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Abstract. We propose to use binary strings as an efficient feature point
descriptor, which we call BRIEF. We show that it is highly discriminative
even when using relatively few bits and can be computed using simple
intensity difference tests. Furthermore, the descriptor similarity can be
evaluated using the Hamming distance, which is very efficient to com-
pute, instead of the L2 norm as is usually done.
As a result, BRIEF is very fast both to build and to match. We compare
it against SURF and U-SURF on standard benchmarks and show that
it yields a similar or better recognition performance, while running in a
fraction of the time required by either.

1 Introduction

Feature point descriptors are now at the core of many Computer Vision technolo-
gies, such as object recognition, 3D reconstruction, image retrieval, and camera
localization. Since applications of these technologies have to handle ever more
data or to run on mobile devices with limited computational resources, there is
a growing need for local descriptors that are fast to compute, fast to match, and
memory efficient.

One way to speed up matching and reduce memory consumption is to work
with short descriptors. They can be obtained by applying dimensionality reduc-
tion, such as PCA [1] or LDA [2], to an original descriptor such as SIFT [3] or
SURF [4]. For example, it was shown in [5–7] that floating point values of the
descriptor vector could be quantized using very few bits per value without loss of
recognition performance. An even more drastic dimensionality reduction can be
achieved by using hash functions that reduce SIFT descriptors to binary strings,
as done in [8]. These strings represent binary descriptors whose similarity can
be measured by the Hamming distance.

While effective, these approaches to dimensionality reduction require first
computing the full descriptor before further processing can take place. In this
paper, we show that this whole computation can be shortcut by directly com-
puting binary strings from image patches. The individual bits are obtained by
comparing the intensities of pairs of points along the same lines as in [9] but with-
out requiring a training phase. We refer to the resulting descriptor as BRIEF.

⋆This work has been supported in part by the Swiss National Science Foundation.
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Our experiments show that only 256 bits, or even 128 bits, often suffice
to obtain very good matching results. BRIEF is therefore very efficient both to
compute and to store in memory. Furthermore, comparing strings can be done by
computing the Hamming distance, which can be done extremely fast on modern
CPUs that often provide a specific instruction to perform a XOR or bit count
operation, as is the case in the latest SSE [10] instruction set.

This means that BRIEF easily outperforms other fast descriptors such as
SURF and U-SURF in terms of speed, as will be shown in the Results section.
Furthermore, it also outperforms them in terms of recognition rate in many
cases, as we will demonstrate using benchmark datasets.

2 Related Work

The SIFT descriptor [3] is highly discriminant but, being a 128-vector, is rela-
tively slow to compute and match. This can be a drawback for real-time appli-
cations such as SLAM that keep track of many points as well as for algorithms
that require storing very large numbers of descriptors, for example for large-scale
3D reconstruction.

There are many approaches to solving this problem by developing faster to
compute and match descriptors, while preserving the discriminative power of
SIFT. The SURF descriptor [4] represents one of the best known ones. Like
SIFT, it relies on local gradient histograms but uses integral images to speed up
the computation. Different parameter settings are possible but, since using only
64 dimensions already yields good recognition performances, that version has
become very popular and a de facto standard. This is why we compare ourselves
to it in the Results section.

SURF addresses the issue of speed but, since the descriptor is a 64-vector
of floating points values, representing it still requires 256 bytes. This becomes
significant when millions of descriptors must be stored. There are three main
classes of approaches to reducing this number.

The first involves dimensionality reduction techniques such as Principal Com-
ponent Analysis (PCA) or Linear Discriminant Embedding (LDE). PCA is very
easy to perform and can reduce descriptor size at no loss in recognition per-
formance [1]. By contrast, LDE requires labeled training data, in the form of
descriptors that should be matched together, which is more difficult to obtain.
It can improve performance [2] but can also overfit and degrade performance.

A second way to shorten a descriptor is to quantize its floating-point coordi-
nates into integers coded on fewer bits. In [5], it is shown that the SIFT descriptor
can be quantized using only 4 bits per coordinate. Quantization is used for the
same purpose in [6, 7]. It is a simple operation that results not only in memory
gain but also in faster matching as computing the distance between short vectors
can then be done very efficiently on modern CPUs. In [6], it is shown that for
some parameter settings of the DAISY descriptor, PCA and quantization can be
combined to reduce its size to 60 bits. However, in this approach the Hamming
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distance cannot be used for matching because the bits are, in contrast to BRIEF,
arranged in blocks of four and hence cannot be processed independently.

A third and more radical way to shorten a descriptor is to binarize it. For
example, [8] drew its inspiration from Locality Sensitive Hashing (LSH) [11] to
turn floating-point vectors into binary strings. This is done by thresholding the
vectors after multiplication with an appropriate matrix. Similarity between de-
scriptors is then measured by the Hamming distance between the corresponding
binary strings. This is very fast because the Hamming distance can be computed
very efficiently with a bitwise XOR operation followed by a bit count. The same
algorithm was applied to the GIST descriptor to obtain a binary description of
an entire image [12]. Another way to binarize the GIST descriptor is to use non-
linear Neighborhood Component Analysis [12, 13], which seems more powerful
but probably slower at run-time.

While all three classes of shortening techniques provide satisfactory results,
relying on them remains inefficient in the sense that first computing a long
descriptor then shortening it involves a substantial amount of time-consuming
computation. By contrast, the approach we advocate in this paper directly builds
short descriptors by comparing the intensities of pairs of points without ever
creating a long one. Such intensity comparisons were used in [9] for classification
purposes and were shown to be very powerful in spite of their extreme simplicity.
Nevertheless, the present approach is very different from [9] and [14] because it
does not involve any form of online or offline training.

3 Method

Our approach is inspired by earlier work [9, 15] that showed that image patches
could be effectively classified on the basis of a relatively small number of pair-
wise intensity comparisons. The results of these tests were used to train either
randomized classification trees [15] or a Naive Bayesian classifier [9] to recognize
patches seen from different viewpoints. Here, we do away with both the classifier
and the trees, and simply create a bit vector out of the test responses, which we
compute after having smoothed the image patch.

More specifically, we define test τ on patch p of size S × S as

τ(p;x,y) :=

{

1 if p(x) < p(y)
0 otherwise

, (1)

where p(x) is the pixel intensity in a smoothed version of p at x = (u, v)⊤.
Choosing a set of nd (x,y)-location pairs uniquely defines a set of binary tests.
We take our BRIEF descriptor to be the nd-dimensional bitstring

fnd
(p) :=

∑

1≤i≤nd

2i−1 τ(p;xi,yi) . (2)

In this paper we consider nd = 128, 256, and 512 and will show in the Results
section that these yield good compromises between speed, storage efficiency,



4 Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua

and recognition rate. In the remainder of the paper, we will refer to BRIEF
descriptors as BRIEF-k, where k = nd/8 represents the number of bytes required
to store the descriptor.

When creating such descriptors, the only choices that have to be made are
those of the kernels used to smooth the patches before intensity differencing and
the spatial arrangement of the (x,y)-pairs. We discuss these in the remainder of
this section.

To this end, we use the Wall dataset that we will describe in more detail in
section 4. It contains five image pairs, with the first image being the same in all
pairs and the second image shot from a monotonically growing baseline, which
makes matching increasingly more difficult. To compare the pertinence of the
various potential choices, we use as a quality measure the recognition rate in
image pairs that will be precisely defined at the beginning of section 4. In short,
for both images of a pair and for a given number of corresponding keypoints be-
tween them, it quantifies how often the correct match can be established using
BRIEF for description and the Hamming distance as the metric for matching.
This rate can be computed reliably because the scene is planar and the homog-
raphy between images is known. It can therefore be used to check whether points
truly correspond to each other or not.

3.1 Smoothing Kernels

By construction, the tests of Eq. 1 take only the information at single pixels into
account and are therefore very noise-sensitive. By pre-smoothing the patch, this
sensitivity can be reduced, thus increasing the stability and repeatability of the
descriptors. It is for the same reason that images need to be smoothed before
they can be meaningfully differentiated when looking for edges. This analogy
applies because our intensity difference tests can be thought of as evaluating the
sign of the derivatives within a patch.

Fig. 1 illustrates the effects of increasing amounts of Gaussian smoothing on
the recognition rates for variances of Gaussian kernel ranging from 0 to 3. The
more difficult the matching, the more important smoothing becomes to achieving
good performance. Furthermore, the recognition rates remain relatively constant
in the 1 to 3 range and, in practice, we use a value of 2. For the corresponding
discrete kernel window we found a size of 9×9 pixels be necessary and sufficient.

3.2 Spatial Arrangement of the Binary Tests

Generating a length nd bit vector leaves many options for selecting the nd test
locations (xi,yi) of Eq. 1 in a patch of size S × S. We experimented with the
five sampling geometries depicted by Fig. 2. Assuming the origin of the patch
coordinate system to be located at the patch center, they can be described as
follows.

I) (X,Y) ∼ i.i.d. Uniform(−S

2
, S

2
): The (xi,yi) locations are evenly distributed

over the patch and tests can lie close to the patch border.
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Fig. 1. Each group of 10 bars represents the recognition rates in one specific stereo pair
for increasing levels of Gaussian smoothing. Especially for the hard-to-match pairs,
which are those on the right side of the plot, smoothing is essential in slowing down
the rate at which the recognition rate decreases.

Fig. 2. Different approaches to choosing the test locations. All except the righmost one
are selected by random sampling. Showing 128 tests in every image.

II) (X,Y) ∼ i.i.d. Gaussian(0, 1

25
S2): The tests are sampled from an isotropic

Gaussian distribution. Experimentally we found s

2
= 5

2
σ ⇔ σ2 = 1

25
S2 to

give best results in terms of recognition rate.

III) X ∼ i.i.d. Gaussian(0, 1

25
S2) , Y ∼ i.i.d. Gaussian(xi,

1

100
S2) : The sampling

involves two steps. The first location xi is sampled from a Gaussian centered
around the origin while the second location is sampled from another Gaussian
centered on xi. This forces the tests to be more local. Test locations outside
the patch are clamped to the edge of the patch. Again, experimentally we
found S

4
= 5

2
σ ⇔ σ2 = 1

100
S2 for the second Gaussian performing best.

IV) The (xi,yi) are randomly sampled from discrete locations of a coarse polar
grid introducing a spatial quantization.
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V) ∀i : xi = (0, 0)⊤ and yi is takes all possible values on a coarse polar grid
containing nd points.

For each of these test geometries we compute the recognition rate and show the
result in Fig. 3. Clearly, the symmetrical and regular G V strategy loses out
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Fig. 3. Recognition rate for the five different test geometries introduced in section 3.2.

against all random designs G I to G IV, with G II enjoying a small advantage
over the other three in most cases. For this reason, in all further experiments
presented in this paper, it is the one we will use.

3.3 Distance Distributions

In this section, we take a closer look at the distribution of Hamming distances
between our descriptors. To this end we extract about 4000 matching points from
the five image pairs of the Wall sequence. For each image pair, Fig. 4 shows the
normalized histograms, or distributions, of Hamming distances between corre-
sponding points (in blue) and non-corresponding points (in red). The maximum
possible Hamming distance being 32 · 8 = 256 bits, unsurprisingly, the distri-
bution of distances for non-matching points is roughly Gaussian and centered
around 128. As could also be expected, the blue curves are centered around a
smaller value that increases with the baseline of the image pairs and, therefore,
with the difficulty of the matching task.

Since establishing a match can be understood as classifying pairs of points
as being a match or not, a classifier that relies on these Hamming distances
will work best when their distributions are most separated. As we will see in
section 4, this is of course what happens with recognition rates being higher in
the first pairs of the Wall sequence than in the subsequent ones.

4 Results

In this section, we compare our method against several competing approaches.
Chief among them is the latest OpenCV implementation of the SURF descrip-
tor [4], which has become a de facto standard for fast-to-compute descriptors.
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Fig. 4. Distributions of Hamming distances for matching pairs of points (thin blue
lines) and for non-matching pairs (thick red lines) in each of the five image pairs of
the Wall dataset. They are most separated for the first image pairs, whose baseline is
smaller, ultimately resulting in higher recognition rates.

We use the standard SURF64 version, which returns a 64-dimensional floating
point vector and requires 256 bytes of storage. Because BRIEF, unlike SURF,
does not correct for orientation, we also compare against U-SURF [4], where the
U stands for upright and means that orientation also is ignored [4].

To this end, we use the six publicly available test image sequences depicted
by Fig. 5. They are designed to test robustness to

– viewpoint changes (Wall, Graffiti1, Fountain),
– compression artifacts (Jpeg1),
– illumination changes (Light1),
– and image blur (Trees1).

For each one, we consider 5 image pairs by matching the first of 6 images to
the other five they contain. Note that, the Wall and Graffiti scenes being planar,
the images are related by homographies that are used to compute the ground

http://www.robots.ox.ac.uk/~vgg/research/affine

http://cvlab.epfl.ch/~strecha/multiview
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Fig. 5. Data sets used for comparison purposes. Each one contains 6 images and we
consider 5 image pairs by matching the first one against all others.

truth. The viewpoints for Jpeg, Light, and Trees being almost similar, the images
are also taken to be related by a homography, which is very close to being
the identity. By contrast, the Fountain scene is fully three-dimensional and the
ground truth is computed from laser scan data. Note also that the 5 pairs in



Lecture Notes in Computer Science: BRIEF 9

Wall and Fountain are sorted in order of increasing baseline so that pair 1|6 is
much harder to match than pair 1|2, which negatively affects the performance
of all the descriptors considered here.

For evaluation purposes, we rely on two straightforward metrics, elapsed CPU
time and recognition rate. The former simply is averaged measured wall clock
time over many repeated runs. Given an image pair, the latter is computed as
follows:

– Pick N interest points from the first image, infer the N corresponding points
in the other from the ground truth data, and compute the 2N associated
descriptors using the method under consideration.

– For each point in the first set, find the nearest neighbor in the second one
and call it a match.

– Count the number of correct matches nc and take the recognition rate to be
r = nc/N .

Although this may artificially increase the recognition rates, only the absolute
recognition rate numbers are to be taken with caution. Since we apply the same
procedure to all descriptors, and not only ours, the relative rankings we obtain
are still valid and speak in BRIEF’s favor. To confirm this, we detected SURF-
points in both images of each test pair and computed their (SURF- or BRIEF-)
descriptors, matched these descriptors to their nearest neighbor, and applied
a standard left-right consistency check. Even though this setup now involves
outliers, BRIEF continued to outperform SURF in the same proportion as before.

In the remainder of this section we will use these metrics to show that the
computational requirements of BRIEF are much lower than those of all other
methods while achieving better recognition rates than SURF on all sequences
except Graffiti. This is explained both by the fact that this dataset requires
strong rotation invariance, which BRIEF does not provide, and by the very
specific nature of the Graffiti images. They contain large monochrome areas on
which our intensity difference tests are often uninformative. In other words, this
data set clearly favors descriptors based on gradient histograms, as has already
been noted [7]. When comparing recognition rates against those of U-SURF,
BRIEF still does better on Wall, Fountain, Trees, and similarly on Light and Jpg.

In other words, on data sets such as those that involve only modest amounts
of in-plane rotation, there is a cost not only in terms of speed but also of recogni-
tion rate to achieving orientation invariance, as already pointed out in [4]. This
explains in part why both BRIEF and U-SURF outperform SURF. Therefore,
when not actually required, orientation correction should be avoided. This is an
important observation because there are more and more cases, such as when
using a mobile phone equipped with an orientation sensor, when orientation in-
variance stops being a requirement. This is also true in many urban contexts
where photos tend to be taken at more or less canonical orientations and for
mobile robotics where the robot’s attitude is known.

Recognition Rate as a Function of Descriptor Size Since many practical
problems involve matching a few hundred feature points, we first use N = 512 to
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compare the recognition rate of BRIEF using either 128, 256, or 512 tests, which
we denote as BRIEF-16, BRIEF-32, and BRIEF-64. The trailing number stands
for the number of bytes required to store the descriptor. Recall that since both
SURF and U-SURF return 64 floating point numbers, they require 256 bytes of
storage and are therefore at least four times bigger.

As shown in Fig. 6, BRIEF-64 outperforms SURF and U-SURF in all se-
quences except Graffiti while using a descriptor that is four times smaller. Un-
surprisingly, BRIEF-32 does not do quite as well but still compares well against
SURF and U-SURF. BRIEF-16 is too short and shows the limits of the approach.

To show that this behavior is not an artifact for the number N of feature
points used for testing purposes, we present similar recognition rates for values of
N ranging from 512 to 4096 in Fig. 7. As could be expected, the recognition rates
drop as N increases for all the descriptors but the rankings remain unchanged.

In Fig. 8, we use the wall data set to plot recognition rates as a function of
the number of tests. We clearly see a saturation effect beyond 200 tests for the
easy cases and an improvement up to 512 for the others. This tallies with the
results of Fig. 6 showing that BRIEF-32 (256 tests) yields near optimal results
for the short baseline pairs and that BRIEF-64 (512 tests) is more appropriate
for the others.

Influence of Feature Detector To perform the experiments described above,
we used SURF keypoints so that we could run both SURF, U-SURF, and BRIEF
on the same points. This choice was motivated by the fact that SURF requires an
orientation and a scale and U-SURF a scale, which the SURF detector provides.

However, in practice, using the SURF detector in conjunction with BRIEF
would negate part of the considerable speed advantage that BRIEF enjoys over
SURF. It would make much more sense to use a fast detector such as [16]. To
test the validity of this approach, we therefore recomputed our recognition rates
on the Wall sequence using CenSurE keypoints instead of SURF keypoints. As
can be seen in Fig. 9-left, BRIEF works even slightly better for CenSurE points
than for SURF points.

Orientation Sensitivity BRIEF is not designed to be rotationally invariant.
Nevertheless, as shown by our results on the 5 test data sets, it tolerates small
amounts of rotation. To quantify this tolerance, we take the first image of the
Wall sequence with N = 512 points and match these against points in a rotated
version of itself, where the rotation angle ranges from 0 to 180 degrees.

Fig. 9-right depicts the recognition rate of BRIEF-32, SURF, and U-SURF.
Since the latter does not correct for orientation either, its behavior is very similar
or even a bit worse than that of BRIEF: Up to 10 to 15 degrees, there is little
degradation followed by a precipitous drop. SURF, which attempts to compen-
sate for orientation changes, does better for large rotations but worse for small
ones, highlighting once again that orientation-invariance comes at a cost.

Center Surrounded Extrema, or CenSurE for short, is implemented in OpenCV 2.0
under the alias name Star detector, following the shape of the CenSurE detector.
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Fig. 6. Recognition rates on (a) Wall (b) Fountain. (c) Graffiti (d) Trees (e) Jpg (f)
Light. The trailing 16, 32, or 64 in the descriptor’s name is its length in bytes. It is
much shorter than those of SURF and U-SURF, which both are 256. For completeness,
we also compare to a recent approach called Compact Signatures [7] which has been
shown to be very efficient. We obtained the code from OpenCV’s SVN repository.

To complete the experiment, we plot a fourth curve labeled as O-BRIEF-
32, where the “O” stands for orientation correction. In other words, we run
BRIEF-32 on an image rotated using the orientation estimated by SURF. O-
BRIEF-32 is not meant to represent a practical approach but to demonstrate
that the response to in-plane rotations is more a function of the quality of the
orientation estimator rather than of the descriptor itself, as evidenced by the
fact that O-BRIEF-32 and SURF are almost perfectly superposed.
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Fig. 8. Recognition rate as a function of the number of tests on Wall. The vertical and
horizontal lines denote the number of tests required to achieve the same recognition
rate as U-SURF on respective image pairs. In other words, BRIEF requires only 58,
118, 184, 214, and 164 bits for Wall 1|2, ..., 1|6, respectively, which compares favorably
to U-SURF’s 64 · 4 · 8 = 2048 bits (assuming 4 bytes/float).

Estimating Speed In a practical setting where either speed matters or com-
putational resources are limited, not only should a descriptor exhibit the high-
est possible recognition rates but also be computationally as cheap as possible.
Matching a number of points between two images typically involves three steps:

1) Detecting the feature points.
2) Computing the description vectors.
3) Matching, which means finding the nearest neighbor in descriptor space.

For affine-invariant methods such as SURF, the first step can involve a costly
scale-space search for local maxima. In the case of BRIEF, any fast detector such
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Fig. 9. Left: Using CenSurE keypoints instead of SURF keypoints. BRIEF works
slightly better with CenSurE than with SURF keypoints. Right: Recognition rate when
matching the first image of the Wall dataset against a rotated version of itself, as a
function of the rotation angle.

as CenSurE [16] or FAST [17] can be used. BRIEF is therefore at an advantage
there.

The following table gives timing results for the second and third steps for
512 keypoints, measured on a 2.66 GHz/Linux x86-64 machine, in milliseconds:

BRIEF-16 BRIEF-32 BRIEF-64 SURF-64
Descriptor computation 8.18 8.87 9.57 335
Matching (exact NN) 2.19 4.35 8.16 28.3

As far as building the descriptors is concerned, we observe a 35- to 41-fold
speed-up over SURF where the time for performing and storing the tests remains
virtually constant. U-SURF being about 1/3 faster than SURF [4], the equivalent
number should be an 23- to 27-fold speed increase. Because BRIEF spends by far
the most CPU time with smoothing, approximate smoothing techniques based on
integral images may yield extra speed. For matching, we observe a 4- to 13-fold
speed-up over SURF. The matching time scales quadratically with the number
of bits used in BRIEF but the absolute values remain extremely low within the
useful range. Furthermore, in theory at least, these computation times could be
driven almost to zero using the POPCNT instruction from SSE4.2 [10]. Because
only the latest Intel Core i7 CPUs support this instruction, we were unable to
exploit it and used a straight-forward SSE2/SSE4.1 implementation instead.

5 Conclusion

We have introduced the BRIEF descriptor that relies on a relatively small num-
ber of intensity difference tests to represent an image patch as a binary string.
Not only is construction and matching for this descriptor much faster than for
other state-of-the-art ones, it also tends to yield higher recognition rates, as long
as invariance to large in-plane rotations is not a requirement.

It is an important result from a practical point of view because it means
that real-time matching performance can be achieved even on devices with very

The BRIEF code being very simple, we will be happy to make it publicly available.
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limited computational power. It is also important from a more theoretical view-
point because it confirms the validity of the recent trend [18, 12] that involves
moving from the Euclidean to the Hamming distance for matching purposes.

In future work, we will incorporate orientation and scale invariance into
BRIEF so that it can compete with SURF and SIFT in a wider set of situa-
tions. Using fast orientation estimators, there is no theoretical reason why this
could not be done without any significant speed penalty.
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