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Abstract

We propose a method that dramatically improves the per-

formance of template-based matching in terms of size of

convergence region and computation time. This is done by

selecting a subset of the template that verifies the assump-

tion (made during optimization) of linearity or quadraticity

with respect to the motion parameters. We call these subsets

linear or quadratic subsets.

While subset selection approaches have already been

proposed, they generally do not attempt to provide linear or

quadratic subsets and rely on heuristics such as textured-

ness. Because a naive search for the optimal subset would

result in a combinatorial explosion for large templates, we

propose a simple algorithm that does not aim for the op-

timal subset but provides a very good linear or quadratic

subset at low cost, even for large templates. Simulation re-

sults and experiments with real sequences show the supe-

riority of the proposed method compared to existing subset

selection approaches.

1. Introduction

Since the seminal work of Lucas and Kanade [8], many

improvements to template-based tracking have been pro-

posed, mostly focusing on improving the efficiency [6, 5,

11, 1, 7, 4, 2, 3, 9]. Template-based tracking is usually per-

formed by minimizing the sum-of-squared intensity differ-

ences, and many new optimization schemes have been in-

troduced to enable the precomputation of all of or parts of

the matrices involved. Other approaches focus on the re-

striction to some pixels of the template to ameliorate the

computational cost without decreasing the performance in

terms of convergence too much.

To improve the performance of template-based tracking

even further, we propose an approach that aims to improve

the convergence behavior of the algorithm. Surprisingly,

very few approaches considered that direction, while the

convergence region has an obvious influence on the com-

putation time. A notable exception is the recent work of

Matas et al. [9] that proposes to select the pixels that most

closely verify the approximation used by the optimization.

This greatly improves the tracking result. However, the

pixel subset is selected by a greedy search over randomly

sampled subsets and each subset is tested against the linear-

ity assumption on synthetically warped views of the tem-

plate. The computation time quickly increases with the size

of the template. Moreover, a series of linear predictors has

to be learned in order to handle different motion ranges.

We therefore introduce a subset construction algorithm

suitable for large templates, making the selection approach

more useful in practice. We call these subsets linear or

quadratic subsets, depending on the optimization method

chosen for the template-based tracking. The proposed al-

gorithm makes it possible to select subsets that enlarge the

convergence region of the optimization method used. Our

algorithm is based on a simple remark that allows to build

large subsets very efficiently: If two subsets are linear (or

quadratic) with respect to the motion parameters under any

local motion, then their union is also a linear (or quadratic)

subset. Since we only learn the subsets for a finite num-

ber of local motions our algorithm does not necessarily pro-

vide the largest linear or quadratic subset, but as shown by

our experiments, it is sufficient to considerably improve the

convergence properties of the tracking.

We tested our approach with two popular optimization

methods for template-based tracking, namely the Inverse

Compositional algorithm and the Efficient Second-order

Minimization. In both cases, it always results in a signif-

icant reduction in terms of computation time and a signifi-

cant gain in terms of the convergence region. In particular,

it doubles the convergence frequencies of the Inverse Com-

positional algorithm for large motions.
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The rest of this paper is structured as follows: Section 2

describes some work related to our approach. Section 3

quickly recalls the formulation of the tracking algorithms

considered for subset selection. Our algorithm for selecting

linear and quadratic subsets is presented in Section 4. Sec-

tion 5 and Section 6 provide results obtained on simulations

and real sequences. We conclude with Section 7.

2. Related Work

One of the first publications on template-based tracking

was the Lucas-Kanade algorithm [8], which uses optical

flow for recovering the translation of an object in the im-

age plane. Since then, many other approaches have been

proposed to improve the tracking efficiency and accommo-

date more complex movements of the tracked objects, ei-

ther by modifying the cost function or by performing differ-

ent approximations and linearizations [6, 11, 1]. Baker and

Matthews [2] proved that all of these approaches are equiv-

alent in terms of convergence. However, in terms of com-

putation time, the Inverse Compositional (IC) algorithm [1]

gives the best results by making it possible to precompute

many terms. Another way to improve the efficiency of

template-based tracking is to improve the convergence be-

havior of the algorithm. Benhimane and Malis [3] propose

the Efficient Second-order Minimization (ESM), which ex-

hibits the advantages of second-order optimization, i.e. it

converges faster and it has a larger convergence region,

without the need of the prohibitive Hessians computation.

In order to increase the speed of template-based track-

ing approaches it is also possible to consider only a subset

of the template, and several methods have been proposed

for selecting pixels without degrading the convergence be-

havior too much. The main difficulty is that the number

of possible subsets increases exponentially with the size of

the template —it is equal to 2N where N is the number of

pixels of the template— making an exhaustive search even

for small templates intractable. Therefore, mainly heuristics

have been proposed. In particular, Shi and Tomasi [10] con-

sider the pixels that can be localized precisely under affine

deformations and end up with a “texturedness measure” for

efficient extraction. In [5], Dellaert and Collins perform the

selection based on the reduction of the uncertainty of the es-

timated motion and of the redundancy of information pro-

vided by the pixels. They end up with a measure closely

related to the one of Shi and Tomasi except that a prior on

motion can also be taken into account when available. How-

ever, this is not sufficient alone, and they have to enforce a

good distribution of the pixels over the template.

It is true that pixels with high “texturedness” contain

rich information, and restricting the template to these pixels

makes the algorithm faster without loosing too much ro-

bustness. However, this does not mean that it will lead to

a better convergence. In fact, Zivkovic and van der Heij-

den [12] show in the context of interest point tracking that

extracting pixels with large convergence regions gives much

better results in practice.

More recently, a method based on the convergence prop-

erties has been proposed by Matas et al. [9]. They use the

optimization method proposed by [7], where instead of re-

lying on analytical Jacobians, a linear relation between the

image differences and the motion is estimated from motions

generated during an off-line phase. Since this relation is

not necessarily exactly linear, they look for a set of pixels

so that the linear relation is verified as closely as possible.

However, the search for a good subset is performed by a

greedy algorithm over randomly sampled subsets that is not

suitable for large templates. Moreover, they loose the ad-

vantage of analytical expressions, and have to learn a series

of linear predictors to ensure an acceptable precision.

We propose a method that avoids the combinatorial ex-

plosion and is therefore suitable for large templates, making

the selection based on linearity useful in practice.

3. Template-Based Tracking

In order to correctly present our method, we quickly re-

call the foundations of template-based tracking, the IC and

the ESM algorithms that will be used to test our approach.

The interested reader can refer to [2] for more details.

Let I∗ be an image containing the reference template of

an object we aim to track, and let I be the current image

of the observed scene. Let {p∗
i } be the set of coordinates

of the projections in the reference image I∗ of a set of 3D

points lying on the object of interest. Tracking the reference

template means finding the projective space automorphism

w that minimizes:

∑

i

(I (w(p∗

i )) − I∗(p∗

i ))
2

(1)

The 3D motion of the object of interest can be extracted

from w. For simplicity reasons, we consider here only a

planar object, and w will be based on a homography G

parametrized over a vector x. However, all the derivations

in this paper are generic and our approach can be applied

to more complex shapes. During tracking, an approxima-

tion Ĝ of the true automorphism G is available, and the

problem can be redefined as finding an incremental trans-

formation G(x) such that the composition of Ĝ and G(x)
gives the true automorphism G. Then, the problem consists

in finding the optimal parameters x̃ that minimize:

1

2
‖y(x)‖2 (2)

where y(x) is the vector made of the image differences:

yi(x) = I
(
w(ĜG(x))(p∗

i )
)
− I∗(p∗

i ) . (3)



This problem is usually solved using an iterative min-

imization after a Taylor series approximation of the cost

function (2). The IC algorithm of Baker and Matthews [2]

considers a first-order approximation:

y(x) = y(0) + J(0) x + O(‖x‖2) (4)

while the ESM algorithm of Benhimane and Malis [3] relies

on a second-order approximation:

y(x) = y(0) + J(0) x +
1

2
M(0,x) x + O(‖x‖3) (5)

where J(x) = ∇xy(x) is the Jacobian matrix of the

vector y(x) with respect to the motion parameters x,

M(x1,x2) = ∇x1
(J(x1)x2) is based on the Hessian ma-

trices, and O(‖x‖i) is a remainder of order i. However,

both minimize the cost function iteratively by estimating x̃:

x̃ =
(
J⊤

x Jx

)−1

J⊤

x y(0) (6)

The two algorithms use different expressions for Jx. In

the IC algorithm, it is a constant matrix which we denote

as Jic and which is of the form: Jic = JI∗ Jw JG where

JI∗ depends on the gradient of the reference template and

Jw and JG depend on the warping function and the ho-

mography parameterization respectively. The ESM algo-

rithm uses another expression which we denote as Jesm =
1

2
(JI + JI∗) Jw JG, where JI has to be computed at

each minimization step. However, it is shown in [3] that,

with a suitable parameterization, using this Jacobian gives

the desirable properties of second-order methods with the

same computation complexity as standard first-order ap-

proaches. What is important here for our approach is that

the two methods rely on the iteration given by (6). Our se-

lection algorithm will be the same for these two methods

except for the expression of Jx.

4. Determining Linear and Quadratic Subsets

4.1. Linear and Quadratic Subsets

A linear subset is a set of pixels on the template such

that the approximation made by the IC algorithm becomes

exact. Formally, a linear subset E = {p∗
i } verifies:

∀x: yE(0) = −Jic,Ex (7)

where yE is a vector of image differences and Jic,E is the IC

Jacobian – both computed for the pixels of E . As a result,

the IC algorithm will converge toward the minimum ideally

in one iteration when a linear subset is used. In practice, be-

cause of noise and because the relation between the image

differences and the motion parameters is not exactly linear,

we will see that it can sometimes take more than one it-

eration, but it still results in a decrease in the number of

iterations and an increase in the convergence frequency.

Similarly, a quadratic subset is a subset of pixels such

that the approximation made by the ESM algorithm be-

comes exact. Hence, a quadratic subset E = {p∗
i } verifies

∀x: yE(0) = −Jesm,Ex. As will be shown, a similar gain

in performance is then obtained with the ESM algorithm

when using quadratic subsets.

4.2. Stability under Union Operation

It is easy to see that the set of linear subsets and the set of

quadratic subsets are stable under the union operation. Let

us consider two linear subsets E and E ′. Since we have:

yE∪E′(0) =

(
yE(0)
yE′(0)

)
and (8)

JE∪E′(0) =

(
Jic,E(0)
Jic,E′(0)

)
, (9)

E ∪ E ′ verifies Equation (7), and is therefore a linear sub-

set. Of course, a similar remark can be made for quadratic

subsets. This property is extremely useful since it allows

to group several linear or quadratic subsets to form a larger

one, and our algorithm strongly relies on it.

4.3. Construction Algorithm

Here we present the algorithm we developed to create

large linear or quadratic subsets.

In order to built the subsets, we consider all possible 3×3
pixel regions over the original template, and determine for

each of them if they form a linear (or a quadratic) subset.

Once this is done the linear subsets are merged to form the

final subset. These 3 × 3 pixel regions have the advantage

to be of (almost) the minimal size1 that allows to determine

a motion. Moreover, when such a compact region provides

enough information to retrieve the object motion, it is very

desirable to integrate it into the final subset. We can there-

fore build a very good final subset by testing Equation (7)

on a relatively small number of small subsets.

Considering Equation (7), a naive criterion that could be

used in practice would be to search for regions that min-

imize the differences between the computed image differ-

ences and the true ones. However, such a residual is not

very meaningful for the problem at hand, and we prefer a

criterion that favors the accuracy of the recovered motions.

We first apply known random motions to the image. For

each motion, and for each 3× 3 region, we use Relation (6)

to get an estimate of the motion from the pixels in the re-

gion. Each region has a counter initialized to 0 which is

incremented each time the position of the region center is

retrieved with an error lower than one pixel. At the end of

this training phase, the regions with a counter value above

1The correct minimal size is 6 for a 3–D Euclidean motion of any 3D

object (rotation and translation in the calibrated case) and 8 for a projective

transformation of a planar object (homography in a non-calibrated case).



Figure 1. Linear and quadratic subsets learned for a sample template. The top left template shows the linear subsets used with the inverse

compositional algorithm and the top right template shows the quadratic subsets used with the ESM algorithm. The bottom row shows the

linear and quadratic subsets obtained when the subsets are constrained to be spread evenly over the template. Building such subsets takes

less than 30 seconds on a standard computer.

a certain threshold τ are merged into a final subset E that

will be used during tracking, while the other pixels are dis-

carded. Figure 1 shows examples of linear and quadratic

subsets. The threshold τ was set so that only 20% of the

template pixels are contained in the final subset E .

In order to be robust to partial occlusion that may oc-

cur during tracking, we also need to ensure a more or less

uniform distribution of the subset over the template. Other-

wise, it is possible that all the pixels concentrate in a small

region, so that under partial occlusions the tracking will fail.

We therefore subdivide the template with a virtual grid and

require that there is a similar amount of pixels in each cell.

The bottom row of Figure 1 shows the subsets built when

using a 2 × 2 grid.

Our algorithm is linear w.r.t. the template size, and takes

less than 30 seconds for 150× 150 templates if we perform

100 motions on a 1.66 GHz Intel Core-Duo CPU with 1 GB

Memory. We can see that the obtained subsets do not in-

clude corners and edges due to their high non-linearities and

as expected uniform regions are not selected either since

they do not add any information. When looking closely

at the selected regions, one can actually realize that they

often correspond to image parts where the intensities vary

smoothly.

5. Simulation Results

We present simulations designed to validate our claims

regarding the improvements in terms of accuracy and ro-

bustness. We applied random motions with increasing vari-

ances to a 100× 100 template and then used different types

of pixel subsets in both the IC and ESM algorithms to re-

cover the motion parameters. We considered a test as con-

verged if the template corners were retrieved with an RMS

error lower than 1 pixel after 10 iterations, and plotted the

convergence frequency against the motion variance mea-

sured on the template corners.

The results of the simulations are shown in Figure 2.

Curves annotated with ’all pixels’ were obtained when us-

ing the full template. The other curves were obtained us-

ing only 20% of the template pixels, selected with differ-

ent methods: ’random subsets’ refer to randomly selected

pixels, ’regular subsets’ to regularly sampled pixels, ’good-

features-to-track’ to pixels returned by the algorithm of Shi

and Tomasi [10] and ’linear’ and ’quadratic’ to the subsets

returned by the algorithm we propose. Note that all sim-

ulations have been conducted under the same conditions,

and only the subsets were changed. In addition, neither

preliminary image filtering nor multi-scale pyramid imple-

mentations have been used for this evaluation, to make the

contribution of our approach clearer. For small motions all



Figure 2. Convergence frequency vs. motion variances when using different types of subsets. First row: results obtained with the IC

algorithm; Second row: results obtained with the ESM algorithm; Left column: without noise; Right column: in the presence of noise. Our

method performs two times better with the IC algorithm than the other methods for large motions in noisy conditions. With the slower but

more powerful ESM algorithm, the differences are smaller, but our approach still outperforms the other methods.

the approaches perform well and exhibit a high convergence

frequency. If the motions are getting larger, we can see that

the frequency of convergence decreases for all tested meth-

ods, however, our method always allows to achieve a high

convergence frequency. In the case of the IC algorithm, the

convergence frequency is four times the convergence fre-

quency of the other methods under ideal noise-free condi-

tions. When Gaussian noise with a standard deviation of 5
gray levels (over 255) is added, the convergence frequency

obtained with our linear subset is still twice as big as the one

of the other methods. Comparable results are obtained with

the ESM algorithm. ESM is a little bit slower but more pow-

erful than IC. Here, the differences are smaller, however, it

is still clear that our approach outperforms the other meth-

ods. With the quadratic subsets, using the ESM algorithm,

we achieve a convergence frequency of more than 60%.

Apart from the accuracy and the robustness our approach

also improves the speed of the tracking, since we only use

a small number of pixels. If used for real-time tracking this

directly results in a smaller interframe displacement, mak-

ing the tracking easier.

6. Experimental Results

We performed numerous real-world experiments to test

the performance of the proposed approach. Standard limita-

tions to template-based tracking such as noise, partial occlu-

sions, illumination changes, scale changes, oblique viewing

angles, and fast motion were taken into consideration dur-

ing this validation. These experiments confirm the fact that

the subsets obtained with our algorithm can be used to ro-

bustly and accurately deal with real-world images.

In particular, Figure 3 shows some excerpts from one

sample sequence2 where the tracking output was used to

perform an Augmented Reality task. Our algorithm was ap-

plied to a 155×168 pixels template of a book cover in order

to extract a quadratic subset to be tracked by the ESM al-

gorithm. The quadratic subset represents 32% of the size of

the reference template. A maximum of 15 iterations were

used during the optimization. The book was tracked cor-

rectly over the sequence, despite partial occlusions, changes

in scale and oblique viewing angles. As can be assessed by

watching the video, the augmentation is visually very sta-

ble, and only when significant parts of the template are cov-

ered there is a slight jittering, meaning that the pose was

estimated very accurately.

The frame rate is between 30 fps and 60 fps on a 1.66
GHz Intel Core-Duo CPU with 1 GB Memory. The exact

value of the frame rate depends on many factors including

the size of the reference template, the number of scale levels

2See: http://campar.in.tum.de/files/publications/benhimane2007cvpr.video.avi



(a) (b) (c)

(d) (e) (f)

Figure 3. Tracking a quadratic subset for Augmented Reality. The book is tracked correctly despite partial occlusions, changes in scale and

oblique viewing angles. The teapot is visually very stable, showing that the pose is estimated very accurately.

(if a multi-scale pyramid implementation is used) and the

desired accuracy.

7. Conclusion

We proposed a simple algorithm based on a low-cost

off-line learning step to determine which pixels can form a

strong subset that verifies the linearization made during op-

timization. We validated our algorithm on synthetic and real

data and showed that it outperforms other subset selection

approaches for template-based tracking in terms of conver-

gence frequency and in terms of efficiency. We also showed

that it can be easily integrated into existing template-based

tracking algorithms to improve their performance, making

it very useful to people working with this approach.
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