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Abstract

We propose a robust and accurate method for segmenting specular objects acquired

under loosely controlled conditions. We focus here on leaves because leaf segmentation

plays a crucial role for plant identification, and accurately capturing the local boundary

structures is critical for the success of the recognition. Popular techniques are based on

Expectation-Maximization and estimate the color distributions of the background and

foreground pixels of the input image. As we show, such approaches suffer in presence of

shadows and reflections thus leading to inaccurate detected shapes. Classification-based

methods are more robust because they can exploit prior information, however they do

not adapt to the specific capturing conditions for the input image. Methods with regular-

ization terms are prone to smooth the segments boundaries, which is undesirable. In this

paper, we show we can get the best of the EM-based and classification-based methods

by first segmenting the pixels around the leaf boundary, and use them to initialize the

color distributions of an EM optimization. We show that this simple approach results in

a robust and accurate method.

1 Introduction

Extracting accurately the shape of a leaf is a crucial step in image-based plant identification

systems. The partial or total absence of textures on leaf surface and the high color variability

of leaves belonging to same species make shape as the main recognition element [1, 5, 17,

18, 19]. For such reason, leaf segmentation plays a decisive role in the leaf recognition

process.

Even though many general segmentation methods [2, 3, 10, 11, 12, 22, 24] have been

proposed in the last decades, leaf segmentation presents specific challenges. In particular,

a pixel-level precision is required in order to highlight fine scale boundary structures and

discriminate similar global shapes. Moreover, even if the input image can typically be taken

in controlled conditions, where the leaf is the only visible object over a white background,

the user taking the picture is not necessarily an expert and the conditions are often not ideal:
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Figure 1: Leaves segmentation under loosely controlled conditions (best viewed in color).

First column: Leaf images with the presence of shadows and irregular light. Second

column: Segmentation result obtained by the Leafsnap method [19] with included post-

processing procedure for stems and false positives suppression. Third column: Results

obtained by our classification-based approach without any post-processing Last column:

Input image masked with our segmentation. Our classification-based method is more robust

to the presence of shadows and irregular light thus offering contours that better fit to the real

shape. Red and orange colors are used to mark false positives and false negatives, respec-

tively (ground truth does not include stems). We provide many other visual results in the

supplemental material.

the leaf exhibits specular reflections, casts shadows, the background is never exactly white

and is usually non-uniform, and the image can be blurry.

Recent leaf recognition applications in loosely conditions [19, 26] rely on the Expectation-

Maximization algorithm to separate the color distributions of the foreground and the back-

ground pixels. Despite their efficiency, they do not assure robustness to shadows and specular

reflections thus leading to incorrect boundaries. In this paper we introduce a new solution by

training a pixel-wise classifier that learns filter responses associated to background and fore-

ground regions in images of leaves. Similar classifiers have been recently used in different

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 



BUONCOMPAGNI ET AL: LEAF SEGMENTATION UNDER LOOSELY CONTROLLED CONDITIONS 3

fields like medical applications [25] showing great performance for linear and curvilinear

structures segmentation.

As shown in Fig. 1 and as proved in Section 4, we observed benefits when training our

classifier by considering as positive (leaf) and non-positive (background) training samples

only those pixels located in the neighborhood of the leaf boundary.

After applying the classifier to a given input image, we threshold the score map to get

segments which belong to foreground or background with a high level of probability. These

segments allow us to infer precious color and spatial information about the leaf and provide

a support for a suitable initialization of EM algorithm, which yields to a very fine pixel-wise

segmentation robust to shadows and specularities.

In the remainder of the paper, we first review related work in Section 2. Then, in Sec-

tion 3 we detail our method. In Section 4 we present the dataset we used for experimental

evaluation and we show benefits of our approach over the state-of-the-art.

2 Related work

Leaf segmentation represents a core activity for plant identification and research about such

topics is constantly rising from the past ten years [1]. Even though great effort has been

devoted to object segmentation on images in the Computer Vision history [3], leaves require

a precise segmentation and/or boundary detection to effectively describe shape and its local

structures. Since a detailed overview of general-purpose segmentation is beyond our scope,

we focus here mainly on state-of-the-art of leaf segmentation. Moreover, we provide a review

of the emerging results about filters response learning for some specific tasks like detection

of curvilinear structures.

Supervised and Unsupervised Environments

Various leaf segmentation approaches related to different environmental conditions have

been proposed. Image binarization with a fixed threshold, or “Otsu’s method” [21], demon-

strated good accuracy for leaf images acquired in supervised setups characterized by uniform

light conditions and white background, as those included in the FLAVIA dataset [28], the

Swedish leaf dataset [27], Lab image category of the Leafsnap dataset or the scan image

category from the ImageCLEF plant identification challenges [18].

Very different solutions have been introduced for leaf segmentation on images acquired

in unsupervised conditions like those included in recent ImageCLEF challenges [13, 14, 18],

with natural background or photo image categories, where no assumptions are made about

the background behind the leaf during image acquisition. A number of automatic [7, 20, 29,

30] and interactive [4, 8, 9, 30] approaches have been presented to solve leaf segmentation

in unconstrained setups. In [7] two different semi-automatic and automatic segmentation

approaches based on Mean-Shift and K-Means clustering in RGB color space are intro-

duced whereas in [29] a combination of shape, color and texture features are used for plant

identification. In [8] polygonal shape models of leaves are employed as prior offering very

good support in unsupervised conditions but limiting its applicability to modeled species.

A similar approach based on the use of semantic information and guided active contour

segmentation has been later presented in [9]. As very recently illustrated in [15], due to

the considerable challenge of leaf segmentation and recognition against natural background,
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user supervision and interaction are recommended during the process to produce reliable

input images and initialize the segmentation.

Semi-Supervised Environments

Regarding to leaf segmentation under semi-supervised conditions addressed on such pa-

per, several automatic approaches have been already presented and tested. Most promising

ones [5, 19] are based on the use of EM [6] in color space to estimate foreground and back-

ground pixel clusters. As shown in [26], standard EM and its extensions outperform other

techniques as graph-based image segmentation [12], Mean Shift [10], GrabCut [22], seg-

mentation by weighted aggregation (SWA) [24], multiscale normalized cut [11]. Particular

improvements have been demonstrated by EM when dealing with images taken with mo-

bile devices under various pose and illumination conditions, see the Field or User image

categories of [19].

However, as reported in [26], EM-based methods do not assure robustness to shadows,

specular reflections and requires the adoption of ad hoc solutions also for certain particular

leaves such as pine leaves, thus proving the weakness of EM initialization.

In this paper, we show that our classification-based initialization for background and

foreground color distribution represents a better solution for the problem at hand. Cascade

classifiers [23] exhibit good performance in localization thus allowing a better discrimina-

tion of points with similar appearance, as those placed across object contours. Advantages

offered by the learning of filter responses have been recently proved in different fields like

biomedical images, aerial images and general-purpose contour detection [25]. We aim to

apply a similar idea for leaf segmentation, by combining prior knowledge with learning and

the adaptability of EM-based methods.

3 Method

Let I(x) be an image of a leaf, and x ∈ R
2 an image pixel location. Leaf segmentation can

be carried out by computing the probability distribution of all pixels x and representing it as

the mixture of two Gaussians:

p(I(x)|Θ) =
2

∑
i=1

ωi pi(I(x) | Θi) Θi = {µ i,Σi} , (1)

where I(x) is the color of image I at location x, and Θ1 = {µ1,Σ1} and Θ2 = {µ2,Σ2} are the

parameters of the foreground—the leaf—and background color distributions, respectively.

ω1 and ω2 weight these two Gaussian distributions.

One way to infer such distributions is to apply K-Means or Expectation-Maximization

as in [5, 19], thus computing the parameters and weights of the two Gaussians for the given

image and using them for pixel-wise segmentation. [19] considers only the saturation and

value color components for EM clustering and a shared covariance matrix is used. However,

in practice, some drawbacks appear in this formulation due to challenging leaves like pine

needles, false positives detection related to shadows and false negatives detection related

to specularities. To tackle such problems, some manually-defined assumptions are made

about cluster regions and pixel weights (see Fig. 2 in [19]). Furthermore, post-processing

operations are carried-out to remove false positive detections due to shadows and irregular

backgrounds, at the risk of hurting the final leaf shape.
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To assure more robustness to shadows and specularities, our solution is to pre-train a

pixel-wise classifier by learning a function y(·) such that:

y( f (x, I)) =

{

1 if x is on the leaf surface,

−1 otherwise,
(2)

where f (x, I) is a feature vector computed from a neighborhood surrounding x in image I.

By performing a simple thresholding of the score map returned by the classifier we detect

segments that belong with high probability to foreground and background. These segments

are then exploited to properly initialize a standard EM algorithm thus leading to a final

and accurate leaf segmentation. Furthermore, we will show that our learning assures inde-

pendence from leaf species, since the same classifier is used for all species and no ad hoc

solutions are required when challenging species have to be treated.

In the remainder of this section we firstly illustrate our pixel-wise classifier by showing

our training that focuses on leaf boundary. Then, we describe how we produce and employ

segments to initialize the EM algorithm thus leading to the final segmentation.

3.1 Pre-trained pixel-wise classifier

To train our pixel-wise classifier we employ a similar approach to [25]. Given a set of training

samples {( fi,yi)}i=1,...,n where fi = f (xi, Ii) ∈ R
J is the feature vector corresponding to a

point xi in image Ii and yi ∈ {1,−1} is the label associated to xi, we use GradientBoost and

regression trees [16] to approximate y( f (x, I) by a function of the form:

ϕ( f (x, I)) =
K

∑
k=1

αkhk( f (x, I)) , (3)

where hk : RJ → R are weak learners and αk ∈ R are weights.

As shown in Fig. 2, we focus our attention on the leaf boundaries by selecting only

samples in their neighborhoods. We extract from each training image the leaf contour from

the ground truth segmentation and simply thicken this contour with standard morphology

dilation. Function ϕ is built iteratively by minimizing an exponential loss function L of the

form:

L=
n

∑
i=1

L(yi,ϕ( f (x, I))) , (4)

where L = e−yiϕ( f (x,I)). We also experimented with the log loss function with similar results.

We use a set of convolutional filters learned from the training images as described in [25].

The RGB images are converted into the LUV color space and we learn a different filter bank

for each channel.

3.2 Score map thresholding and segmentation

Our segmentation pipeline is summarized in Fig. 3. We apply the classifier described above

to each pixel location of a given unknown test image Itest. This provides a score map that we

then threshold using two different thresholds to detect pixels that belong to foreground and

background with a high level of probability. With these pixels at hand we initialize an EM

algorithm to estimate foreground and background cluster parameters Θ1 and Θ2 by working

in the saturation-value color space.
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(a) (b) (c) (d)

Figure 2: Example of images used for training: (a) a leaf image, (b) its manually defined

ground truth segmentation, (c) the leaf contour extracted from the segmentation, (d) thicker

contour obtained by simple dilation. We train our classifier by selecting positive (leaf) and

negative (non-leaf) feature samples computed on image (a) that lie on the thicker contour

only.

(a) (b) (c)

(d) (e) (f)

Figure 3: Segmentation pipeline: (a) Input image Itest, (b) score map obtained by applying

our pre-trained classifier at each pixel location, (c) pixels belonging to background with high

probability (black), (d) pixels belonging to foreground with high probability (white), (e)

coarse leaf segmentation obtained using the prior Θ1start ,Θ2start built from images (c) and (d),

(f) final leaf segmentation after EM optimization from this initialization. Since our training

is focused on leaf boundary, high probability background and foreground pixels are more

likely to be found near the leaf boundary thus guiding and improving the following final

segmentation.

This allows us to compute good initial estimates for Θ1 and Θ2, the mean and covariances

of the colors over the leaf and over the background. This is by contrast with [19], which

has to initialize the EM segmentation with the same values for all the images. The other

difference with [19] is that we can consider as unlabeled data only the pixels that are in the

Citation
Citation
{} 

Citation
Citation
{} 



BUONCOMPAGNI ET AL: LEAF SEGMENTATION UNDER LOOSELY CONTROLLED CONDITIONS 7

neighborhood of the detected leaf boundary. This allows to keep focusing on segmenting

correctly the pixels around the leaf boundary, and in practice it is enough to get a good

segmentation of the other pixels, which are easier to classify.

4 Results

In this section, we first describe the dataset and the evaluation protocol we used for our ex-

periments. We then compare our method with techniques that demonstrated state-of-the-art

performance on loosely controlled conditions, Leafsnap[19] and GrabCut [22]. In particu-

lar, we show the benefit given by our classification-based initialization of EM as described

in Section 3.2. Moreover we evaluate the importance of training the classifier from sam-

ples close to the leaf boundaries. We finally provide qualitative results of our segmentation

approach.

4.1 Leaves dataset and performance metrics

For evaluation we use the Field image dataset publicly available online [19]. It is made

of 185 different species for a total of 7719 images acquired against solid background and

variable light conditions thus simulating typical images that a user could provide for plant

recognition.

To train our pixel-wise classifier we randomly select one image for each species and

we manually produce segmentation and thicker contour to discriminate between positive

and negative training samples placed in the neighborhood of boundary as described in Sec-

tion 3.1.

Since segmentation ground truth is not available and its manual production for thousands

of images would require an inestimable amount of time, we considered a subset of the orig-

inal Field dataset. Our testing set is made of 300 images: 150 images for which the EM

approach of [19] performs already well thus producing faithful segmentation in accordance

with the leaf shape plus 150 more challenging images for which EM partially or totally fails.

185 training images are randomly selected excluding those images already used to test

the classifier. A total of 485 leaves (185 for training and 300 for testing) was therefore

manually segmented to produce the ground truth; stems and unrelated components are not

part of the ground truth in accordance to the policy employed in [19]. 1

To compute performance indicators we rely on the publicly available and very popular

code of Berkeley Segmentation and Boundary Detection Benchmark [2]. In particular, as

in [26], we evaluate the leaf segmentation results by analyzing boundary agreement with

ground truth in terms of recall, precision and F-measure since contour is the main recognition

cue in typical plant recognition systems.

4.2 Segmentation performance

Accuracy measures are reported in Table 1 and Table 2. Specifically, in Table 1 we provide

recall, precision, and the F-measure (ODS) which is the harmonic mean of precision and

1Our manual ground truth segmentation is publicly available at http://smartcity.csr.unibo.it/

leaf-segmentation/
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recall to evaluate the trade off between these two measures:

F-measure = 2 ·
precision · recall

precision+ recall
. (5)

Such metrics are computed for the global testing set whereas in Table 2 the same results

are reported when only the 150 more challenging images are considered to highlight the

benefits of our approach.

We compare the two different strategies to train the classifier and initialize the EM seg-

mentation: using samples from the entire image, strategy that we denote Ours-entire, and

using samples only close to the leaf boundaries, which we denote Ours-boundary. More-

over, we report results when only the pre-trained classifier is employed for segmentation

(Classification).

Image segmentation quality Leaf boundary quality

Recall Precision F-measure Recall Precision F-measure

Classification 0.701 0.480 0.570 0.702 0.778 0.738

Leafsnap 0.618 0.858 0.718 0.618 0.929 0.742

Leafsnap* 0.644 0.764 0.699 0.644 0.931 0.762

GrabCut 0.624 0.848 0.719 0.624 0.964 0.757

Ours-entire 0.690 0.800 0.741 0.690 0.940 0.796

Ours-boundary 0.692 0.822 0.752 0.693 0.944 0.799

Table 1: Recall, precision, and F-measure for the entire testing set (300 images). Our method

provides the best trade-off between recall and precision.

Image segmentation quality Leaf boundary quality

Recall Precision F-measure Recall Precision F-measure

Classification 0.700 0.532 0.604 0.700 0.788 0.742

Leafsnap 0.560 0.777 0.651 0.560 0.884 0.686

Leafsnap* 0.614 0.703 0.656 0.614 0.903 0.731

GrabCut 0.598 0.830 0.695 0.598 0.959 0.737

Ours-entire 0.682 0.772 0.724 0.682 0.923 0.785

Ours-boundary 0.686 0.792 0.735 0.686 0.927 0.788

Table 2: Recall, precision and F-measure on 150 challenging images from the testing set.

Our method provides the best trade-off between recall and precision.

The benefits of our method already appear clearly in Table 1, with a significant raise

of the F-measure with respect to the other methods. Even without performing any post-

processing to remove false positives, shadow and stems—we remind here that in our ground

truth stems are removed, the F-measure for the entire image is better with respect to Leafsnap

thus proving the robustness of our method to false positives. Moreover, using only samples

placed on leaf boundary to pre-train our classifier (Ours-boundary) we outperform all the

other methods.

Looking at Table 2 where only challenging images are considered, the improvements

due to our method are confirmed to a greater extent. The results prove that a post-processing
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [19] (d) Leafsnap [19]

(e) GrabCut [22] (f) Ours-boundary

Figure 4: Leaves segmentation under loosely controlled conditions with different methods.

Note that our approach strongly reduces negative effects of irregular light and shadow regions

thus offering a more well defined leaf shape with respect to other methods that do not adapt

to specific light conditions. Red and orange colors are used to mark false positives and false

negatives, respectively (ground truth does not include stems). Best viewed in color.

based on morphological operations as erosions and dilations hurts quality of boundary espe-

cially in terms of recall, thus motivating the adoption of methods already robust to shadows

and irregular light.

The behavior of different methods can be qualitatively appreciated looking at Fig. 4

where results returned by Leafsnap, Leafsnap without post-processing (marked with *),

GrabCut and our method Ours-boundary are reported. As the reader can see comparing

ground truth details with real segmentations, it is confirmed that post-processing hurts qual-

ity of boundaries and should be avoided. On the other hand, GrabCut tends to return round

contours. With our method some errors still remain, due to those background pixels that look

strongly similar to leaf (and vice-versa). However, our method represents a good compro-
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10 BUONCOMPAGNI ET AL: LEAF SEGMENTATION UNDER LOOSELY CONTROLLED CONDITIONS

mise since we do not use post-processing but at the same time we assure a good robustness

to false positives. Furthermore, our contours tend to fit better with the ground truth. Our

non-optimized MATLAB code on a 4-core virtual machine with 16GB of RAM requires

about 50 seconds to produce segmentation for one image. The majority of time is required to

do classification and produce score map whereas only few milliseconds are required for EM

segmentation. Even though at this stage we are not able to guarantee competitive processing

time, we are confident that with proper code optimization and the use of more performing

hardware like physical machines we can reach much shorter run-times.

5 Conclusion

We have introduced a robust classification-based method for leaf segmentation under loosely

controlled conditions. We showed how to adapt to the conditions of the input images, and

that focusing on the contours of the object to segment yields better results.
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[17] A. Joly, H. Goëau, P. Bonnet, V. Bakić, J. Barbe, S. Selmi, I. Yahiaoui, J. Carré,

E. Mouysset, J.-F. Molino, et al. Interactive Plant Identification Based on Social Image

Data. Ecological Informatics, 23:22–34, 2014.

[18] A. Joly, H. Goëau, H. Glotin, C. Spampinato, P. Bonnet, W.-P. Vellinga, R. Planque,

A. Rauber, R. Fisher, and H. Müller. Lifeclef 2014: Multimedia Life Species Identi-

fication Challenges. In Information Access Evaluation. Multilinguality, Multimodality,

and Interaction, pages 229–249. Springer, 2014.

[19] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. C. Lopez, and

J. V. Soares. Leafsnap: A Computer Vision System for Automatic Plant Species Iden-

tification. In ECCV, pages 502–516. Springer, 2012.

[20] J. C. Neto, G. E. Meyer, and D. D. Jones. Individual Leaf Extractions from Young

Canopy Images Using Gustafson–Kessel Clustering and a Genetic Algorithm. Com-

puters and Electronics in Agriculture, 51(1):66–85, 2006.

[21] N. Otsu. A Threshold Selection Method from Gray-Level Histograms. SMC, 9(1):62–

66, 1979.

[22] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive Foreground Extraction

Using Iterated Graph Cuts. TOG, 23(3):309–314, 2004.

[23] M. Seyedhosseini, M. Sajjadi, and T. Tasdizen. Image Segmentation with Cascaded

Hierarchical Models and Logistic Disjunctive Normal Networks. In ICCV, pages 2168–

2175, 2013.

[24] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hierarchy and Adaptivity in

Segmenting Visual Scenes. Nature, 442(7104):810–813, 2006.



12 BUONCOMPAGNI ET AL: LEAF SEGMENTATION UNDER LOOSELY CONTROLLED CONDITIONS

[25] A. Sironi, V. Lepetit, and P. Fua. Multiscale Centerline Detection by Learning a Scale-

Space Distance Transform. In CVPR, pages 2697–2704. 2014.

[26] J. V. Soares and D. W. Jacobs. Efficient Segmentation of Leaves in Semi-Controlled

Conditions. MVA, 24(8):1623–1643, 2013.

[27] O. Soderkvist. Computer Vision Classification of Leaves from Swedish Trees. Master’s

thesis, 2001.

[28] S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang. A Leaf

Recognition Algorithm for Plant Classification Using Probabilistic Neural Network.

ISSPIT, pages 11–16, 2007.

[29] B. Yanikoglu, E. Aptoula, and C. Tirkaz. Automatic Plant Identification from Pho-

tographs. MVA, 25(6):1369–1383, 2014.

[30] B. A. Yanikoglu, E. Aptoula, and C. Tirkaz. Sabanci-Okan System at Imageclef 2012:

Combining Features and Classifiers for Plant Identification. In CLEF, 2012.


