
KernelBoost: Supervised Learning of

Image Features For Classification⋆

Carlos Becker (carlos.becker@epfl.ch)
http://cvlab.epfl.ch/~becker

Roberto Rigamonti (roberto.rigamonti@epfl.ch)
http://cvlab.epfl.ch/~rigamont

Vincent Lepetit (vincent.lepetit@epfl.ch)
http://cvlab.epfl.ch/~lepetit

Pascal Fua (pascal.fua@epfl.ch)
http://cvlab.epfl.ch/~fua

School of Computer and Communication Sciences
Swiss Federal Institute of Technology, Lausanne (EPFL)

Technical Report

February 04, 2013

⋆ This work has been supported in part by the Swiss National Science Foundation.

http://cvlab.epfl.ch/~becker
http://cvlab.epfl.ch/~rigamont
http://cvlab.epfl.ch/~lepetit
http://cvlab.epfl.ch/~fua


Abstract. We propose a fully-supervised approach to training classi-
fiers that automatically learn features directly from image data. This
drops the dependency on hand-designed filters and features, which is
generally a trial-and-error process and often yields far-from-optimal re-
sults. Our approach relies on the Gradient Boosting framework, learning
discriminative features at each stage in the form of convolutional filters.
It depends on just few easy-to-tune parameters, it is simple and general,
and we show it outperforms state-of-the-art methods in tasks ranging
from pixel classification in very different types of images to object detec-
tion.

1 Introduction

Many of the best Computer Vision algorithms proposed to solve problems rang-
ing from image classification to object detection rely on two key ingredients: a
set of trained or hand-designed features, and a classifier trained on these fea-
tures. While this combination has produced strong results in many different
cases, there is no guarantee that the features perfectly meet the requirements of
the classifier that uses them. This has usually been addressed by parametrizing
the feature extractors and allowing the classifier to choose the best parameters.
However, this can only work if the features have been chosen appropriately, so
suitable feature types must be sought, often by trial-and-error.

In this paper, we propose an approach to learning the features and building
the classifier simultaneously, thus guaranteeing that the best possible features
are used at every stage of the computation. We will show that this leads to
increased performance with respect to state-of-the-art approaches for a broad
range of applications, while at the same time relieving the human designer from
the need to select specific features and their parametrization.

To this end, we introduce a novel, fully-discriminative method that fits nat-
urally into the Gradient Boosting framework [9,32], but could also be incorpo-
rated, for instance, in Random Forests [3]. Our main contribution is an original
approach to learning both the weak learners and the boosting weights at the
same time, so that the weak classifiers we use at every boosting stage truly are
as good as they can be.

More specifically, our weak classifiers rely on convolutional filters whose ker-
nels are learned during boosting. Arguably, this could be described as learning
the classifier parameters as it is often done by boosting algorithms. However,
because the parameter space is so large, a standard boosting approach, such as
a grid search, would be impractical. Instead, we compute the kernels in closed
form, which allows us to handle the enormous size of the parameter space. Convo-
lutional Neural Networks [15] and Deep Belief Networks (DBNs) [10,16,22] also
simultaneously learn convolutional features and classification weights. DBNs in
particular do so in an unsupervised way and only use discriminative information
for fine-tuning. This may not be ideal since it has recently been shown that
fully-supervised versions of these approaches have a large unexploited potential



and can significantly outperform competing methods in several difficult cases [5].
However, the neural network architecture adopted in [5] requires specialized set-
up and careful design. Furthermore, it is computationally expensive to train,
even on Parallel GPUs. By contrast, our approach is much less demanding, can
be run on ordinary desktop machines, and involves just few, easily-tunable pa-
rameters.

Our contribution is therefore a new, fully-supervised, practical approach to
jointly learning the filters our weak learners rely on and the weights and pa-
rameters of the classifier that uses them. As a result, optimized features are
used at each stage of the iterative learning procedure. We will show that clas-
sifiers trained in this manner outperform the state-of-the-art on medical image
segmentation, boundary detection, and car detection, thus demonstrating the
versatility of our approach.

2 Related Work

Most boosting-based approaches build a classifier by iteratively selecting fea-
tures from a predefined set. Common features include Haar wavelets [28] and
Local Binary Patterns [2], which are very efficient to compute. This efficiency is
important at training time to be able to explore a large amount of such features
at every boosting iteration. Features can also be image gradients, integrated over
rectangular regions [17] or predefined bins [6,33], which have shown to be more
discriminative for tasks such as object detection.

Selecting features also involves sampling the space of parameters required
to compute them, either randomly or at regular intervals. This is only possible
because these features are designed to have relatively few such parameters, which
also limits their discriminative power. For example, they are typically computed
over rectangular blocks, possibly rotated [18].

More general features in the form of linear projections applied to the input
image are introduced in [29]. The space of projections is too large to be sam-
pled, but they can be instead found in closed-form using discriminant analysis
techniques [9]. Unfortunately, this approach is both slow and prone to over-
fitting, a common issue in discriminant analysis. This is accentuated in tasks
such as object detection, where objects span over large areas, increasing pro-
jection dimensionality. In our approach we also compute our features in closed
form, albeit using a different technique we will show to be more effective. A pri-
mary difference is that we combine random sampling and closed-form estimation
of convolutional linear filters over small parts of the images, thereby avoiding
overfitting and reducing computational complexity. Moreover, we introduce a
regularization to guarantee smooth filters. As shown in the results section, this
improves generalization.

Convolutional Neural Networks (CNNs) represent another approach to learn-
ing features in the form of linear convolutional filters. CNNs are multi-layer net-
works trained in a supervised way [15]. Some layers are hardcoded to perform
pooling operations while the others are automatically optimized and can be in-
terpreted as linear convolutional filters. Even though CNNs can yield very strong



results, the optimization problem is enormous and the optimizer is likely to get
trapped in a local minima. In some cases, this can be alleviated by hardcoding
the first layer to extract image gradients [20], but this is not a general solution.

The difficulty of optimizing deep networks in a supervised and discriminative
way has spurred the emergence of unsupervised and generative approaches to
feature learning. For example, Restricted Boltzmann Machines [10], which can be
used to extract features from images, are trained by seeking to approximate the
distribution of natural images. More recent approaches [19,12,31,22], motivated
by the work of Olshausen and Field [21], seek a representation of the input
images that is constrained to be sparse, and from which the input images can
be later reconstructed. Such approaches can then be used to efficiently build
deep architectures by training each layer, one after the other, to reconstruct the
output of the previous layer [10].

However, it was recently shown that Deep Neural Networks (DNNs) could
in fact be trained in a supervised way by using GPUs [5], even when employing
broader layers than traditional Convolutional Networks. Because the algorithm
still has to contend with the many local minima of the objective function, several
DNNs are trained independently and averaged to mitigate this problem. Our own
approach is also supervised, but we rely on a much simpler architecture that can
be trained on an ordinary computer. Moreover, our method relies on just few
easily-tunable parameters, as demonstrated in the results section.

3 Gradient Boosting

Since our approach relies on the Gradient Boosting framework, we outline here
its main characteristics. Our contribution is presented in the next section.

Gradient Boosting is a an approach to approximate a function ϕ∗ : Rn → R

by a function ϕ of the form

ϕ(x) =

M
∑

j=1

αj hj(x) , (1)

where the αj ∈ R are real-valued weights, hj : Rn → R are weak learners, and
x ∈ R

n is the input vector.
Gradient Boosting can be seen as a generalization of AdaBoost. The latter

is designed to minimize the exponential loss with stump weak learners hj :
R

n → {+1,−1}, while Gradient Boosting can make use of real-valued weak
learners and is able to minimize other loss functions [9]. Gradient Boosting has
shown significant performance improvements in many classification problems
with respect to classic AdaBoost [4].

Given training samples {(xi, yi)}i=1,..,N , where xi ∈ R
n and yi = ϕ∗(xi),

ϕ(·) is constructed in a greedy manner by iteratively selecting weak learners

and their weights to minimize a loss function L =
∑N

i=1 L(yi, ϕ(xi)). In our
work we use a formulation based on a quadratic approximation of the gradient
descent direction in function space [32]. The corresponding algorithm is given in
Alg. 1 and can be employed to minimize any twice-differentiable loss function. At



Algorithm 1 Gradient Boosting with Quadratic Approximation [32]

Input: Training samples and labels {(xi, yi)}i=1,..,N

Number of iterations M
Shrinkage factor 0 < γ ≤ 1

1: Set ϕ0(·) = 0

2: for j = 1 to M do

3: Let wj
i = ∂2L(yi,φ)

∂φ2

∣

∣

∣

∣

φ=ϕj−1(xi)

and

r
j
i = − 1

w
j

i

∂L(yi,φ)
∂φ

∣

∣

∣

∣

φ=ϕj−1(xi)

4: Find weak learner

hj(·) = argmin
h(·)

N
∑

i=1

w
j
i

(

h(xi)− r
j
i

)2

5: Find αj through line search

αj = argmin
α

N
∑

i=1

L
(

yi, ϕj−1(xi) + α hj(xi)
)

6: Let ϕj(·) = ϕj−1(·) + γ αj hj(·)

7: end for

8: return ϕM (·)

each iteration j, Gradient Boost seeks for a weak learner to regress the gradient
descent direction r

j
i at each sample xi, minimizing the loss function L over the

training data. Commonly used classification loss functions are the exponential
loss L(yi, ϕ(xi)) = e−yiϕ(xi) and the log loss L(yi, ϕ(xi)) = log(1 + e−2yiϕ(xi)).

The weak learners hj(·) are generally either decision stumps [28] or regres-
sion trees [9]. Regression trees are a generalization of decision stumps and usually
yield significantly better performance [9], achieving state-of-the-art in many clas-
sification problems [4]. Regression trees are typically learned in a greedy manner,
building them one split at a time starting from the root [9].

4 Proposed Approach

Assume that we are given training samples {(xi, yi)}i=1...N , where xi ∈ R
n

represents an image or a patch and yi ∈ {−1, 1} its label. Our goal is to simul-
taneously learn both the features and a function ϕ(x) : Rn → R based on these
features to predict the value of y corresponding to previously unseen x.

We first recall below how decision stumps and regression trees can be built to
optimize a Gradient Boosting classifier. We then describe how we learn relevant
features while growing the trees.



4.1 Growing Regression Trees

The standard approach to implementing the Gradient Boosting procedure sum-
marized by the pseudo-code of Alg. 1 searches through sets of weak learners that
rely on a fixed set of features, such as Haar wavelets [28]. At each iteration j, it
selects the hj(·) that minimizes

N
∑

i=1

w
j
i

(

h(xi)− r
j
i

)2

(2)

which appears as Step 4 of Alg. 1. In our approach, we simultaneously learn the
image features as well, instead of selecting them from a predefined set.

We consider here weak learners that are regression trees based on convolu-
tions of the image or image patch x with a set of learned convolution kernels Kj .
We write them as hj(x) = T (θj ,Kj ,x) where θj represents the tree parameters.
In essence, standard approaches learn only the θj , while we also learn the kernels
Kj . An example regression tree is shown in Fig. 1.

The tree learning procedure is performed one split at a time, as in [9]. A split
consists of a test function t(·) ∈ R, a threshold τ , and return values η1 and η2.
Its prediction function can be written as

s(·) =

{

η1 if t(·) < τ

η2 otherwise.
(3)

Given a test function t(·), the optimal root split at iteration j is found by
minimizing

∑

i|t(xi)<τ

w
j
i

(

r
j
i − η1

)2

+
∑

i|t(xi)≥τ

w
j
i

(

r
j
i − η2

)2

, (4)

where τ , η1, and η2 are typically found through exhaustive search [9].

In our approach, we introduce a test function that operates on the results
of xi and a kernel k, namely t(xi) = k⊤xi. Therefore, learning a split in our
framework involves searching for a kernel k, leaf values η1 and η2, and split point
τ that minimize

∑

i|k⊤xi<τ

w
j
i

(

r
j
i − η1

)2

+
∑

i|k⊤xi≥τ

w
j
i

(

r
j
i − η2

)2

. (5)

Since the space of all possible kernels is enormous, we perform this mini-
mization in stages. Our approach is described in Alg. 2: we first construct a set
of kernel candidates, then for each candidate we find the optimal τ through ex-
haustive search. For a given pair of kernel k and threshold τ , the optimal values
for η1 and η2 are then simply found as the weighted average of the r

j
i values of

the xi samples that fall on the corresponding side of the split.

This parameter selection step for η1, η2, and τ is standard [9] but the kernel
learning is not, as we consider a much more general form for the kernels k than
is usually done. We now describe this step in detail.



.

Fig. 1. (top) Individual kernel localization example and (bottom) example
two-level tree with learned kernels from the car detection dataset [1], where
η1, η2, η3, η4 are leaf values and Wi represents a sub-window extracted from x.

4.2 Learning Convolution Kernels

To make computations tractable, we restrict the kernels k to being square win-
dows within x. This remains more general than most previous methods while
reducing the dimensionality of the problem and allowing our splits to focus on
local image features.

Let us introduce an operator Wc,a(x) that returns, in vector form, the pixel
values of x within a square window centered at c with side length a, as in Fig. 1.
The criterion of Eq. (2) becomes

N
∑

i=1

w
j
i

(

k⊤Wc,a(xi)− r
j
i

)2

, (6)

where the kernel k is now restricted to a square window parametrized by c and
a. For a given pair of c and a, we can compute the optimal k in closed form



by solving the least-squares problem of Eq. (6). However, applying this method
directly tends to overfit, as seen in our experiments. We therefore introduce two
refinements:

1. Regularization. We favor smooth kernels by introducing a regularization
term into the criterion of Eq. (6), which becomes:

∑

i

w
j
i

(

k⊤
Wc,a(xi)− r

j
i

)2

+ λ
∑

(m,n)∈N

(

k(m) − k(n)
)2

, (7)

where (m,n) ∈ N are pairs of indices that correspond to neighboring pixels
and k(m) is the mth pixel of kernel k. The second term in Eq. (7) imposes a
smooth kernel, controlled by λ > 0. Note that Eq. (7) can be minimized in
closed form using least squares.

2. Splitting the training set. We randomly split the training set in two
equal-sized subsets T1 and T2. We use T1 to minimize the criterion of Eq. (7)
and find kernel k, while T2 is employed to learn the τ , η1, and η2 parameters
that minimize the criterion of Eq. (5).

As described in Alg. 2, we repeat this operation for many randomly selected
values of Wc,a(x), λ, T1, and T2 to select the split that returns the smallest
value for the criterion of Eq. (5). The recursive splitting procedure of Alg. 2
then produces trees that are used as weak learners in Alg. 1.

Note that, when using the exponential loss, we have r
j
i ∈ {−1, 1} (line 3 of

Alg. 1). In this case and when no regularization is imposed, that is, λ = 0, the k
that minimizes Eq. 6 would be identical to the one returned by LDA [9], up to a
scale factor. However, this is a particular case of our formulation, which instead
allows for smoothing as well as more outlier-robust losses such as the log loss.
Smoothing yields higher generalization, while outlier-robust losses are essential
to deal with tasks such as pixel classification.

4.3 Learning more Complex Features

For some of the problems we consider, we also introduce a technique related
to Auto-Context [27]. Auto-Context is a simple and effective way to increase
classification performance, training a chain of Q sequential classifiers, such that
classifier Cq relies on features computed from both the original training image
and the predictions of classifier Cq−1 [27]. This is easily implemented in our
framework by treating each image or image patch as two channels: the image
data itself, and the prediction image from classifier Cq−1. The only modification
to the algorithm of Section 4.2 is that the split learning algorithm Alg. 2 now
searches kernels for both channels.

Thus, unlike in the original Auto-Context approach of [27] that is limited to
a discrete subset of features, our algorithm can learn arbitrarily complex ones.
We show in the results section that this can enhance performance.



Algorithm 2 KernelBoost Split Learning

Input: Training samples {xi}i=1,..,N

Weights and responses {wi, ri}i=1,..,N at boosting
iteration j, as in Alg. 1
Number P of kernels to explore
Set W of possible window locations and sizes
Set L of possible regularization factors

1: Randomly divide training set in two sets T1 and T2

// Phase I: kernel search on T1

2: for p = 1 to P do
3: Pick random window Wcp,ap ∈ W

4: Pick random regularization factor λp ∈ L

5: Find kernel kp:

kp = argmin
k

∑

i∈T1

wi

(

k⊤
Wcp,ap(xi)− ri

)2

+

λp

∑

(m,n)∈N

(

k(m) − k(n)
)2

6: end for

// Phase II: split search on T2

7: for p = 1 to P do
8: Let Wp(·) = Wcp,ap(·)
9: Find τp, η1,p, η2,p for kp through exhaustive search

on T2:
τp, η1,p, η2,p = argmin

τ,η1,η2

∑

i|k⊤
p Wp(xi)<τ

wi (ri − η1)
2 +

∑

i|k⊤
p Wp(xi)≥τ

wi (ri − η2)
2

10: Compute split cost on T2:

ǫp =
∑

i|k⊤
p Wp(xi)<τp

wi (ri − η1,p)
2 +

∑

i|k⊤
p Wp(xi)≥τp

wi (ri − η2,p)
2

11: end for

12: return (kp, τp, η1,p, η2,p) that yields the smallest ǫp.

4.4 Training Time

To make training faster, we modify the above algorithm as follows:

– At boosting iteration j, instead of searching for kernels at every tree split
with Alg. 2, we run Phase I of Alg. 2 only once to generate a set of candidate
kernels at the tree root. These kernels are then used to train as many splits
as needed to construct the tree.



– The resulting least-squares problem in line 5 of Alg. 2 may grow very large
in tasks such as pixel classification. Therefore, we reduce T1 by uniformly
sampling NR samples from it. In our experiments we set NR = 10000.

In practice, these modifications yield a 10x speed up during training, with a
negligible impact on accuracy. For the pixel classification datasets presented in
the results section, training took 7 hours for M = 2000 boosting iterations on a
12-core computer.

4.5 Parameters

In all the experiments reported in Section 5, tree depth is limited to 3 levels
and shrinkage is set to γ = 0.1. These are standard values used in Gradient
Boosting [9].

For the pixel classification tasks we use the log loss to increase robustness
to outliers [9]. For the object detection task, we rely on the exponential loss as
in [28].

The only two parameters that were varied between datasets are (a) the patch
size, which was chosen according to the scale of the structures or objects of
interest, and (b), the set of regularization values L. We visually choose the
minimum regularization value λmin as the value that yields filters at the first
boosting iteration as smooth as the images x. The rest of the regularization
values are set to multiples of λmin.

The number of boosting iterations M was set to 2000 when not using Auto-
Context. When using Auto-Context, we set M = 500 for each classifier Cq,
yielding a total of 500 ·Q trained trees. In all cases we explore P = 100 kernels
per iteration and maximum kernel size is 19× 19.

The reduced number of parameters to define is a key advantage of our ap-
proach. We show that we are able to outperform state-of-the-art methods with-
out the need for parameter tuning.

5 Results

We evaluated our approach both on pixel classification in many different types
of images and on object detection. As discussed in Section 4.5, we used the same
parameters in all cases except for patch size, λmin and loss function.

5.1 Pixel Classification

We use very different classes of images—retinal scans, confocal microscopy im-
ages, and electronic microscopy images—that all contain tubular structures and
for which we have ground truth. To label each pixel of an input image as ei-
ther being part of a linear structure or not, we take the sample vectors x to be
image patches centered on individual pixels. Once our classifier is trained, it is
possible to obtain a probability estimate for the label of a pixel centered at x as
p(y = 1|x) = (1 + e-2ϕ(x))-1 [9].



Fig. 2. Precision-recall curves for pixel classification. Our approach significantly
outperforms all baselines, without the need for hand-designed features or pa-
rameter tuning. Auto-Context boosts performance in the DRIVE dataset, while
obtaining similar results to no Auto-Context in the other two datasets.

We compare the results of our approach against those obtained by the Op-
timally Oriented Flux (OOF) filter [14] and those of [23]. The former is a hand-
crafted filter, widely acknowledged as being very good for delineating tubular
structures. The latter is a new, hybrid approach that complements hand-crafted
features with features learned in an unsupervised fashion, and achieves state-
of-the-art performance. In our experiments with this kind of mixed features,
Random Forests [3] delivered better results than Boosted Trees, which is consis-
tent with what is reported in literature. For the electron microscopy case, where
no tubular structures are present in the images and therefore we could not rely
on any handcrafted method suited for the task, we used a pure learning-based
approach. To this end, we learned a filter bank composed of 49 convolutional fil-
ters using unsupervised ℓ1-based minimization, as in [23]. The parameters of the
algorithms we compare against were all tuned to achieve their best performance,
in order to provide a fair comparison.

We now describe each dataset in detail.
Retinal Scans The DRIVE dataset [25] is a publicly-available set of 40 RGB
retinal scans where the aim is to segment blood vessels, for automated diagnosis
purposes. Since we have two different ground truth sets from two different oph-
thalmologists, it is possible to estimate the score a human expert would achieve
in the segmentation task.

Fig. 2 shows that approach outperforms the baselines, achieving human per-
formance when not using Auto-Context. With Auto-Context, our approach be-
comes the only method to outperform human performance in this dataset up to
the date of this publication.
Confocal Microscopy Images The brightfield dataset is made of four 2D minimum-
intensity projections of bright-field micrographs of dyed neurons. Fig. 5 shows an
example of these images, along with ground truth. The images are very complex
in that both the staining process and the projections introduce significant struc-
tured and unstructured noise components. Also, the images are quite small com-
pared with, for example, those of [23], although the ground truth is very accurate



Fig. 3. Retinal Scans: (left) example image and (right) probability map p(y =
1|x) obtained with our approach.

Fig. 4. Example filters found on the DRIVE blood vessel segmentation dataset
(best viewed in color). The black box represents the patches xi. The filters only
operate on the colored pixels.

in our case. These factors make this task particularly difficult for learning-based
approaches, both ours and that of [23], as the scarcity of training samples made
the algorithms prone to overfitting. We used two images for training, and the
other two for testing.

Our approach outperforms the baselines, as shown in Fig. 2. Note that Auto-
Context is neither beneficial nor detrimental in this case, which may be due to
the scarcity of training data. On the other hand, this suggests that our approach
is resistant to overfitting, a known characteristic of boosting-based techniques [9].

Electron Microscopy Images We also evaluated the capabilities of our method on
the detection of grain boundaries in Electron Microscope images [7], an impor-
tant task in material science. Fig. 6 shows one of the four high-resolution images
of the dataset we created of thin layers of Zinc Oxide (ZnO), used in thin-film
solar cells. The methods currently used in the industry to automatically obtain
such detections rely either on simple gray-level thresholding or on watershed
binarization [7], and are therefore not suitable for dealing with such images that
constitute a severe challenge even for humans.

Ground truth delineation was made by a field expert. Since we are mostly
interested in the detection of the boundaries and not in their exact delineation,



Fig. 5. Confocal Microscopy: (left) example image and (right) probability map
p(y = 1|x) obtained with our approach.

the pixels in a three-pixels wide region around the boundaries present in the
ground-truth are ignored in the evaluation.

Our approach outperforms the baselines in this dataset as well, as shown
in Fig. 2. Similar conclusions as with the Confocal Microscopy dataset can be
drawn regarding Auto-Context.

Fig. 6. Electron Microscopy: (left) example image and (right) probability map
p(y = 1|x) obtained with our approach.



Table 1. Performance on the UIUC Car Detection dataset at recall-precision
equal-error-rate (EER) in the single-scale test set using x of the form xA with
different values of smooth penalty λ.

Filter-search method Recall at
(line 5 in Alg. 2) EER

(a) LDA (no spatial regularization) 98.5%
(b) Least-squares, λ = 0 98.5%
(c) Least-squares, λ = 250 99.0%
(d) Least-squares, λ = 1200 100%
(e) Least-squares, λ ∈ L with λmin = 1200 100%

5.2 Car detection

We evaluated our algorithm on the UIUC car detection dataset [1]. The dataset
is composed of 550 car and 500 non-car grayscale training image patches and the
task is to learn to detect cars from side-views. Performance is evaluated on two
separate image sets. The first is a single-scale test set, made out of 170 images
containing 200 cars at approximately the same scale, while the second one is a
multi-scale test set with 108 images and 139 cars at different scales.

The evaluation process is standardized and code has been provided by the
authors to allow for comparison between published results.

The sample vectors x are made of the image gradient magnitudes for sev-
eral quantized directions, since they are known to be a strong cue for object
recognition. More formally, we tried x of the form:

– xA: gradient magnitudes for orientations in {0, π
4 ,

π
2 ,

3π
4 }, over all pixel loca-

tions.
– xB: gradient magnitudes for orientations in {0, π

4 ,
π
2 ,

3π
4 } and the intensities

from the image itself, over all pixel locations, using mean-variance normal-
ization to mitigate illumination and contrast variations.

Table 1 presents the performance obtained on the single-scale test set with
and without spatial regularization in the least-squares problem of Eq. (7). In
all cases but (e), we fix λ to assess the influence of increasing regularization
values. Doing so increases performance as well, obtaining perfect classification
with λ = 1200 or when employing our full approach in (e), that picks λ ∈ L at
random instead. As discussed in Sec. 4.2, we could also compute the kernels of
Eq. (7) by LDA and should obtain exactly the same filters and results as those
without regularization, which is indeed what happened when we performed the
actual experiment. This shows the first advantage of our approach with respect
to [29] which relies on discriminant analysis but lacks the ability to impose
smooth filters. Moreover, [29] finds filters on the whole patch x, which proved
computationally intractable for this dataset, while our approach works on smaller
sub-windows, making training feasible.

Table 2 presents the performance on the single and multi-scale test sets, com-
pared against other algorithms found in the literature. Our method was trained



Fig. 7. Examples of filters found by our approach for the car detection task
at different gradient orientations. Filters overlayed in color, gradient magnitude
shown in grayscale.

Overlayed Color Grayscale

Fig. 8. Weighted filter location maps obtained for the car dataset. Each filter
votes for the region Wcp,ap

it applies on, weighted by its possible leaf values ηj
and boosting coefficient αj .

with 2000 iterations and Auto-Context was not employed, since the training data
consists of patches of the exact size of the cars and it would therefore lead to
severe overfitting.

Our approach outperforms all previous methods in the single-scale test set
with xA, obtaining perfect classification. Note that [20] also reported 100% accu-
racy in some of their runs. However, their performance on the multi-scale dataset
is much lower.

In the multi-scale test set we achieve state-of-the-art performance along
with [13] and [8] when employing mean-variance normalization. Note, however,
that in this case we obtain a 1% improvement over [8] and [13] in the single-scale
set.

Figure 7 shows examples of the filters found by our approach during the tree-
building procedure. Each filter kp votes for the region Wcp,ap

it is applied on,
weighted by its corresponding tree leaf values ηj and boosting coefficient αj . It
is observed that most of the filters cluster around the wheels and the car itself,
which are representative parts present on car side views.



Table 2. Results on the UIUC Car Detection dataset. Performance shown as
recall at recall-precision equal-error-rate, as in [8].

Method Single-scale Multi-scale

Xu et al. [30]� 99.5% 98%
Tivive et al. [26]� 99% 98%
Saberian et al. [24] 99.0% 92.1%
Karlinsky et al. [11] 99.5% 98.0%
Mutch et al. [20] 99.9% 90.6%
Lampert et al. [13] 98.5% 98.6%
Gall et al. [8] 98.5% 98.6%

Our approach (xA) 100% 97.2%
Our approach (xB) 99.5% 98.6%

� Equal precision-recall values computed approximately from the tables in [30]
and [26], since the authors compare performances at the point of best F-Score
instead of equal precision-recall.

6 Conclusion

We have introduced a new approach to training boosted classifiers that automat-
ically learns features directly from image data. Our method is almost tuning-free
and achieves state-of-the-art performance in a range of computer vision tasks.

In future work, we will endeavor to increase the computational efficiency of
our classifiers by making the kernels separable. To this end, we will write them
as products of 1D vectors and modify the training procedure accordingly.

References

1. S. Agarwal, A. Awan, and D. Roth. Learning to Detect Objects in Images via a
Sparse, Part-Based Representation. PAMI, 2004.

2. T. Ahonen, A. Hadid, and M. Pietik̈ıinen. Face Description with Local Binary
Patterns: Application to Face Recognition. PAMI, 2006.

3. L. Breiman. Random Forests. Machine Learning, 2001.
4. R. Caruana and A. Niculescu-Mizil. An Empirical Comparison of Supervised

Learning Algorithms. In ICML, 2006.
5. D. Cireşan, A. Giusti, L. Gambardella, and J. Schmidhuber. Deep Neural Networks

Segment Neuronal Membranes in Electron Microscopy Images. In NIPS, 2012.
6. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection.

In CVPR, 2005.
7. A. Diógenes, E. Hoff, and C. Fernandes. Grain size measurement by image analysis:

An application in the ceramic and in the metallic industries. In COBEM, 2005.
8. J. Gall and V. Lempitsky. Class-Specific Hough Forests for Object Detection. In

CVPR, 2009.
9. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer, 2001.
10. G. Hinton. Learning to Represent Visual Input. Philosophical Transactions of the

Royal Society, 2010.



11. L. Karlinsky, M. Dinerstein, D. Harari, and S. Ullman. The Chains Model for
Detecting Parts by Their Context. In CVPR, 2010.

12. K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. Le-
Cun. Learning Convolutional Feature Hierarchies for Visual Recognition. In NIPS,
2010.

13. C. Lampert, M. Blaschko, and T. Hofmann. Beyond Sliding Windows: Object
Localization by Efficient Subwindow Search. In CVPR, 2008.

14. M. Law and A. Chung. Three Dimensional Curvilinear Structure Detection Using
Optimally Oriented Flux. In ECCV, 2008.

15. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied
to Document Recognition. PIEEE, 1998.

16. H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional Deep Belief Networks
for Scalable Unsupervised Learning of Hierarchical Representations. In ICML,
2009.

17. K. Levi and Y. Weiss. Learning Object Detection from a Small Number of Exam-
ples: the Importance of Good Features. In CVPR, 2004.

18. R. Lienhart and J. Maydt. An Extended Set of Haar-Like Features for Rapid
Object Detection. In ICIP, 2002.

19. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-Local Sparse
Models for Image Restoration. In ICCV, 2009.

20. J. Mutch and D. G. Lowe. Multiclass Object Recognition with Sparse, Localized
Features. In CVPR, 2006.

21. B. Olshausen and D. Field. Sparse Coding with an Overcomplete Basis Set: A
Strategy Employed by V1? Vision Research, 1997.

22. L. Quoc, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and
A. Ng. Building High-Level Features Using Large Scale Unsupervised Learning.
In ICML, 2012.

23. R. Rigamonti and V. Lepetit. Accurate and Efficient Linear Structure Segmenta-
tion by Leveraging Ad Hoc Features with Learned Filters. In MICCAI, 2012.

24. M. J. Saberian and N. Vasconcelos. Learning optimal embedded cascades. PAMI,
34:2005–2018, 2012.

25. J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken. Ridge
Based Vessel Segmentation in Color Images of the Retina. TMI, 2004.

26. F. Tivive, A. Bouzerdoum, S. Phung, and K. Iftekharuddin. Adaptive Hierarchical
Architecture for Visual Recognition. Applied optics, 2010.

27. Z. Tu and X. Bai. Auto-Context and Its Applications to High-Level Vision Tasks
and 3D Brain Image Segmentation. PAMI, 2009.

28. P. Viola and M. Jones. Robust Real-Time Face Detection. IJCV, 2004.
29. P. Wang and Q. Li. Learning Discriminant Features for Multi-View Face and Eye

Detection. In CVPR, 2005.
30. J. Xu, Q. Wu, J. Zhang, and Z. Tang. Object Detection Based on Co-Occurrence

GMuLBP Features. In Multimedia and Expo, 2012.
31. M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus. Deconvolutional Networks. In

CVPR, 2010.
32. Z. Zheng, H. Zha, T. Zhang, O. Chapelle, and G. Sun. A General Boosting Method

and Its Application to Learning Ranking Functions for Web Search. In NIPS, 2007.
33. Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng. Fast Human Detection Using a

Cascade of Histograms of Oriented Gradients. In CVPR, 2006.


