epochs

✗ SEResNet-101 [12] Smooth L1 Adam

CrazyHand

2D CNN

tree-like branch

structure regression

with hand morphology

Depth

128× 128
Iterative CoM ✗ ✗ ResNet-50 L2 -

BT [19]

Differentiable

Mano [30] layer

Permutation invariant [19]

Point-to-pose+

point-to-latent voting

Point cloud

512 3D points
View correction [19] ✗

32K synthetic

+ random objects

from HO-3D [9]

ResPel [19]

L2 pose

L2 Mano vertex

KL constraint

Adam

Table 4. Task 3 - Methods’ Overview

Username Description Input Pre-processing Post-processing Synthetic Data Backbone Loss Optimizer

ETH NVIDIA

[34]

2D CNN, 2D location +

relative depth

Heatmap-regression + an MLP for

denoising absolute root depth

RGB

128× 128
Bbox crop ✗ ✗ ResNet-50 L1 SGD

NLE [29]

2D hand proposals + classification of

multiple anchor poses + regression of

2D-3D keypoint offsets w.r.t . the anchors

RGB

640× 480
✗

Ensemble multiple

pose proposals and

ensemble over

rotated images

✗ ResNet-101

Smooth L1 for reg.

Log loss for classif.

RPN [28] for

localization loss

SGD

BT [44]

Multi-modal input

with latent space

alignment [44]

Differentiable Mano [30] layer

RGB 256× 256

Point cloud - 356
Bbox cropping ✗

100K synthetic +

random objects

from HO-3D [9]

EncoderCloud: ResPEL [19]

EncoderRGB: ResNet-18

DecoderMano: 6 fully-connected

L2 pose, L2 Mano vert.

Chamfer, Normal and

Edge length for mesh

KL constraint

Adam

Detection, regression and combined HPEs. Detection methods are based
on hand key-points and producing a probability density maps for each joint. NTIS
uses a 3D CNN [22] to estimate per-voxel likelihood of each joint. Regression-
based methods estimate the joint locations by learning a direct mapping from the
input image to hand joint locations or the joint angles of a hand model [33,51].
Rokid uses joint regression models within two stages to estimate an initial hand
pose for hand cropping and estimates the final pose from the cleaned hand image.
A2J adopts regression framework by regressing offsets from anchors to final joint
location. BT ’s point-wise features are used in a voting scheme which behaves as
a regressor to estimate the pose.
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Some approaches take advantage of both detection-based and regression-based
methods. Similarly, AWR, Strawberryfg estimates probability maps to estimate
joint locations with a differentiable soft-argmax operation [36]. A hierarchical ap-
proach proposed by CrazyHand regresses the joint locations from joint probability
maps. ETH NVIDIA estimates 2D joint locations from estimated probability
maps and regresses relative depth distance of the hand joints w.r.t . a root joint.
NLE first localizes the hands and classifies them to anchor poses and the final
pose is regressed from the anchors.

Method-wise ensembles. A2J uses densely set anchor points in a voting stage
which helps to predict location of the joints in an ensemble way for better
generalisation leveraging the uncertainty in reference point detection. In a similar
essence, AWR adaptively aggregates the predictions from different regions and
Strawberryfg adopts local patch refinement [41] where refinement models are
adopted to refine bone orientations. BT uses the permutation equivariant features
extracted from the point-cloud in a point-to-pose voting scheme where the votes
are ensembled to estimate the pose. NLE ensembles anchor poses to estimate
the final pose.

Ensembles in post-processing. Rather than a single pose estimator, an en-
semble approach was adopted by multiple entries by randomly replicating the
methods and fusing the predictions in the post-prediction stage, e.g . A2J , AWR,
NTIS , NLE and Strawberryfg .

A2J ensembles predictions from ten different backbone architectures in Task
1 like AWR (5 backbones) and augments test images to ensemble the predictions
with different scales and rotations as similar to rotation augmentation adopted by
NLE . NTIS uses predictions obtained from the same model at 6 different training
epochs. A similar ensembling is also adopted by A2J in Task 2. NTIS adopts a
different strategy where N most confident sub-voxel predictions are ensembled
to further use them in a refinement stage with Truncated SVDs together with
temporal smoothing (Task 2). NLE takes advantage of ensembles from multiple
pose proposals [29]. Strawberryfg employs a different strategy and ensembles the
predictions from models that are trained with various input modalities.

(a) Real
Cropped
Hand

(b) Synthetic
Depth

Rendering

(c) Real +
Synthetic

Mixed Hand

Fig. 6. Visualization of synthetic depth
images by Rokid [50]: (a) input depth
image, (b) rendered depth image using
3D hand model, (c) the mixed by using
the pixels with the closest depth values
from real and synthetic images.

Real + synthetic data usage. The
methods Rokid in Task 1 and BT in
Tasks 2 and 3 make use of the provided
MANO [30] model parameters to synthe-
size more training samples. Rokid lever-
ages the synthesized images and com-
bines them the real images—see Fig. 6—
to train their initial pose regression net-
work which effectively boosts accuracies—
see Table 8. However, the amount of syn-
thetic data created is limited to 570K
for Rokid and 32K in Task 2, 100K in
Task 3 for BT . Considering the con-
tinuous high-dimensional hand pose space with or without objects, if we
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sub-sample uniformly and at minimum, for instance, 102(azimuth/elevation
angles)×25(articulation)×101(shape)×101(object) = 320K, the number is al-
ready very large, causing a huge compromise issue for memory and training GPU
hours. Random sampling was applied without a prior on the data distribution or
smart sampling techniques [4,2]. BT generates synthetic images with objects and
hands similar to [23] by randomly placing the objects from [9] to nearby hand
locations without taking into account the hand and object interaction. The rest
of the methods use the provided real training data only.
Multi-modal inputs for HPEs. BT adopts [44] in Task 3 to align latent
spaces from depth and RGB input modalities and to embed the inherit depth
information in depth images during learning. Strawberryfg makes use of multi-
inputs where each is obtained from different representations of the depth image,
e.g . point-cloud, 3D point projection [7], multi-layer depth map [31], depth
voxel [22].
Dominating HPE backbones. ResNet [11] architectures with residual connec-
tions have been a popular backbone choice among many HPEs e.g . A2J , AWR,
Strawberryfg , CrazyHand , ETH NVIDIA, NLE or implicitly by BT within the
ResPEL [19] architecture. Rokid adopts EfficientNet-b0 [37] as a backbone which
uniformly scales the architecture’s depth, width, and resolution.

6 Results and Discussion

We share our insights and analysis of the results obtained by the participants’
approaches: 6 in Task 1, 4 in Task 2, and 3 in Task 3. Our analyses highlight
the impacts of data pre-processing, the use of an ensemble approach, the use
of MANO model, different HPE methods, and backbones and post-processing
strategies for the pose refinement.
Analysis of Submitted Methods for Task 1.We consider the main properties
of the selected methods and the evaluation criteria for comparisons. Table 5
provides the errors for the MJE metric and Fig. 7 show that high success rates are
easier to achieve in absence of an object for low distance d thresholds. 2D-based
approaches such as Rokid , with the advantage of additional data synthesizing, or
A2J , with cleverly designed local regressors, can be considered to be best when the
MJE score is evaluated for the Extrapolation criterion. AWR performs comparable
to the other 2D-based approaches by obtaining the lowest MJE errors on the

Table 5. Task 1 - MJE (mm) and ranking of the
methods on five evaluation criteria. Best results
on each evaluation criteria are highlighted.

Username Extrapolation Interpolation Shape Articulation Viewpoint

Rokid 13.66 (1) 4.10 (2) 10.27 (1) 4.74 (3) 7.44 (1)
A2J 13.74 (2) 6.33 (6) 11.23 (4) 6.05 (6) 8.78 (6)
AWR 13.76 (4) 3.93 (1) 11.75 (5) 3.65 (1) 7.50 (2)
NTIS 15.57 (7) 4.54 (3) 12.05 (6) 4.21 (2) 8.47 (4)

Strawberryfg 19.63 (12) 8.42 (10) 14.21 (10) 7.50 (9) 14.16 (12)
BT 23.62 (14) 18.78 (16) 21.84 (16) 16.73 (16) 19.48 (14)

Table 6. Task 2 - MJE (mm) and
ranking of the methods on four evalu-
ation criteria.

Username Extrapolation Interpolation Object Shape

NTIS 33.48 (1) 17.42 (1) 29.07 (2) 23.62 (2)
A2J 33.66 (2) 17.45 (2) 27.76 (1) 23.39 (1)

CrazyHand 38.33 (4) 19.71 (4) 32.60 (4) 26.26 (4)
BT 47.18 (5) 24.95 (6) 38.76 (5) 32.36 (5)
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Fig. 7. Task 1 - Success rate analysis (a-e) and MJE analysis on extrapolation and
interpolation using shapes (f), viewpoints (g, h) and articulations (i). Solid colors depict
samples of extrapolation and transparent colors depict interpolation samples.

Fig. 8. Task 1 - Visualization of the ground-truth annotations and estimations of
Rokid , A2J , AWR, NTIS , Strawberryfg , BT .
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Interpolation and Articulation criteria. AWR performs best for the distances
less than 50mm on Extrapolation as well as showing better generalisation to
unseen Viewpoints and Articulations, while excelling to interpolate well. A
similar trend is observed with the 3D-voxel-based approach NTIS . However, the
other 3D supervised methods, Strawberryfg and BT show lower generalisation
capability compared to other approaches while performing reasonably well on
the Articulation, Shape, and Interpolation criteria but not being able to show a
similar performance for the Extrapolation and Viewpoint criteria.

Analysis of Submitted Methods for Task 2. We selected four submitted
methods to compare on Task 2, where a hand interacts with an object in an
egocentric viewpoint. Success rates illustrated in Fig. 9 highlight the difficulty
of extrapolation. All methods struggle to show good performance on estimating
frames with joint errors less than 15mm. On the other hand, all methods can
estimate 20% to 30% of the joints correctly with less than 15mm error for the
other criteria in this task.

NTIS (a voxel-based) and A2J (weighted local regressors with anchor points)
perform similarly when MJEs for all joints are considered. However, NTIS obtains
higher success rates on the frame-based evaluation for all evaluation criteria with
low distance error thresholds (d), see Fig. 9. Its performance is relatively much
higher when Extrapolation is considered, especially for the frames with unseen
objects, see Fig. 9. This can be explained by having a better embedding of the
occluded hand structure with the voxels in the existence of seen/unseen objects.
NTIS interpolates well under low distance thresholds.

Note that the first three methods, NTIS , A2J , and CrazyHand perform very
similar for high error thresholds e.g . d > 30mm. CrazyHand uses a structured
detection-regression-based HPE where a heatmap regression is employed for the
joints from palm to tips in a sequential manner which is highly valuable for
egocentric viewpoints, helps to obtain comparable results with A2J where the
structure is implicitly refined by the local anchor regressors.

Analysis of Submitted Methods for Task 3. We selected 3 entries, with dif-
ferent key properties for this analysis. It is definitively harder for the participants
to provide accurate poses compared to the previous tasks. None of the methods
can estimate frames that have all joints estimated with less than 25mm error,
see Fig. 11. The 25mm distance threshold shows the difficulty of estimating a
hand pose accurately from RGB input modality even though the participants of
this task were provided with the ground-truth wrist joint location.

Table 7. Task 3 - MJE (mm) and ranking
of the methods on four evaluation criteria.

Username Extrapolation Interpolation Object Shape

ETH NVIDIA 24.74 (1) 6.70 (3) 27.36 (2) 13.21 (1)
NLE 29.19 (2) 4.06 (1) 18.39 (1) 15.79 (3)
BT 31.51 (3) 19.15 (5) 30.59 (3) 23.47 (4)

Table 8. Impact of synthetic data reported
by Rokid [50] with learning from different
ratios of synthetic data and the Task 1 train-
ing set. 100% = 570K.

Synthetic Data % - 10% 30% 70% 100%

Extrapolation MJE (mm) 30.11 16.70 16.11 15.81 15.73
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Fig. 9. Task 2 - Success rate analysis (a,b,c) and interpolation (seen, transparent) and
extrapolation (unseen, solid) errors for subject (d) and object (e).

Fig. 10. Task 2 - Visualization of the ground-truth annotations and estimations of
NTIS , A2J , CrazyHand , BT .
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Fig. 11. Task 3 - Success rate analysis on the evaluation criteria (a,b,d,e) and MJE
error analysis on the seen/unseen subjects (c) and objects (f). For (c) and (f), solid
and transparent colors are used to depict extrapolation and interpolation.

(a) Extrapolation (b) Shape (c) Object (d) Interpolation

Fig. 12. Task 3 - Visualization of the ground-truth annotations and estimations
of ETH NVIDIA, NLE , BT . Each column shows different examples used in our
evaluation criteria.

The task is based on hand-object interaction in RGB modality. Therefore,
the problem raises the importance of multi-modal data and learn from different
modalities. Only BT uses the MANO parameters provided by the organizers to
synthesize 100K images and adds random objects near the hand. This approach
supports the claim on the importance of multi-modality and filling the real data
gaps with synthetic data with its close performance to the two higher ranked
methods in MJE.
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The generalisation performance of BT in Task 3 compared to the team’s
approaches with similar gist in Tasks 1 and 2 supports the importance of multi-
model learning and synthetic data augmentation. The close performance of
the method to generalise to unseen objects compared to ETH NVIDIA and to
generalise to unseen shapes compared to NLE also supports the argument with
the data augmentation. The approach is still outperformed in MJE for this task
although it performs close to the other methods.

NLE ’s approach shows the impact of learning to estimate 2D joints+3D
joints (28.45mm) compared to learning 3D joints alone (37.31mm) on the Object
as well as improvements for the Interpolation. Object performance is further
improved to 23.22mm with PPI integration. Further insights put by NLE ’s own
experiments on the number rotation augmentations (n) in post-processing helps
to better extrapolate for unseen shapes (17.35mm, 16.77mm, 15.79mm where
n = 1, 4, 12, respectively).

Analysis on the Usage of Synthetic Images. The best performing method
of Task 1 (Rokid) in MJE uses the 3D hand model parameters to create 570K
synthetic images by either perturbing (first stage) the model parameters or not
(second stage). Synthetic data usage significantly helps in training the initial
model (see Fig. 6). Table 8 shows the impact of different proportions of the 570K
synthetic data usage to train the model together with the real training images.
Using synthetic data can boost such a simple 3D joint regressor’s performance
from MJE of 30.11mm to 15.73mm, a ∼ 50% improvement. Moreover, Rokid ’s
experiments with a regression model trained for 10 epochs shows the impact of
the mixed depth inputs, Fig. 6, to lower the total extrapolation error (26.16mm)
compared to the use of raw depth renderings (30.13mm) or the renderings
averaged (31.92mm) with the real input images. BT uses synthetic images in a
very small amount of 32K and 100K in Tasks 2 and 3 since 3D reconstruction
is difficult to train at a larger scale. However, favorable impact the data can be
observed by comparing performances in Tasks 1 and 2.

Analysis on Evaluation Criteria We discuss the generalisation power of the
methods based on our evaluation criteria below. Fig. 7 (f-i) shows the average
errors obtained on the different evaluation axis based on if the evaluation criterion
has seen in the training set or not. Overall, while unseen shapes and viewpoints
are harder to extrapolate in most of the cases, some unseen articulations are
easier to extrapolate than some seen articulations which are hard to estimate the
hand pose from.

Viewpoint extrapolation. HPEs tend to have larger errors on extreme angles
like [−180,−150] or [150, 180] for azimuth viewpoint or similarly in elevation
viewpoint and it’s harder to extrapolate to unseen viewpoints in the training.
While the approach by Rokid fills those unseen gaps with the generated synthetic
data, other approaches mostly rely on their ensemble-based methodologies or
their 3D properties.

Both Fig. 7 (g) for azimuth angles and (h) for elevation angles show the
analysis for the viewpoints. Most of the extrapolation intervals (except the edges
since both edges used to evaluate extrapolation) show distributions similar to a
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Gaussian which is expected since the mid-intervals are most far away viewpoints
from a seen viewpoint from the training set. While both elevation and azimuth
extrapolation errors are always higher than the interpolation error obtained
with the corresponding methods, however the azimuth extrapolation tends to be
varying more than the elevation extrapolation for some angles.
Articulation extrapolation. Fig. 7 (i) shows the average errors for 32 articulation
clusters. 16 of those clusters have already seen in the training set while 16 have
never seen and only available in the test set. While the samples that fall into
some clusters, (e.g . 16, 18, 19, 20 and 31) tend to be harder to estimate most of
the time, however some articulations without depending on seen (e.g . 1, 7, 8, 17)
or unseen are hard to estimate as well because of the type of the articulation.
Fig. 20 shows the example frames for the 32 clusters.
Shape extrapolation. Fig. 7 (f) shows average errors obtained for different shape
types seen/unseen. All approaches have higher errors on unseen hand shapes
(2, 3, 4, 5, 9) compared to errors obtained on shapes (1, 6, 7, 8, 10) seen in the
training set.

Fig. 11 (c, f) show the MJE analysis based on seen/unseen shapes (c) and
objects (f). A list of objects that appear in the task test set is given in Table 21.
Although shape ’S5’ refers to an unseen shape, all methods can extrapolate to
this shape better than some other seen shapes in the training set. This can be
explained with ’S5’ being similar to some other shapes and it has the lowest
number of frames (easy examples) compared to number of test frames from
other shapes in the test set, see Fig. 4 (bottom right) for the distributions of the
training and test set. A similar aspect has been observed in [46] where different
hand shape analysis has been provided, see Fig. 19. However, all methods tend to
have higher errors on the frames from another unseen test shape ’S3’ as expected.
Object extrapolation. Poses for hands with unseen objects, ’O3’ power drill and
’O6’ mug, are harder to extrapolate by most methods since their shapes are quite
different than the other seen objects in the training set. Please note that seen
’O2’ object has the lowest number of frames in the test set. Some example frames
for the listed objects are showed in Fig. 18.

7 Ablation Studies by the Participants

Here we present the experiments and their results conducted by the participants
for the challenge. Section 7.1 presents experimental results conducted by the
participated approaches based on different backbone architectures and similarly,
Section 7.2 shows experimental evaluation on the ensembling techniques in
pre-processing, post-processing and methodological level.

7.1 Experiments with Different Backbone Architectures

While Residual Network (ResNet) [11] backbones are well adopted by many
approaches and ResNet-50 or ResNet-101 architectures obtain better results
compared to other backbone models as reported in experiments of AWR and NLE .
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However, most approaches adopt ensembling predictions from models trained with
different backbone architectures and this improves the performance as showed in
Tables 9 and 10.

Table 9. Extrapolation MJE obtained with different backbone architectures in AWR ex-
periments. ’center1’ denotes using thresholds to compute hand center, ’center2 + original’
denotes using semantic segmentation network to compute hand center and extract hand
region from original depth images, ’center2 + segmented’ denotes using semantic seg-
mentation network to compute hand center while extract hand region from network’s
output mask.

Backbone Extrapolation MJE (mm)

Resnet50 (center1) 20.70
Resnet50 (center2 + original) 14.89

Resnet50 (center2 + segmented) 14.75
Resnet101 (center2 + original) 14.57

Resnet101 (center2 + segmented) 14.44
HRnet48 17.23
SRN 16.00

SRN multi size ensemble 15.20
HRNet Resnet50 shape ensemble 14.68

model ensemble 13.67

Table 9 shows the experiments for impact of different network backbones
and different ways of obtaining the hand center by AWR. Changing the way of
attaining hand center from ’center1’ to ’center2 + original’ yields an improvement
of 5.81mm, ’center2 + segmented’ further improves by 0.14mm. The best result
is obtained with a backbone of ResNet-101, 14.44mm.

At the final stage, multiple models are ensembled (model ensemble in Ta-
ble 9) including ResNet-101 (center2+segmented), ResNet-101 (center2+original),
ResNet-50 (center2+original), SRN multi size ensemble and HRNet Resnet50-
shape ensemble. Since ESPNetv2 [21] sacrifices accuracy for speed to some
extent, the segmentation results are not accurate enough and may contain wrists
or lack part of the fingers, therefore cropping hand regions from original depth
images sometimes yields better performance.

Among the approaches using ensembled networks, SRN [27] is a stacked
regression network which is robust to self-occlusion and when depth values are
missing. It performs the best for Shape extrapolation, but is sensitive to the cube
size that are used when cropping hand region. The mean error of a single-stage
SRN with cube size 200mm already reaches 16mm. Ensembling SRN with cube
size 180mm, 200mm and 220mm, the results of SRN multi size ensemble is
15.20mm.

SRN performs the best on the shape evaluation axis. For example, single SRN
can achieve 12.32mm and SRN multi size ensemble can achieve 11.85mm.

HRNet-48 makes a major success in human pose estimation, but we do not get
desired results after applying it. The mean error of single HRNet-48 is 17.23mm.
Although it converges faster and has relatively lower loss than ResNet-50 and
ResNet-101 in the training stage, it performs worse during inference. HRNet-48
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predicts well on some of the shapes. Therefore, the depth images are divided
into 20 categories according to the proportion of hand pixels over all pixels. The
prediction error in training set is used to compute the weight of each category,
which is used to weight the test set results. The weighted results depicted with
HRNet Resnet50 shape ensemble reaches mean error of 14.68mm.

The model ensemble refers to ensembling predictions of five models in-
cluding ResNet-101 (14.44mm), ResNet-101 noseg (14.57mm), ResNet-50 noseg
(14.89mm), HRNet Resnet50 shape ensemble (14.68mm), SRN multi size ensemble
(15.20mm). Among them, the first four models are based on adaptive weighting
regression (AWR) network with different backbones.

Table 10. Impact of different network architectures, in NLE experiments. No color
jittering is applied during training in these experiments. MJE (mm) metric is used.
Please note that for this experiment while ResNet-50 and ResNet-152 backbones results
are obtained with 10 different anchor poses while the rest use 5 different anchor poses
in NLE ’ settings for Pose Proposal Integration (PPI).

Backbone Extrapolation Interpolation Object Shape

ResNet-50 34.63 5.63 23.22 17.79
ResNet-101 32.56 4.49 18.68 18.50
ResNet-152 37.56 4.24 20.11 18.58
ResNext-50 33.88 4.99 25.67 19.70
ResNext-101 38.09 3.83 21.65 20.93

Table 10 shows comparison of different residual based backbones. Deeper
backbones can obtain lower errors on Interpolation however, the method obtains
higher errors on Extrapolation criteria and ResNet-101 a medium depth seems
to be a reasonable choice in most cases in NLE experiments. While errors on
different evaluation criteria with ResNext based arthictectures tend to vary a lot,
ResNet based backbones are more solid.
Components of V2V-PoseNet architecture include: Volumetric Basic Block,

Table 11. Impact of widening the architecture used in V2V-PoseNet [22] in NTIS exper-
iments. The number of kernels in each block in V2V-PoseNet architecture is quadrupled
(wider).

Architecture V2V-PoseNet [22] Extrapolation MJE (mm)

Original 38.33
Wider 36.36

Volumetric Residual Block, and Volumetric Downsampling and Upsampling
Block. NTIS uses the same individual blocks as in V2V-PoseNet [22] but with a
wider architecture. NTIS ’ experiment, see Table 11 shows that quadrupling the
number of kernels in individual blocks provides the best results.

7.2 Impact of Ensembling Techniques

In this section, we provide the experiments to show the importance of ensem-
bling techniques. These techniques include ensembling in data pre-processing,
methodological ensembles and ensembles as post-processing.
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NLE’ experiments on methodological and post-processing ensembling techniques.

NLE adopts an approach based on LCR-Net++[29] where poses in the training
set are clustered to obtain anchor poses and during inference, the test samples
are first classified to these anchors and the final hand pose estimation is regressed
from the anchor poses. Table 12 shows the impact of using different number
of anchor poses. Shape extrapolation axis is heavily affected with the number
anchor poses. While the number of obtained anchor poses from the training set
increases from 1 to 50, the shape extrapolation error decreases from 21.08mm to
16.55mm. On the other hand, the number of anchor poses does not seem to have
an observable impact on the other criteria, however; this can be because of the
size of Task 3 test set and also because of the low hand pose variances in Task 3.

Table 12. Impact of number of anchor poses, in NLE experiments, obtained with
k-means clustering for Pose Proposal Integration (PPI). No color jittering is applied
during training in these experiments. ResNet-101 backbone architecture and MJE (mm)
metric is used.

#Anchor poses Extrapolation Interpolation Object Shape

1 37.68 3.99 28.69 21.08
5 32.56 4.49 18.68 18.50
10 37.57 4.35 19.38 18.33
20 34.67 4.38 21.10 16.94
50 35.64 4.86 17.84 16.55

Table 13. Importance of pose proposal integration [29] (PPI) compared to non-max
suppression (NMS), and of joint 2D-3D regression in NLE experiments (ResNet-50
backbone and 5 anchor poses are used). MJE (mm) metric is used.

2D-3D Estimation Post. Extrapolation Interpolation Object Shape

3D only NMS 38.59 8.48 37.31 18.78
2D+3D NMS 38.08 7.60 28.45 18.73
2D+3D PPI 34.63 5.63 23.22 17.79

NLE ’s experiments later show the impact of learning and inferencing both
2D and 3D pose, and the impact of pose proposal integration [29] (PPI) compared
to non-maximum suppression approach to obtain the poses. Learning to estimate
2D pose of a hand significantly impacts the extrapolation capability especially in
Object axis. We believe this is because the objects occlude the hands and 2D
information can be better obtained and help to guide estimation of the 3D hand
poses. Later the pose proposal with 5 anchor poses brings a significant boost for
extrapolation capabilities of the method.

Table 14. Importance of rotation data augmentation in NLE experiments, conducted
with a ResNet-101 backbone architecture and 5 anchor poses. MJE (mm) metric is
used.

#Test Rot. Extrapolation Interpolation Object Shape

1 29.55 4.85 18.09 17.35
4 28.83 4.63 18.06 16.77
12 29.19 4.06 18.39 15.79
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NLE adopts another ensembling technique in the post-processing stage
where test images are rotated by uniformly covering the space and the predictions
obtained from each rotated test sample is ensembled. Experiments of NLE show
that rotation as a post-processing ensemble technique helps significantly on
shape extrapolation as well as interpolation axis and has minor impacts on other
extrapolation criteria. Table 14 shows the impact of different number of rotation
ensembles.

Strawberryfg ensembling as data pre-processing and orientation refinement per

limb. Strawberryfg makes use of different input types obtained from the depth
input image and their combinations to use them in their approach. Different input
types include 3D joints projection, multi-layer depth and voxel representations
and a list of input types and their combinations adopted to train different models
are listed in Table 15. The impact of each mentioned model is reported in Table 16.
The model used with different combination of different input types obtained from
the depth images has no significant impact on evaluation criteria. We believe that
this is because each different input type has different characteristics for the model
to learn from and it’s hard for the model to adapt to each type. Maybe a kind of
adaptive weighting technique as adopted by some other approaches participated
in the challenge can help in this case. However, as ensembling results of different
models is proven to be helpful with all the approaches adopted the technique
seems to be helpful in this case as well. ’Combined’ model as depicted in Table 16
obtains the best results for all evaluation criteria. Strawberryfg ’ experiment report
to have 10.6% on articulation, 10% on interpolation, 8.4% on viewpoint, 7.2% on
extrapolation, 6.2% on shape criteria improvements with ensembling of 4 models.

Table 17 using Strawberryfg shows the impact of patch orientation refinement
networks adopted for each limb of a hand to show the impact. Orientation
refinement brings a significant impact with 1mm lower error on all evaluation
criteria.

Table 15. Input data types for four different models used in Strawberryfg experiments.

Model Id Input Type

Depth Image 3D Points Projection Multi-layer Depth Depth Voxel

1 ✓ ✗ ✗ ✗

2 ✓ ✓ ✓ ✗

3 ✓ ✓ ✗ ✓

4 ✓ ✓ ✓ ✓

A2J uses ensembling in post-processing. At inference stage, A2J applies rotation
and scale augmentations. More specifically, A2J rotates the test samples with
−90◦/45◦/90◦ , and scales with factor 1/1.25/1.5. Then these predictions are
averaged. Several backbone models are trained, including ResNet-50/101/152,
SE-ResNet-50/101, DenseNet-169/201, EfficientNet-B5/B6/B7. Input image sizes
are 256×256/288×288/320×320/384×384. The best single model is ResNet-152
with input size 384× 384, it achieves 14.74mm on the extrapolation axis. Finally,
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Table 16. MJE (mm) obtained in Strawberryfg experiments by using different models
trained with different input types, see Table 15. ’Combined’ model refers to ensembling
predictions from all 4 models.

Model Id Extrapolation Viewpoint Articulation Shape Interpolation

1 20.99 14.70 8.42 14.85 9.35
2 21.39 15.34 8.25 15.21 9.17
3 21.02 16.12 8.52 15.30 9.61
4 21.19 15.78 8.36 15.23 9.32

Combined 19.63 14.16 7.50 14.21 8.42

Table 17. Impact of local patch refinement and volume rendering supervision adopted
by Strawberryfg . Model 4 with 4 different inputs are used in this evaluation, see
Table 15.

Model Id - Type Extrapolation Viewpoint Articulation Shape Interpolation

4 - w/o refinement & volume rendering 22.56 16.77 9.20 15.83 10.15
4 - w/ refinement & volume rendering 21.19 15.78 8.36 15.23 9.32

these predictions are ensembled with weights to obtain a final error of 13.74mm
on the extrapolation axis.
NTIS ensembling in post-processing with confident joint locations, Truncated

SVDs and temporal smoothing. NTIS adopts a post-processing technique for
refinement of hand poses where several inverse transformations of predicted joint
positions are applied; in detail, NTIS uses truncated singular value decomposition
transformations (Truncated SVDs; 9 for Task 1 and 5 for Task 2) with number of
components n ∈ 10, 15, 20, 25, 30, 35, 40, 45, 50 obtained from the training ground-
truth hand pose labels and prepares nine refined pose candidates. These candidates
are combined together as final estimation that is collected as weighted linear com-
bination of pose candidates with weights w ∈ 0.1, 0.1, 0.2, 0.2, 0.4, 0.8, 1.0, 1.8/4.7.
Table 18 shows the impact of ensembling confident joint predictions and refine-
ment stage with Truncated SVDs.

Table 18. Impact of refinement with Truncated SVDs in NTIS experiments on Task
1. Improvement is 1̃%. N = 100 most confident joint locations are ensembled for this
experiment. Results reported in MJE (mm) metric.

SVD refinement Extrapolation

w/ 15.81
w/o 15.98

Since Task 2 is based on sequences and test samples are provided in or-
der, NTIS applies temporal smoothing on the predictions from each frame and
provides experimental results in Table 19 with different context sizes for smooth-
ing. While temporal smoothing helps to decrease the extrapolation error, large
context sizes do not impact much on the error.

AWR methodological ensembling with AWR operation. Fig. 13 shows the impact
of learnable adaptive weighting regression (AWR) approach on the probability
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Table 19. Impact of temporal smoothing and the context size (k) for smoothing
in NTIS experiments on Task 2 using exact same V2V-PoseNet [22] architecture.

Smoothing Context Size (k) Extrapolation MJE (mm)

0 39.76
3 38.32
5 38.31
7 38.33

maps of the target joints. When the target joint is visible and easy to distinguish,
the weight distribution of AWR tends to focus more on pixels around it as
standard detection-based methods do, which helps to make full use of local
evidence. When depth values around the target joint are missing, the weight
distribution spreads out to capture information of adjacent joint. Later, Table 20
shows the impact of the AWR operation on two other datasets, NYU [38] and
HANDS’17 [46].

(a) w/o AWR

(b) w/ AWR

Fig. 13. Impact of AWR operation on the target joints’ probability maps.

Table 20. AWR experiments for w/o adaptive weighting on NYU [38] and
HANDS’17 [46] datasets. Results reported in MJE (mm) metric.

Dataset w/o AWR w/ AWR

NYU 7.87 7.48
HANDS’17 7.98 7.48
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8 Conclusion

We carefully designed structured training and test sets for 3D HPEs and organized
a challenge for the hand pose community to show state-of-the-art methods
still tend to fail to extrapolate on large pose spaces. Our analyses highlight
the impacts of using ensembles, the use of synthetic images, different type of
HPEs e.g . 2D, 3D or local-estimators and post-processing. Ensemble techniques,
both methodologically in 2D and 3D HPEs and in post-processing, help many
approaches to boost their performance on extrapolation. The submitted HPEs
were proven to be successful while interpolating in all the tasks, but their
extrapolation capabilities vary significantly. Scenarios such as hands interacting
with objects present the biggest challenges to extrapolate by most of the evaluated
methods both in depth and RGB modalities.
Given the limited extrapolation capabilities of the methods, usage of synthetic
data is appealing. Only a few methods actually were making use of synthetic
data to improve extrapolation. 570K synthetic images used by the winner of
Task 1 is still a very small number compared to how large, potentially infinite,
it could be. We believe that investigating these possibilities, jointly with data
sub-sampling strategies and real-synthetic domain adaptation is a promising and
interesting line of work. The question of what would be the outcome if we sample
‘dense enough’ in the continuous and infinite pose space and how ’dense enough’
is defined when we are limited by hardware and time is significant to answer.
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Co. Ltd. and Samsung Electronics. S. Baek was supported by IITP funds from
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A Appendix

A.1 Frame Success Rates for All Participated Users in the

Challenge

Figure 14 shows the analysis of all participated users in the challenge’s tasks. We
analysed the selected methods (6 for Task 1, 4 for Task 2 and 3 for Task 3) based
on their methodological variances and results. The challenge have received 16
submissions for Task 1, 9 submissions for Task 2 and 7 for Task 3 to be evaluated
from different users.
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Fig. 14. All participated methods’ total extrapolation accuracy analysis for each task.
(a,c,e) represents the frame success rates where each frames’ error is estimated by
considering the maximum error of all joints in that frame. (b,d,f) shows the joint success
rates.
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A.2 Joint Success Rates of the Analysed Approaches

Success rate analyses for each of three tasks based on all joints in the test set
are provided below. Please note the difference of the figures below compared
to the success rate analysis based on frames as showed in Fig. 7, 9 and 11.
Comparing the joint based analysis and the frame based analysis, we can note
that all methods have different error variance for different joints and therefore
the approaches tend to obtain higher accuracies based on considering each joint
independently.
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Fig. 15. Task 1 - Joint success rate analysis on different evaluation axis where each
joints’ error in the set is evaluated for measuring the accuracy.
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Fig. 16. Task 2 - Joint success rate analysis on different evaluation axis where each
joints’ error in the set is evaluated for measuring the accuracy.
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(c) Object (d) Interpolation

Fig. 17. Task 3 - Joint success rate analysis on different evaluation axis where each
joints’ error in the set is evaluated for measuring the accuracy.
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A.3 Visualizations for Articulation Clusters, Hand Shapes and

Object Types

(a) O1 - Cracker box (b) O2 - Pitcher base (c) O3 - Power drill

(d) O4 - Sugar box (e) O5 - Mustard bottle (f) O6 - Mug
Fig. 18. Example frames for the objects appear in Task 3, HO-3D [9] dataset.

Object Id Object Name Seen in the Training Set

O1 cracker box ✓

O2 pitcher base ✓

O3 power drill ✗

O4 sugar box ✓

O5 mustard bottle ✓

O6 mug ✗

(c) Object List
Table 21. List of seen and unseen objects in the training dataset of Task 3.

Fig. 19. Visualization of different hand shape distributions, appear in [46], by using the
first two principal components of the hand shape parameters. Figure is taken from [46].
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C1 00000
C2 00001
C3 00010

C4 00011
C5 00100
C6 00101

C7 00110
C8 00111
C9 01000

C10 01001
C11 01010
C12 01011

C13 01100
C14 01101
C15 01110

C16 01111
C17 10000
C18 10001

C19 10010
C20 10011
C21 10100

C22 10101
C23 10110
C24 10111

C25 11000
C26 11001
C27 11010

C28 11011
C29 11100
C30 11101

C31 11110
C32 11111

Fig. 20. Examples frames for 32 articulation clusters used in the evaluations. Each row
shows cluster ids and their respective binary representations for two example images of
three clusters. Each binary representation is constructed from thumb to pinky fingers
with 0 representing closed and 1 representing open fingers.


