
Instant Outdoor Localization and SLAM Initialization

from 2.5D Maps

Clemens Arth∗, Member, IEEE, Christian Pirchheim∗, Student Member, IEEE, Jonathan Ventura, Member, IEEE,

Dieter Schmalstieg, Senior Member, IEEE, and Vincent Lepetit

(a) (b) (c) (d)

Fig. 1: Outdoor urban usage of real-time SLAM with our novel localization technique. (a) User with a mobile device running
our software. (b) Map view with sensor pose (blue) and the pose estimate from our method (green). (c) Reprojection of a
globally aligned building model into the image using the sensor pose (blue) and the same reprojection after correction with our
method (green). (d) Live camera view on the mobile device with globally aligned augmentations. We use the corrected pose to
synthetically render a depth map from the building model and initialize a SLAM system, which starts tracking the camera motion.
We can then instantly augment the scene with virtual elements. In contrast to previous systems, we do not need large translations
for initializing the SLAM system, and we can handle both purely rotational and general 3D motions.

Abstract—
We present a method for large-scale geo-localization and global tracking of mobile devices in urban outdoor environments. In contrast
to existing methods, we instantaneously initialize and globally register a SLAM map by localizing the first keyframe with respect to
widely available untextured 2.5D maps. Given a single image frame and a coarse sensor pose prior, our localization method estimates
the absolute camera orientation from straight line segments and the translation by aligning the city map model with a semantic
segmentation of the image. We use the resulting 6DOF pose, together with information inferred from the city map model, to reliably
initialize and extend a 3D SLAM map in a global coordinate system, applying a model-supported SLAM mapping approach. We show
the robustness and accuracy of our localization approach on a challenging dataset, and demonstrate unconstrained global SLAM
mapping and tracking of arbitrary camera motion on several sequences.

Index Terms—SLAM, geo-localization, image registration, 2D map, outdoor augmented reality

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) algorithms have
now been developed to an extent that allows bringing them from small
indoor workspaces to challenging outdoor environments. However,
SLAM only provides relative poses in an arbitrary coordinate sys-
tem with unknown scale. This is clearly not enough for many AR
applications such as navigation [17] or labeling of local touristic land-
marks [41]. Consequently, methods have been introduced that align
the local coordinate system of a SLAM map with the global coordi-
nate system of a 3D map with metric scale [38, 23]. However, this
requires the user to wait until the SLAM system has acquired a suffi-
cient number of images to initialize its 3D map, which is not accept-
able for an interactive application. Moreover, SLAM systems require
specific motions for initialization, which are not easily performed by
a non-expert.

• Clemens Arth, Christian Pirchheim, Dieter Schmalstieg and Vincent

Lepetit are with the Graz University of Technology, Austria.

E-mail: {arth,pirchheim,schmalstieg,lepetit}@icg.tugraz.at.

• Jonathan Ventura is with the University of Colorado Colorado Springs.

E-mail: jventura@uccs.edu

• ∗The first and the second author contributed equally to this work.

Manuscript received 18 Sept. 2014; accepted 10 Jan. 2015. Date of

Publication 20 Jan. 2015; date of current version 23 Mar. 2015.

For information on obtaining reprints of this article, please send

e-mail to: reprints@ieee.org.

In parallel to the developments in SLAM, tremendous progress has
been made in geo-localization of mobile devices from single frames
over the last years. Since device sensors are typically not accurate
enough, computer vision techniques are useful to improve their esti-
mates. However, current methods still do not fulfill the requirements
of outdoor1 Augmented Reality (AR), namely, to provide large-scale,
low-latency, robust and accurate camera registration in a global coor-
dinate system. Some methods compute the global camera pose by
matching one or more input images with a large database of pre-
registered images [32, 31]. Such databases are tedious to create
and maintain, and often only available for popular places. More re-
cently, image registration methods have been presented which lever-
age widely available untextured 2D and 3D models of outdoor envi-
ronments. These methods match input images with globally aligned
2D cadastral maps [7, 5, 8], digital elevation models [2, 4], or 2.5D
models [25, 36], that can for example be obtained for free under an
open license from OpenStreetMap 2.

In this paper, we introduce a novel method for instant geo-
localization of the video stream captured by a mobile device (Fig. 1).
The first stage of our method registers the image to an untextured 2.5D
map (2D building footprints + approximate building height), provid-
ing an accurately and globally aligned pose. This is done by first es-
timating the absolute camera orientation from straight-line segments,

1When we refer to outdoor environments, we more precisely mean urban

outdoor environments.
2OpenStreetMap: http://www.openstreetmap.org

http://www.openstreetmap.org

then estimating the camera translation by segmenting the façades in
the input image and matching them with those of the map. The result-
ing pose is suitable to initialize a SLAM system. The SLAM map is
initialized by back-projecting the feature points onto synthetic depth
images rendered from the augmented 2.5D map.

Our system has several major advantages over the state-of-the-art:
First, the global localization component requires only OpenStreetMap-
style data, which is widely available. Second, the global localization
does not require searching through a large database and is therefore
suitable for mobile devices with limited memory and computational
capacity3. Third, the initialization of the SLAM system from the first
frame avoids the need to tediously cover a sufficient outdoor baseline
for stereo triangulation. Fourth, there is no restriction on the camera
motion: Tracking and mapping are possible even in the case of purely
rotational motion. This combination of features brings outdoor urban
tracking a significant step closer to use in practice.

2 RELATED WORK

The literature on outdoor camera registration is large, and an exhaus-
tive discussion is out of scope of the paper. In this section, we aim
at providing a comprehensive overview of approaches competing with
ours in delivering global outdoor localization with 6DOF.

2.1 Image-based localization

For more than a decade, image-based localization [28] has been a topic
of intensive research. Given one or more input images and optionally
a sensor prior (location from GPS, orientation from compass and mag-
netometer), these systems retrieve similar pre-registered images from
a database to compute the 3D place or full 6D pose of the input image.
For example, Schindler et al. [32] demonstrated image-based localiza-
tion using databases that contain 20 km of urban street-side imagery,
organized in a vocabulary tree to handle the massive amounts of data.
Later works such as Sattler et al. [31] improved upon both accuracy
and performance.

Zamir et al. [42] and later Vaca-Castano et al. [37] showed it was
possible to use existing image collections, such as Google StreetView,
to get an estimate of the camera pose. However, image databases
such as Google StreetView or Microsoft StreetSide are not universally
suited for localization, since they are only sparsely sampled, and not
available at all in certain regions and countries.

The major disadvantages of image-based localization approaches
remain that they do not scale well. Many images need to be captured
for each new location, and, even with sufficiently dense sampling, it is
still very challenging to match images under changing conditions due
to illumination, season, construction activity and many other sources
of change.

2.2 Localization using untextured models

Another class of localization approaches avoids image databases alto-
gether by relying on untextured models such as widely available 2D
cadastral maps annotated with per-building height information or dig-
ital elevation models (often from LIDAR). These methods, which seek
to register 2.5D maps to single or multi-view images, are most closely
related to the work presented in this paper. However, global registra-
tion from sparse 2.5D information is difficult, and we will explain the
restrictions made by previous work in this area.

LIDAR images provide a relatively dense sampling of the environ-
ment compared to cadastral maps. This allows Mastin et al. [20] to
use a mutual information approach for registering aerial images to a
2.5D model. This kind of approach is not feasible for our use case of
registering street-level images, which show only a few façades, with
sparse 2.5D cadastral maps.

Meierhold et al. [22] establish line correspondences between image
and 2.5D model. They state that “the accuracy of 3D lines obtained

3Note that our current unoptimized, single-threaded Matlab implementation

of the global localization component is one order of magnitude away from real-

time operation. However, the SLAM component runs at 30Hz, and we discuss

later how the localization can be accelerated to meet real-time requirements.

with the presented algorithm is insufficient for the purpose of image
orientation” and, therefore, suggest to resolve this problem with user
interaction. Similarly, Matei et al. [21] manually annotate the building
outlines in the input image and then match them with the model. These
approaches are not applicable to AR. In contrast, our algorithm runs
fully automatic without any user intervention.

Baatz et al. [2] use contour matching and refinement of sky silhou-
ettes between a digital elevation model and mountain images. Simi-
larly, Bansal et al. [4] verify pose hypotheses by matching the image
skyline with the model. In AR, users should not have to point the cam-
era at the skyline. In dense urban areas, the skyline may not even be
easily visible. Therefore, we do not rely on a visible skyline in our
input images.

Another work from Baatz et al. [3] registers semantically labeled
images with respect to labeled 3D digital terrain models. The idea of
semantic segmentation is related to our method, but Baatz et al. pro-
cess landscape images, whereas we process urban images. They state
that “it is still extremely challenging to accurately identify the seman-
tics” and restrict themselves to four of the easier classes (sky, water,
settlements, other). This approach allows Baatz et al. to estimate only
the orientation of the image with respect to the model. In contrast, our
method computes both absolute orientation and 3D location.

Several methods [8, 5, 7] use 2D cadastral maps. David et al. [8]
register panoramic images with 2D maps using a building façade ori-
entation descriptor. As shown by Arth et al. [1], the higher amount
information contained in wide field-of-view images significantly in-
creases the success rate of localization. Mobile devices have a narrow
field of view, and a descriptor such as the one used by David et al. is
not discriminant enough in such situations. Cham et al. [5] also con-
sider panoramic images and aim to detect vertical building outlines
and façade normals resulting in 2D fragments which are then matched
with a 2D map. Chu et al. [7] report to outperform Cham et al. [5].
They compute a descriptor from vertical building outlines in perspec-
tive input images, which is then matched with a 2D map. Chu et al.
published their code and dataset online. Upon careful analysis, the
dataset consist of only 11 scenes that mostly show free-standing build-
ings with rectangular footprint. Matching requires the exact detection
of the left, middle and right building outline in the input image. To
facilitate the detection of vertical edge and vanishing points, they par-
tially used manual annotation of the input images. In contrast, we aim
at a fully automatic method.

We share the assumption of horizontal and vertical image lines with
Chu et al. [7]. In contrast, however, we use a robust algorithm for ori-
entation estimation, and consider a large number of potential vertical
building outlines. The resulting pose hypotheses are verified based on
a semantic segmentation of the image, which adds another layer of in-
formation to the pose estimation process. This allows our method to
be applied to much more complex images compared to [7].

Similar to our approach, 2.5D models are employed by [25, 36].
Ramalingam et al. [25] establish the registration between an image and
a 2.5D model by computing 3D-2D line and point correspondences.
However, an already registered second image is required to establish
the 3D-2D correspondences by first matching 2D-2D SIFT features
between the two images. Consequently, the first image of a sequence
needs to be manually annotated. In contrast, our methods are fully
automatic and only require a single input image.

We share the idea of using semantic image segmentation as input
for the registration with a 2.5D map with Taneja et al. [36]. However,
Taneja et al. optimize the pose over a continuous 6D cost space, while
we are verifying pose hypotheses at discrete positions within a 2D cost
space, which makes our method arguably much faster. Taneja et al. use
comparably detailed 2.5D models and Google StreetView images for
their queries, which are high-resolution panoramas with a rather ac-
curate initial geo-location. The quality of this data likely allows them
to optimize all 6DOF simultaneously without getting stuck in local
minima. With narrow field-of-view images from a mobile device an-
notated with noisy sensor priors, often showing only a single façade,
even our 2D cost space has many local minima, making an optimiza-
tion along the lines of Taneja et al. problematic.

Fig. 2: An overview of our method. The SLAM component provides
image and sensor data to the localization module, returning an accurate
pose estimate for depth map creation and SLAM initialization.

2.3 Outdoor augmented reality tracking

Early outdoor Augmented Reality systems only used GPS and com-
pass sensors for localization and tracking [11]. Since these approaches
were not accurate enough for precise 3D augmentations, later sys-
tems fused image and sensor information (including inertial sensors)
to perform tracking from photo-textured models in urban environ-
ments [15, 26]. However, both systems needed to be manually initial-
ized, e.g., by starting off from a known location in the environment.
Later on, Reitmayr and Drummond [27] extended their system with a
dedicated initialization procedure based on GPS sensor priors.

Most recently, SLAM systems have been used in outdoor aug-
mented reality. SLAM does not require a model, but is capable of
mapping and tracking arbitrary scenes. However, the unknown scale
of local SLAM maps only allows for tracking “relative” poses. Ven-
tura et al. [38] presented a localization method to align a local SLAM
3D map with a globally registered 3D map over time, and showed
real-time SLAM on a mobile devices with globally registered 6DOF
tracking in urban outdoor environments. A similar system was con-
currently developed by Middelberg et al. [23]. However, before global
localization can take place, a local 3D SLAM map needs to be initial-
ized from a stereo image pair, which requires a translational camera
motion. In practice, this requires the user to walk several meters to
span the required baseline. In contrast, we show how to use the first
keyframe acquired by the SLAM system to perform localization.

In contrast to pure model-based tracking and regular SLAM map-
ping, we propose to leverage untextured 2.5D models for model-
assisted SLAM mapping such that the SLAM system can track ab-
solute 6DOF poses with respect to a globally aligned SLAM 3D map.

3 METHOD OVERVIEW

As depicted in Fig. 2, our method first obtains a single image (camera)
and a pose estimate from mobile sensors (GPS, compass, accelerome-
ter), i.e., the first keyframe acquired with a SLAM system running on
a mobile device, plus a record of the built-in sensor values. From the
sensor data, a first 6DOF pose estimate is compiled, using the fused
compass and accelerometer input to provide a full 3× 3 rotation ma-
trix w.r.t. north/east and the earth center, and augmenting it with the
WGS84 GPS information in metric UTM4 coordinates to create a 3×4
pose matrix. This estimate is used to retrieve a 2.5D map containing
the surrounding buildings, i.e., using 2D building and height data from
OpenStreetMap. Note that, however, that this pose can be off by 30◦

and 15 m, which is not accurate enough for SLAM initialization.

For our localization method, we assume that most image line seg-
ments extracted from the visible building façades are either horizontal
or vertical. This is a common assumption used in vanishing point and
relative orientation estimation, valid for many urban environments.
Based on this assumption, we essentially solve a 2D-3D line corre-
spondence problem. Already, three correct image-model correspon-
dences allow for computing the 6DOF pose. However, our corre-

4UTM: Universal Transverse Mercator

spondence problem is profoundly non-trivial, since we find very little
matching information in our input data. Additionally, the pose prior
provided by the mobile sensors can be very noisy.

For the estimation of the global camera orientation (Section 4), we
require a single correspondence between a horizontal image line and
a model façade plane. This problem is robustly solved using minimal
solvers in RANSAC frameworks.

For the subsequent estimation of the global 3D camera location
(Section 5), we require two correspondences between vertical image
lines and model façade outlines. This problem is tackled by first ex-
tracting potential vertical façade outlines in the image and matching
them with corresponding model façade outlines, resulting in a sparse
set of 3D location hypotheses. To improve the detection of potential
vertical façade outlines in the image, we first apply a multi-scale win-
dow detector before extracting the dominant vertical lines. We verify
the set of pose hypotheses with an objective function that scores the
match between a semantic segmentation of the input image and the
reprojection of the 2.5D façade model. The semantic segmentation is
computed with a fast light-weight multi-class support vector machine.

The resulting global 6DOF keyframe pose together with the re-
trieved 2.5D model is used by the SLAM system to initialize its 3D
map (Section 6). We render a depth map and assign depth values to
2D keyframe features and thus initialize a 3D feature map. This pro-
cedure is repeated for subsequent keyframes to extend the 3D map,
allowing for absolute 6DOF tracking of arbitrary camera motion in a
global coordinate system.

4 ORIENTATION ESTIMATION

We describe the estimation of the absolute orientation of the given
camera image with respect to the 2D map. We start by computing the
pitch and roll (Section 4.1), i.e., the orientation of the vertical cam-
era axis with respect to gravity, followed by computing the yaw (Sec-
tion 4.2), i.e., the remaining degree-of-freedom of the rotation in the
absolute coordinate system of the 2D map.

4.1 Estimating the vertical axis

We want to estimate a rotation matrix Rv that aligns the camera’s verti-
cal axis with the gravity vector. We do so by determining the dominant
vertical vanishing point in the image, using line segments extracted
from the image. We rely on the Line Segment Detector (LSD) algo-
rithm [40], followed by three filtering steps: (1) We only retain line
segments exceeding a certain length. (2) Lines below the horizon line
computed from the sensor rotation estimate are removed, since these
segments are likely located on the ground plane or foreground object
clutter. (3) Line segments are removed, if the angle between their
projection and the gravity vector given by the accelerometer sensor is
larger than a threshold [19].

The intersection point p of the projections l1 and l2 of two vertical
lines is the vertical vanishing point. It can be computed with as a cross
product using homogeneous coordinates:

p = l1 × l2 . (1)

As suggested by Rother et al. [29], we search pairs of lines in order
to find the dominant vanishing point. For each pair of vertical line
segments, we compute the intersection point and test it against all line
segments, using an angular error measure:

err(p, l) = acos

(

p · l

||p|| · ||l||

)

. (2)

The dominant vertical vanishing point pv is chosen as the one with
the highest number of inliers using an error threshold of σ degrees,
evaluated in a RANSAC framework.

Given the dominant vertical vanishing point pv, we compute the
rotation which aligns the camera’s vertical axis with the vertical van-
ishing point of the 2D map. The vertical direction of the 2D map is

assumed z = [0 0 1]⊤. Besides that, no other information from the 2D
map is needed.

21

21

21

21

50

30

30

13

13

13

22

50

50

50

53

53

53

41

45 44

46

43

47

49

42

48

31

30

21

50

20

13

19

41

45 44 43

46

49

30

48
47 31

21

50

20

13

19

Fig. 3: Estimating rotation R. Top: line segments identified as vertical
(yellow) and horizontal (cyan, white) in 3D compared to the reprojec-
tion (green) of the model after rotation correction, but before trans-
lation correction. Bottom left: Back-projection of the line segments
using the sensor pose. Bottom right: Back-projection after rotation
correction, which aligns the vertical and horizontal line segments with
the façade model.

Using angle-axis representation, the axis of the rotation is u=pv×z
and the angle is θ = acos(pv · z), assuming that the vertical vanishing
point is normalized. The rotation Rv then can be constructed using
SO(3) exponentiation:

Rv = expSO(3)

(

u ·
θ

||u||

)

. (3)

4.2 Orientation in absolute coordinates

At this point, the camera orientation is determined up to a rotation
around its vertical axis (yaw). In this section, we explain how to
estimate this last degree of freedom for the orientation in the abso-
lute coordinate system of the 2D map. The procedure is illustrated in
Fig. 3: The image line segments are rotated and and back-projected
onto an extruded 2D model. The optimal rotation R makes the back-
projections as vertical and horizontal as possible. Note that for esti-
mating R, we do not require the building façade heights, but only rely
on a 2D map that provides oriented line strips which allow for retriev-
ing the building façade normals.

Given a façade f from the 2D map, its horizontal vanishing point is
found as the cross product of its normal n f and the vertical axis z:

ph = n f × z . (4)

After orientation correction through Rv, the horizontal image lines l ly-
ing on f should intersect ph. Thus, given a horizontal vanishing point

ph and a rotated horizontal line segment l3 = R⊤
v l, we can compute the

rotation Rh about the vertical axis to align the camera’s horizontal axis
with the horizontal vanishing point of f . This rotation has one degree
of freedom, φz, the amount of rotation about the vertical axis:

Rh =





cosφz −sinφz 0
sinφz cosφz 0

0 0 1



 . (5)

Using the substitution q = tan
φz

2 , we get cosφz =
1−q2

1+q2 and sinφz =

2q

1+q2 [18]. We can parameterize our rotation matrix in terms of q:

Rh =
1

1+q2





1−q2 −2q 0

2q 1−q2 0

0 0 1+q2



 . (6)

The intersection constraint between l3 and the horizontal vanishing
point ph is expressed as

ph · (Rhl3) = 0 . (7)

The roots of this quadratic polynomial in q determine two possible
rotations. This ambiguity is resolved by choosing the rotation which
best aligns the camera’s view vector to the inverse normal −n f .

Finally, the absolute rotation R of the camera is computed by chain-
ing the two previous rotations Rv and Rh:

R = RvRh . (8)

In practice we create pairs < l, f > from line segments l assigned
to visible façades f , identified from the 2D map using the initial pose
estimate from the sensors. We use a Binary Space Partition (BSP) tree
for efficient search the 2D map for visible façades – a BSP tree is a
data structure from Computer Graphics to efficiently solve visibility
problems [12]. We evaluate the angular error measure from Eq. (2) for
a rotation estimate from the pair < l, f > in a RANSAC framework,
choosing the hypothesis with the highest number of inliers.

We have to consider the following degenerate case: that is, < l, f >
pairs where l is actually located on a perpendicular façade plane f⊥,
resulting in rotation hypotheses R which are 90 deg off the ground
truth. Given a visible façade set where all façades are pairwise per-
pendicular, such a rotation hypothesis may receive the highest number
of inliers. We discard such < l, f⊥ > pairs by computing the angular
difference between the sensor pose and the rotation hypothesis R and
discard the hypothesis if it exceeds a threshold of 45 deg.

The case of < l, f > pairs where l is actually located on a parallel
façade f‖ does not cause any problems because in this case f‖ and f
have the same horizontal vanishing point ph.

5 TRANSLATION ESTIMATION

The vertical and horizontal segments on the façades allow estimation
of the camera’s orientation in a global coordinate system. Unfortu-
nately, the segments do not provide any useful constraint to estimate
the translation since we do not know their exact 3D location. In theory,
the pose could be computed from correspondences between the edges
of the buildings in the 2D map and their reprojections in the images.
In practice, it is virtually impossible to directly obtain such matches
reliably in absence of additional information.

We approach this problem by aligning the 2D map with a semantic
segmentation of the image. We can estimate the translation of the cam-
era as the one that aligns the façades of the 2D map with the façades
extracted from the image.

To speed up this alignment and to make it more reliable, we first
generate a small set of possible translations given the line segments in
the image that potentially correspond to the edges of the buildings in
the 2D map. We then keep the hypotheses that best aligns the 2D map
with the segmentation. We give details on these two steps below.

5.1 Generating translation hypotheses

In practice, the translation along the vertical axis is the most prob-
lematic one to estimate from the image, because the bottoms of the
buildings are typically occluded by foreground clutter (cars, pedestri-
ans). We therefore simply set the height of the camera at 1.6 m, which
is reasonable for a handheld device.

For the remaining two degrees of translational freedom, we gener-
ate possible horizontal translations (parallel to the ground plane) for
the camera by matching the edges of the buildings with the image.
However, this is a very challenging task, as the images are very clut-
tered in practice.

(a) (b)
100 200 300 400 500 600

0

1000

2000

3000

4000

5000

6000

7000

(c)

(d) (e)
100 200 300 400 500 600

0

1000

2000

3000

4000

5000

6000

(f)

21

21

21

21

13

13 50

50

50

30

30

30

13

13

13

28
22

22

22

22

22

50

50

50

53

53

53

(g)

21

21

21

21

13

13 50

50

50

30

30

30

13

13

13

28
22

22

22

22

22

50

50

50

53

53

53

(h)

Fig. 4: Generating translation hypotheses. (a): Vertically rectified image. (b): Image gradients. (c): Histogram of the sums of the gradient
magnitude over the columns. (d): Segmentation of the façades in cyan and window detections in black. (e): Image gradients only for the pixels
lying on a façade, but not on a window. (f): Histogram of gradient sums and selected vertical image lines. (g): Selected image lines overlaid on
the original image. (h): 3D model lines from building corners overlaid on the original image using the ground truth pose. Most of the visible
building outlines were successfully detected with our method.

Fig. 5: Pixel-wise segmentations obtained with a multi-class SVM for two different images. Cyan corresponds to façades, blue to sky, orange
to roofs, green to vegetation, and yellow to ground plane.

Fig. 6: Computing the log-likelihood. Left: Probability map for c f , the façade class. Middle: Probability maps for cs,cr,cv and cg. Right:
Reprojection Proj(M, p) for a pose close to the ground truth.

As shown in Fig. 4, we generate a set of possible image locations
for the edges of the buildings with a heuristic. We first rectify the input
image using the orientation so that vertical 3D lines also appear verti-
cal in the image, and we sum the image gradients along each column.

The columns with a large sum are likely corresponding to the bor-
der of a building. However, since windows also have strong vertical
edges, they tend to generate many wrong hypotheses. To reduce their
influence, we trained a multi-scale window detector based on the work
of Viola and Jones [39] on the ZuBud building database [34]. Only
almost frontally viewed windows were manually extracted and used
for training, resulting in a set of 1170 positive images. As negatives,
a set of private images from travels and parties was used. The result-
ing detector has 28 stages with a total of 651 features. Despite this
simple procedure, the detector works reasonably well, still leaving a
lot of room for optimization, both in terms of overall cascade depth
as well as the selection of negative imagery given the expected urban
streetview domain (see e.g. [14]).

Pixels lying on the windows found by the detector are ignored when
computing the gradient sums over the columns. We also use the façade
segmentation result described in Section 5.2 to consider only the pix-
els that lie on façades, but not on windows. Since the sums may take
very different values for different scenes, we use a threshold estimated
automatically for each image. We fit a Gamma distribution to the his-
togram of the sums and evaluate the quantile function with a fixed
inlier probability.

Finally, as shown in Fig. 4(g) and Fig. 4(h), we generate transla-
tion hypotheses for each possible pair of correspondences between the
vertical lines extracted from the image and the building outlines. The
building outlines come from the corners in the 2D maps that are likely
to be visible, given the location provided by the GPS and the orien-
tation estimated during the first step, again using the BSP tree for ef-
ficient retrieval. Given two vertical lines in the image, l1 and l2, and
two 3D points which are the corresponding building corners, x1 and
x2, the camera translation t in the ground plane can be easily computed
by solving the following linear system:

{

l1 · (x1 + t) = 0
l2 · (x2 + t) = 0

. (9)

We filter the hypotheses set based on their estimated 3D location.
First, hypotheses which have a location outside of a sphere whose
radius is determined by the assumed GPS error of 12.5 m [43] are
discarded. Second, we remove hypotheses which are located within
buildings.

5.2 Aligning the 2.5D map with the image

To select the best translation among the ones generated using the
method described above, we evaluate the alignment of the image and
the 2.5D map after projection using each generated translation.

We use a simple pixel-wise segmentation of the input image, by
applying a classifier to each image patch of a given size to assign a
class label to the center location of the patch.

The segmentation uses a multi-class Support Vector Ma-
chine (SVM) [33, 6], trained on a dataset of images from a differ-
ent source than the one used in our evaluations, manually segmenting
the images using the LabelMe service [30]. We use the integral fea-
tures introduced by Dollar et al. [9], and consider five different classes
C = {c f ,cs,cr,cv,cg} for façade, sky, roof, vegetation and ground, re-
spectively. By applying the classifier exhaustively, we obtain a proba-
bility estimate p for each image pixel over these classes. Fig. 5 shows
an example of a segmentation for a typical input image.

As illustrated in Fig. 6, given the 2D projection Proj(M, p) of our
2D map+height M into the image using pose hypothesis p, we compute
the log-likelihood of the pose:

sp =
Proj(M, p)

∑
i

log pi(c f)+
¬Proj(M, p)

∑
i

log
(

1− pi(c f)
)

, (10)

where ¬Proj(M, p) denotes the set of pixels lying outside the repro-
jection Proj(M, p). The pixels lying on the projection Proj(M, p) of

Fig. 7: Top row: Two keyframes from the globally aligned SLAM
system on a test sequence. Bottom row: Corresponding depth images
rendered from the actual camera pose.

the façades should have a high probability to be on a façade in the im-
age, and the pixels lying outside should have a high probability to not
be on a façade. We keep the pose p̂ that maximizes the log-likelihood:

p̂ = argmax
p

sp . (11)

In practice, the 3D location estimated from the sensors is often not
accurate enough to directly initialize our method. We therefore sample
six additional initial locations around the sensor pose in a hexagonal
layout, and combine the locations with the previously estimated ori-
entation. We execute our method initialized from each of these seven
poses, searching within a sphere having 12.5 m radius [43] for each
initial pose. Thus, our method can find the correct image location
within a region of up to 40x40 m. Finally, we keep the computed pose
with the largest likelihood.

Note that this approach naturally extends to more complex building
models, for example, if the roofs of the buildings are also present in
the model. The log-likelihood then becomes:

sp = ∑
c∈CM

Proj(Mc, p)

∑
i

log pi(c)+
¬Proj(M, p)

∑
i

log

(

1− ∑
c∈CM

pi(c)

)

,

(12)
where CM is a subset of C and made of the different classes that can
appear in the buildings model, and Proj(Mc, p) is the projection of the
components of the buildings model for class c.

Much more sophisticated methods could be used [35, 10], but we
have empirically verified that the camera translation is reliably com-
puted despite the relatively limited quality of our segmentation.

6 SLAM INITIALIZATION USING DEPTH FROM 2.5D MODELS

Recent SLAM systems for indoor use often rely on depth sensors for
superior robustness and instant initialization. These sensors are not
available outdoors, but we can use the 2.5D map to generate and use
synthetic depth images as a cue for mapping and tracking.

We use a keyframe-based SLAM system, similar to PTAM [16].
The tracking and the mapping thread run asynchronously and period-
ically exchange keyframe and map information. Our localization ap-
proach registers the first keyframe to the 2.5D map. Using this pose es-
timate, we render a polygonal model using the graphics hardware and
retrieve the depth buffer to assign depth to those map points, which
correspond to observed façades. We arrive at a full 3D map already
for the first keyframe. Previous approaches required establishing a
baseline of several meters between the first two keyframes for initial
triangulation [38].

As the SLAM system acquires more keyframes, the procedure is
repeated, and tracked map points collect multiple observations for real
triangulation once the baseline between keyframes is sufficient. Fig. 7
shows two keyframes of a test sequence and the corresponding depth
images.

139

139

139

121

121

121
139

139

139

139

139

139

121
121

121

−40 −30 −20 −10 0 10 20

−70

−60

−50

−40

−30

−20
4546

47

4849
50

128

51

129

127

130

126

52

131

53

125

132

139

121

147

140

138122

120148

146110

133
134

137

123

136

135

124

119

145

149
150

152
151

114

114127

126

130

130

1303

3

3

114

114

126

126

126

126

130

130 4

4

4

4

4

−40 −30 −20 −10 0 10 20

−35

−30

−25

−20

−15

−10

−5

0

5

10
23
24
25
26
27
28

37

29
30

36

31
3233

35

34

53

63

64

65

54

62

666768

55

697071

61

56

727374

60

75
76
77

57

59

78

58

79
80
81
82
83
84

144

114

126

143115

113127

125131

142

112

120

124

121

123

122

176

176

176

237

237

235

235

235

235

234

234

176

176
236

236

234

234

234

98

98

98

98

232

232
232

237

237

237

237

235

235

235

235

234

234236

236

234

234

234

98

98

98

98

232

232
232

187

187

187

35

162

162

161

161

161

36

36

162

162

162

164

164

−40 −30 −20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

25

30

114

115

48

237

195

49

236

5051

52

53

235234

233

176

232

99231

98

177

212211178

210179

213

24

24

24

16

16

1684

84

24

24

24

24

24
24

24

24

16

16

1684

84

84

84 24

24

24

24

24

74

−30 −20 −10 0 10 20 30

−30

−25

−20

−15

−10

−5

0

5

10

15

20

103

77

76

108

102

23

7822

79

21

24

6

20

8317

16

92112

15

8218

8119

7

9

91

80

8
57

84

101

11

8512

1458

100

13

11498

99

39

113

4041

38

123

42

102

102

102

102

101
144

144

101

101 100 100100

100

100

100 116

116

116

116

144

144

144

102

102

102

102

101
144

144

101

101 100

100

100

100

100

100
100

100

100 116

116

116

116
144

144

144

−50 −40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

13387

204

131

25

137

130

121

129

122

128127
126

123
125124

26136

134

203

135

202

219

218

217

216

215

60

61

5359

101

102

58

575655

62

54

100

103143

6369

68
67

97

96

142

98

141

11799

70

118119

116

120

4671

112
113

21

21

25

25

25

25

21
24

24
5

5

5

5

8

8

7

7

7 6

6

23

23

23

24

243

3

10

10

10
9

9

9

10

10

10

3

3

3

13

13

13

13

14

14

14

20

20

20

21

21

21
25

25

25

25

21

21
24

24
20

20
23

23

23

24

24

38

20

20

38

38

38

38

20

20

20 41

41

41

42

42

42

46

4645

16

16

16

16

17

17

46

46

46

−40 −30 −20 −10 0 10 20 30

−60

−50

−40

−30

−20

−10
16

41

17

4039

18

29

19

28

38

55

27

36

54

37

20

53

26

23

22

21

24

25

16

16

17

37

37

37

11

11

11

167

167

167

167

167

167

167

16

16

16

8282

8282
16

16

16

17

17

1718

18

82

82

37

37

37

18

18

18

37

37

37

37

37

150

151

151

151

151

151

16

16

16

16

16121

120

120

120

120

−30 −20 −10 0 10 20 30

−50

−40

−30

−20

−10

0

62

63

120

106

64

104

105

15121

16

14
13

17

3619

83

18

101

82

84

100

73

74

81

134

75

135

76

77

133131

78

88

79

89

80

132

90

87

128

91

86

93
92

85

74

74

74

74

74

74

121

121

121

75

75

104

104

104

103

103

103

−40 −30 −20 −10 0 10

−30

−25

−20

−15

−10

−5

0

5

10

118

102

119

77

78
79

12076

80

103

5

8173

75

6789

74

140

44

41

43

42

139

47

48

46

155

15449
156115

50

157

46

46

46

6060

60

60

52

52

60

6052

52

52

52

52

52

52

52

52

52

52

5256

56

102

102

102

102

46

46
47

47

47

101

101

101

46

46

46

60

60
100

100

60

60

60

60

52

52

60

6052

52

52

−10 0 10 20 30 40 50 60 70

−20

−10

0

10

20

30

40

45

4

6
5

742

8

9

36

37

47

101
102

100

103104

9998

48

97

95
96

46

94

38

93

49

92
91

50

81

80

6151

82

39

62
83

60

67

63

90

68

66

69

29

30

28

53

70

64

71

757476

77

123
65

39

39

39

40

40

40

39

39

39

39

39

36

36

36

35

35

35

46

46

4

4

4

39

39

39

40

40

40

44

44

44

39

39

39

39

39

36

36

36
35

3546

46

46

−30 −20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

25
11

24

10

1

9

2

8

56

4

7

3

40

44

41

43

25

42

39

2627

38

28

37

145

145

144
144

144144
144

144

170169

131

131

144
144

144144
144

144

144

132

143

143

143
143

143

143

143

143

143143

143

170

143

143

143

169
169

169

169

169

169

169

169

169

−20 −10 0 10 20 30

−25

−20

−15

−10

−5

0

5

10

15

106

157

66

158160

194

161

65

162

73

70

163

72

159

71

164

62

165

61

63

166

128

168

167
188

189

60

64

187

90

91

89

118

92117

93
127

186

131

129

126

125

124

119

130145

123122

146

48120

47121

144

46

147

148

49

149

132

133
134135

50

51

85

8452

143

28

2828

28

28

94

94

94

94

93

15

15

15

15

3

3
94

94

94

94

93

15

15

15

15

3

3
93

93

93

93

93

93

93
61

61

61 61

61

−50 −40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

40

60

156

158

57

61

565591

9262

155

159

90

160
161162

96

89

80

88

81

87

163

86
85

82
8483

295

93

154

164
110

94

153

170

169

168

167

109108

166

165

106
107

27

28

68

69

29

67

70
102

3036

64

63

101

65

100

6676

29

29

28

28

26

26

29

29

30

30

31

3133

33

43

43

33

3343

43
44

44

45

45

4547

47

44

44

4443

4347

47

47

4756

56

56

47

47

47

55

56

56

29

29

29

28

28

28

26

26

26

29

29

29

30

30

30

31

31

3133

33

73

73

7374

11

11

11

11

12

12

1213

13

1373

73

73

43

43

33

3343

4344

44

45

45

4547

47

44

44

4443

4347

47

47

47
56

47

47

55

56

56

−40 −30 −20 −10 0 10 20 30 40 50 60

−40

−30

−20

−10

0

10

20

30

40

131

134

141

144
143

150

149

142

151

148

152

103

153154155
156

102

146

145

101

29
30

28
27

31
32

26

74

33

73

7525

13

43

23

42

22
24

17

44

21

18

76

15

20

7214

19

16

62

45

63

41

46

64

68
69

67

70

40

71

65

47

66

1

159

2

158

3

48

4

16039

5

55

36

37

35
34

165

157

38

166

161

56

167

164

162

6

5452
53

51

168

83

50

85
84

86

82

49

87
88

81

57

89

80

163

58

121

59

61

79

120

78

117

90

122

118

169

119

60

77

116

123124
125

10592

76

76

76

71

71

71

72

75

75

75

71

71

71

72

72

104

104

104

103

103

103

76

76

76

76

71

71

71

72

75

75

75

71

71

71

72

72

104

104

104

103

103

103

76

76

−10 0 10 20 30 40 50 60

−70

−60

−50

−40

−30

−20
85

82

84

66

83

80

91

67

9089

68

79

69

78

88

105

77

86

104

87

70

103

76

73

72

71

74
75

139

139

139

139

139

139

121

121

139

139

139
121

121

121148

148 147

147

−40 −30 −20 −10 0 10 20

−70

−60

−50

−40

−30

−20

−10

46

47

4849
50

128

56

51

127

126

55

52

54

53

125

132

139

121

147

109

140

138122

148120

146110

133
134

137

123

136

135

124

119

145

107

149
150

152
151

217
217

101

101

101

93

217

217

217

101

101

101

101

93

217

217

217

217

217

152

151

151

151

165

164

164

164

164

164

190185

189

189

189

186

186

186185

−35 −30 −25 −20 −15 −10 −5 0 5 10 15

0

5

10

15

20

25

30

35

87

52

94

126
95

53

96

97

54

93

62

98

61

60

69

101

24

2575

103

76

102

106

107

40

109

109

109139

139

109

109

109

109

118

117

117139

139

139

−30 −20 −10 0 10 20

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

46

47

48

58

49

57

50

56

51

55

52

54

53

121

139

109

140120

138110

108118

119

137

107

111

126

126

114

114

114

144

144

126

126

114

114

114

144

144

−40 −30 −20 −10 0 10

−35

−30

−25

−20

−15

−10

−5

0

5

54

62

666768697071

61

7273
74

60

75
76
77

57

59

78

58

79
80
81
82

144

114

126

115143

113127

142

112

120

124

121

123

122

79

7911

11

11

139

−20 −15 −10 −5 0 5 10 15 20 25

−30

−25

−20

−15

−10

−5

0

5

31

26

3619

30

42

29

28

10541

27

104

10640

157107

15439

37

156
99

38

155

79

82

11

7812

139

77

14010

9

141

80

80

11

80

80

84

84

84

65

65

65

65

65

80

80

11

80

80

84

84

−20 −10 0 10 20 30

−25

−20

−15

−10

−5

0

5

10

15

46

21
22

32

45

23

14

24

44

13

43

25

31

26

3619

30

42

29

28

18

10641

27

105

10740

158108

15539

37

157
100

38

156

80

8381

11

7912

140

78

14110

9

142

90

24

24

24
2525

25

2526
24

24

24

16

16 16

16

16

24

24

2425

25

25

34

34

34

34

26

26

11

11

11

11

24

24

24

16

1616

16

−30 −20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

25

30

50

454488

8951

152

156157
158
159

84

160

90

151

161
107

150

167

166

165

164

106105

163

162

103
104

25

65

66

26

100

64

67
99

63 132

119

119

119

119

119

119

119

119

119

150

150

150

58

58

58

5959

59

60

58

5858

5858

5858

58

58

−35 −30 −25 −20 −15 −10 −5 0 5 10 15

−20

−15

−10

−5

0

5

10

15

104

162

68

163

159

69

164

49

165

48

50

166

116

168

167

188

47

51

187

88

89

87

106

90105

91
115

119

117

113

112

107

133118

111110

134

35108

34109

132

135

136

36

137

120

121
122

Fig. 8: Results of our approach on test images. For each triplet of images: Left: Model reprojection into the image using the initial sensor pose.
Middle: Model reprojection into the image using the final estimated pose. Right: Map view, sensor pose (in blue) and the corrected pose (in
green).

135131 138138

30 40 50 60 70 80 90 100

−60

−50

−40

−30

−20

−10

0

140143

137

139

138

132

133

131136

134

135

42

112

111

109

109

109

147

147

121

121

121

148147

147
109

109

109

109

118

117

117

147

147

−40 −30 −20 −10 0 10 20

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

47

4849

57

50

56

51

55

52

54

53

121

147

109

122138

148120

146110

108118

123
124

119

145

107

149

150

152

151

144

143
143

126

126

143

126126
126126126

126

125

125

125

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

51

35

5049
48

20

15

47
46

2122

32

81

45

23

14

24

44

13

43

25

85

82

15284

11083

31

26

3619

30

42

29

97

151

98

28

99

10141

27

153109

100

157

10240

156

108

155

107

161103

154

106

90
91

92

105

89

104

93

88

94

15839

87

37

116
115
114

16095

38

159

86

117

75

96

7876

11

118

7412

143

73

14410

142127

126

9

125

128147

146148

124

145

123

129150

122

149

130

131

133

52

64

53

132

54

61

60

103

103

103
118

23

23

197

197

197

197
145

145

145

208

208

118

118

144

145

145

227

227

227

161

161

161

161

160

160

8

816

16

16

15

15

15

8

8
16

16

101

101

103

103

103118

197

197

197

145

145

145

118

144

145

145

227

227

227

161

161

161

161

160

160

−40 −30 −20 −10 0 10 20 30 40 50

−30

−20

−10

0

10

20

30

40

212213214

211

206

20

21021

1942

41

18

207

4326

20922

227

25229

145

208

24230
44232

161

226

144

23

162

160

231

198

45

197

46

143184

47
48

118

49

142185163

103

159199

102

50
51

101

52

119201

178164

100

104117

165
147

39

177

9940

148

158

152

149
151

113

153

150

200

154

192

114

112111

98

116

193157

97

155

110

115

109

27

96

105

194156

28

182

130

29

108

195

131

191120

10630

196

107

121133

38

31129

132

134

181188

135136

12832

190
122

33
3435

123

37

36

189

127

124

Fig. 9: Images with the largest pose errors. For each triplet of images: Left: Model reprojection into the image using the initial sensor pose.
Middle: Model reprojection into the image using the final estimated pose. Right: Map view, sensor pose (in blue) and the corrected pose (in
green). Even for these images, the model reprojection tends to be close to the expected position.

Frame #1 Frame #125 Frame #261 Frame #750 Frame #1500 Frame #2250

Fig. 10: Comparison of previous work and our approach, together with the estimated camera trajectories. Top row: Results from previous
work [38]. Due to the required baseline between keyframes, the system initializes after about 12 seconds. Middle row: Results from our
approach. Bottom row: Trajectories estimated by previous work (blue) and our approach (red). Note that the trajectory estimated by our new
approach is considerably smoother.

Fig. 11: Top row: Annotation results from a rotation-only sequence. Bottom row: Expanding SLAM map, while the user rotates a handheld
device. The map nicely resembles the structure of the surrounding buildings.

7 EXPERIMENTAL RESULTS

In this section, we first describe the dataset we built to evaluate our
localization approach, and then report and discuss the results of the
evaluation. Finally, we demonstrate its application to globally-aligned
instant urban outdoor SLAM.

7.1 Dataset

To demonstrate the applicability of our approach, we captured a
dataset of 32 images with an Apple iPad Air in urban and suburban
environments of Graz, Austria 5.

5We will make our dataset publicly available, including 32 images, sensor

and ground truth poses, 2D+height maps.

The images were captured without any special consideration for
satellite shadowing or surrounding metallic structures. As a con-
sequence, the accuracy of the pose estimated with the sensors only
ranges from very accurate, about 0.4 m position and 2◦ rotation error,
to very poor, up to 16.5 m position and about 30◦ rotation error. Since
altitude estimates from sensors tend to be very poor, we overrode these
estimates of the poses predicted by the sensors with a default value of
1.6 m. For each test image, we calculated a ground truth pose by man-
ually matching 2D image locations with 3D points from the maps.

We retrieved 2D maps of the surroundings from OpenStreetMap
and extruded them with a coarse estimate of the height of the building
façades. OpenStreetMap data consists of oriented line strips, which we
converted into a triangle mesh including face normals. Each building

Scene ID
2 26 16 25 24 28 30 17 10 14 19 20 27 21 22 7 12 6 1 3 13 32 31 4 29 15 8 9 11 5

A
n

g
le

 d
e

lt
a

 w
rt

 G
T

 (
in

 d
e

g
)

0

5

10

15

20

25

30

Sensor

Our Solution

Scene ID
4 2 11 17 28 24 16 9 26 22 25 14 30 19 8 12 27 20 15 21 32 5 6 10 1 29 3 31 7 13

P
o

s
it

io
n

 d
e

lt
a

 w
rt

 G
T

 (
in

 m
e

te
r)

0

2

4

6

8

10

12

14

16

18

Sensor

Our solution

Fig. 12: Pose estimates accuracy. Top: Orientation, and Bottom:
Translation. We ranked the images from the one with the largest er-
ror after correction to the one with the smallest error. Our method
significantly improves the accuracy of the orientation and translation
estimates.

façade plane is modeled as 2D quad with four vertices, two ground
plane vertices and two roof vertices. The heights of the vertices were
taken from aerial laser scan data. All vertical building outlines were
aligned with the global vertical up-vector.

7.2 Orientation and Translation accuracy

Fig. 12, top, plots the angular error of the camera pose predicted by
the sensors and after correction with our method. The error is calcu-
lated as the angular difference between the estimated rotation and the
ground-truth rotation in angle-axis representation. We ranked the im-
ages from the one with the largest error after correction to the one with
the smallest error. The sensor error can become as large as 30◦. With
our method, all our orientation estimates have an angle error below 5◦,
with the exception of a single outlier image which contains very few
horizontal lines. 90.6% of the estimates are below 3◦, 84.4% below 2◦

and 50% below 1◦ of angular error w.r.t. the ground truth rotation.
Fig. 12, bottom, gives the results of our translation estimation

method. As for the rotation, we ranked the images from the one with
the largest error after correction to the one with the smallest error. The
sensor errors range from about 0.4 m to about 16.5 m, with an average
error of about 8 m. Our method significantly decreases the transla-
tion error in most of the cases. The worst results are due to adjacent
buildings, with edges that cannot be extracted correctly. Overall, our
method is able to considerably improve the position estimates from the
sensors, with the pose estimates for 87.5% of the images being below
4 m, 68.8% below 2 m and 59.4% below 1 m of error w.r.t. the ground
truth position.

7.3 Visual inspection

Fig. 8 presents the final results of our algorithm for a wide variety
of test images, showing the reprojection of the model using both the
sensor pose and the pose retrieved from our approach. After pose esti-
mation, the outlines of the models nicely fit the building outlines, even
for very challenging scenes with many façades visible and a consid-
erable rotation and position error in the sensor estimate. The amount
of correction can be assessed from the map view, as both the rotation
and translation undergo a significant correction during the application
of our method.

Fig. 9 shows the images with the largest pose errors. In the upper
left scene the algorithm is fooled by a street lamp, in the upper right

scenario the classification result is bad around the window areas, fi-
nally resulting in a wrong estimate of the scene distance. In the lower
left scenario, a model of the background building is missing. In the
lower right case, the classification result and the model line selection
is bad, causing the translation estimation to fail.

7.4 Unconstrained SLAM using depth images

We evaluated the integration of the single image geo-localization for
initializing our SLAM system on multiple sequences, featuring both
rotation-only and general camera motion.

Our new approach has noticeable benefits over conventional SLAM
in urban outdoor environments, as it provides accurate 6DOF lo-
calization right from the start. Usability is considerably improved,
in particular for panoramic camera motion, which users can hardly
avoid [13, 24]. A direct comparison to Ventura et al. [38] with frames
of a SLAM sequence is given in Fig. 10. In the previous approach,
it takes more than 12 seconds for the system to successfully initial-
ize, while our approach provides a globally accurate 6DOF pose for
SLAM starting from the first captured image. Note that the estimated
camera trajectory is considerably smoother, because the 3D locations
of feature points are constrained by projecting them onto the façades.

Fig. 11 shows results of augmentations for a rotation-only sequence
together with the evolving SLAM map over time as the user rotates the
device. Note that the planar labels nicely align with the real building
façades, and the recovered 3D SLAM maps resemble the surrounding
building structure quite accurately.

8 DISCUSSION

In the following, we critically discuss our results with respect to the
current status of our framework and potential improvements.

8.1 Localization method

Our localization method gives good results on a large number of di-
verse scenes. The method is very versatile since it only sets one strict
requirement onto an input image: the visibility of two vertical building
façade outlines – meaning that a façade may also be truncated towards
the sky and/or towards the ground plane. Furthermore, we can cope
with considerable sensor pose errors, potentially as much as 45deg
rotation offset and up to 40 m of position offset.

We identified the main reasons for a complete failure of our method
to be cases where the pose prior from sensors is unusable – either, be-
cause it is inside a building or because it is misplaced in an a incorrect
street segment, where the correct building façades cannot be observed.
A simple improvement for the former case is to move the pose prior to
the nearest street location, but this heuristic is not guaranteed to solve
the problem in all cases.

The main reason for errors in our orientation estimation is an in-
sufficient number of suitable vertical or horizontal lines found in an
image to allow for robust vanishing point estimation. Tweaking the
line detection parameters might partially overcome this problem for
certain scenes.

Errors in our translation estimation are mainly due to the inability of
our algorithm to detect the correct façade outlines for various reasons,
e.g. because the orientation estimate is bad, adjacent façades look too
similar, the façade texture contains too much clutter or the window
detector does not properly filter out windows. Similarly, the scoring
function might select the wrong hypothesis, because of a bad semantic
segmentation result or a bad reprojection result owed to insufficient
model detail. All individual steps might undergo additional tuning to
improve the overall performance of the approach.

Currently, the pose computation is implemented as unoptimized,
single-threaded Matlab code and requires about 30 seconds per frame
on a single CPU core on a 2011 Intel 2.5 GHz i5 Macbook Pro for a
640×360 image. The execution time for the individual major parts of
the algorithm are given in Table 1. However, each of these steps have
been demonstrated at much higher speed with optimized code and a
GPU. For example, most of the time for the window detection step is
used for image warping. Using the GPU would provide a significant
speedup.

Part Algorithm Approx. Time [s]

(i) Window detection 10

(ii) Segmentation 14

(iii) Translation estimation 6

Table 1: Timings of major parts of our unoptimized localization pro-
cedure running mainly in Matlab on a single CPU core on a 2011 Intel
2.5 GHz i5 Macbook Pro for a 640×360 image

8.2 SLAM

The SLAM system is very robust, runs in real-time on current mobile
devices and works sufficiently well even under difficult lighting condi-
tions outdoors. Currently, the system uses a single localization result
to initialize the 3D map and to maintain it over time through rendering
new keyframes and extending the map with new 3D points. However,
even a small rotational error (< 1 degree) or a position error below
25cm accumulated through drift in the system over time might create
a noticeable offset in the visualization of annotations in the distance.
Therefore, the use of multiple localization results over time and the
inclusion of more advanced methods in the iterative optimization of
the system (i.e. bundle adjustment) would improve the overall system
robustness and accuracy considerably, and is a topic of future work.

8.3 AR content and models

Our entire approach is designed to take only the minimum information
into account one might hope for to be available anywhere globally: a
2D map and some building height information. Naturally, with more
detailed and accurate models, even better results could be achieved.
Also note Eq. (12), where we mentioned the natural extension of our
approach in terms of semantic information in the segmentation stage.

In AR, this raises an important point where synergies can be ex-
ploited: as there needs to be annotated content to be visualized, this
information can in turn feedback into the localization approach to im-
prove localization performance. For example, using the AR annota-
tions of windows or doors can be used in connection to our window
detector to add another semantic class to the scoring function. We
therefore argue that certain AR content might itself be used to improve
localization performance within our framework, although this content
is largely missing at this point in time.

9 CONCLUSION

We have presented a novel approach for accurate global 6DOF pose
localization and tracking that relies only on components readily avail-
able for urban outdoor AR: mobile sensors, narrow field-of-view im-
ages and open-source 2.5D maps provide a pose exploitable by SLAM
applications for initialization. Our approach therefore offers new op-
portunities for making AR practical in outdoor urban environments.

REFERENCES

[1] C. Arth, D. Wagner, M. Klopschitz, A. Irschara, and D. Schmalstieg.

Wide Area Loc. on Mobile Phones. In ISMAR, pages 73–82, 2009.

[2] G. Baatz, O. Saurer, K. Köser, and M. Pollefeys. Large Scale Visual

Geo-Localization of Images in Mountainous Terrain. In ECCV, 2012.

[3] G. Baatz, O. Saurer, K. Köser, and M. Pollefeys. Leveraging Topographic

Maps for Image to Terrain Alignment. 3DPVT, pages 487–492, 2012.

[4] M. Bansal and K. Daniilidis. Geometric Urban Geo-Localization. In

CVPR, 2014.

[5] T. J. Cham, A. Ciptadi, W. C. Tan, M. T. Pham, and L. T. Chia. Estimating

camera pose from a single urban ground-view omnidirectional image and

a 2D building outline map. CVPR, pages 366–373, 2010.

[6] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector ma-

chines. ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27, 2011.

[7] H. Chu, A. Gallagher, and T. Chen. GPS Refinement and Camera Orien-

tation Estimation from a Single Image and a 2D Map. In CVPR, 2014.

[8] P. David and S. Ho. Orientation descriptors for localization in urban en-

vironments. IROS, pages 494–501, 2011.

[9] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In

BMVC, 2009.

[10] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning Hierarchical

Features for Scene Labeling. PAMI, 2013.

[11] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster. A Touring Machine:

Prototyping 3D Mobile Augmented Reality Systems for Exploring the

Urban Environment. Pers. and Ubiquitous Comp., 1(4):208–217, 1997.

[12] H. Fuchs, G. D. Abram, and E. D. Grant. Near real-time shaded display

of rigid objects. SIGGRAPH Comput. Graph., 17(3):65–72, July 1983.

[13] S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, and T. Hollerer. Live track.

and mapp. from both gen. and rot.-only camera motion. In ISMAR, 2012.

[14] V. Jain and E. Learned-Miller. Online domain adaptation of a pre-trained

cascade of classifiers. In CVPR, pages 577–584, June 2011.

[15] B. Jiang, U. Neumann, and S. You. A Robust Hybrid Tracking System

for Outdoor Augmented Reality. In VR, 2004.

[16] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR

Workspaces. In ISMAR, November 2007.

[17] J. Krolewski and P. Gawrysiak. The Mobile Personal Augmented Reality

Navigation System. In Man-Machine Interactions 2, volume 103, pages

105–113. Springer Berlin Heidelberg, 2011.

[18] Z. Kukelova, M. Bujnak, and T. Pajdla. Closed-Form Solutions to Min.

Absolute Pose Problems with Known Vertical Direction. In ACCV, 2011.

[19] D. Kurz and S. Benhimane. Gravity-Aware Handheld Augmented Real-

ity. In ISMAR, 2010.

[20] A. Mastin, J. Kepner, and J. Fisher. Automatic registration of LIDAR and

optical images of urban scenes. In CVPR WS, pages 2639–2646, 2009.

[21] B. C. Matei, N. Vander Valk, Z. Zhu, H. Cheng, and H. S. Sawhney.

Image to LIDAR matching for geotagging in urban environments. In

Proc. of IEEE Workshop on App. of Comp. Vision, pages 413–420, 2013.

[22] N. Meierhold and A. Schmich. Referencing of images to laser scanner

data using lin. feat. extracted from digital images and range images. Int.

Arch. of Photogrammetry and Remote Sensing, XXXVIII:164–170, 2009.

[23] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt. Scalable 6-

DOF Localization on Mobile Devices. In ECCV, 2014.

[24] C. Pirchheim, D. Schmalstieg, and G. Reitmayr. Handling pure camera

rotation in keyframe-based slam. In ISMAR, 2013.

[25] S. Ramalingam, S. Bouaziz, and P. Sturm. Pose Estimation Using Both

Points and Lines for Geo-Localization. In ICRA, 2011.

[26] G. Reitmayr and T. W. Drummond. Going Out: Robust Model-Based

Tracking for Outdoor AR. In ISMAR, 2006.

[27] G. Reitmayr and T. W. Drummond. Initialisation for visual tracking in

urban environments. In ISMAR, 2007.

[28] D. Robertson and R. Cipolla. An Image-Based System for Urban Navi-

gation. In BMVC, pages 1–10, 2004.

[29] C. Rother. A New Approach to Vanishing Point Detection in Architec-

tural Environments. Image and Vision Comp., 20(9-10):647–655, 2002.

[30] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: A

datab. and web-based tool for image ann. IJCV, 77(1-3):157–173, 2008.

[31] T. Sattler, B. Leibe, and L. Kobbelt. Improving Image-Based Localization

by Active Correspondence Search. In ECCV, 2012.

[32] G. Schindler, M. Brown, and R. Szeliski. City-Scale Location Recogni-

tion. In CVPR, 2007.

[33] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press, Cam-

bridge, MA, USA, 2001.

[34] H. Shao, T. Svoboda, and L. V. Gool. Zubud zurich buildings database

for image based recognition. Technical Report 260, 2003.

[35] J. Shotton, M. Johnson, and R. Cipolla. Semantic Texton Forests for

Image Categorization and Segmentation. In CVPR, 2008.

[36] A. Taneja, L. Ballan, and M. Pollefeys. Reg. of Spherical Panoramic Im.

with Cadastral 3D Models. 3DPVT, pages 479–486, Oct. 2012.

[37] G. Vaca-Castano, A. R. Zamir, and M. Shah. City Scale Geo-Spatial

Trajectory Estimation of a Moving Camera. In CVPR, 2012.

[38] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. Global Localiza-

tion from Monocular SLAM on a Mobile Phone. In VR, 2014.

[39] P. Viola and M. Jones. Robust Real-Time Face Detection. IJCV,

57(2):137–154, 2004.

[40] R. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall. LSD: A Fast

Line Segm. Det. with a False Det. Control. PAMI, 32(4):722–732, 2010.

[41] K. Xu, A. Cheok, K. W. Chia, and S. Prince. Visual Reg. for Geographical

Labeling in Wearable Comp. In Int. Symp. on Wearable Comp., 2002.

[42] A. R. Zamir and M. Shah. Accurate Image Localization Based on Google

Maps Street View. In ECCV, 2010.

[43] P. A. Zandbergen and S. J. Barbeau. Positional Accuracy of Assisted

GPS Data from High-Sensitivity GPS-enabled Mobile Phones. Journal

of Navigation, 64:381–399, 7 2011.

	Introduction
	Related work
	Image-based localization
	Localization using untextured models
	Outdoor augmented reality tracking

	Method overview
	Orientation estimation
	Estimating the vertical axis
	Orientation in absolute coordinates

	Translation estimation
	Generating translation hypotheses
	Aligning the 2.5D map with the image

	SLAM initialization using depth from 2.5D models
	Experimental results
	Dataset
	Orientation and Translation accuracy
	Visual inspection
	Unconstrained SLAM using depth images

	Discussion
	Localization method
	SLAM
	AR content and models

	Conclusion

