
Compact Signatures for High-speed Interest Point Description and Matching ∗

Michael Calonder, Vincent Lepetit, Pascal Fua

EPFL, Lausanne, Switzerland

{first.last}@epfl.ch

Kurt Konolige, James Bowman, Patrick Mihelich

Willow Garage, Menlo Park, CA, U.S.A.

{konolige,jamesb,mihelich}@willowgarage.com

Abstract

Prominent feature point descriptors such as SIFT and

SURF allow reliable real-time matching but at a compu-

tational cost that limits the number of points that can be

handled on PCs, and even more on less powerful mobile

devices. A recently proposed technique that relies on statis-

tical classification to compute signatures has the potential

to be much faster but at the cost of using very large amounts

of memory, which makes it impractical for implementation

on low-memory devices.

In this paper, we show that we can exploit the sparseness

of these signatures to compact them, speed up the compu-

tation, and drastically reduce memory usage. We base our

approach on Compressive Sensing theory. We also high-

light its effectiveness by incorporating it into two very dif-

ferent SLAM packages and demonstrating substantial per-

formance increases.

1. Introduction

The ability to very quickly compute local descriptors on

regular PCs or less powerful handheld devices has recently

become a critical component of many applications, in par-

ticular for localization or object recognition purposes. A

recent approach [6] introduced signatures, a local descrip-

tor that can be computed much faster than SIFT [14] or

SURF [5]: Given a Fern classifier [19] trained offline to

recognize a number of keypoints extracted from an image

database, the signature of a new keypoint is taken to be the

response of the Fern and can be used to match it by perform-

ing a nearest neighbor search among signatures. Computing

a Fern response is extremely fast because it only requires a

small number of elementary operations.

However, even though the authors of [6] noted that the

signature vectors are long but sparse, they did not exploit

it. As a result, matching them still involves many more

elementary operations than absolutely necessary. More-

over, evaluating the signatures requires storing many dis-

∗This work has been supported in part by the PEGASE EC project.

tributions of the same size as themselves and, therefore,

large amounts of memory. Our own implementation of this

method requires around 100 MB to store these distributions,

before even starting to learn signatures for new keypoints.

This makes it difficult to exploit its speed advantage on

low-power low-memory devices. And even though this is

not as much an issue on a standard PC, more efficient de-

scriptor construction and matching can enable new appli-

cations, such as real-time place recognition, that are heavy

consumers of descriptor matching.

In this paper, we show that compacting the signatures

by multiplying them by random projection matrices solves

this problem and leads to an implementation that is both

faster and far more memory efficient. As recent research

in Compressive Sensing [2, 4, 9] shows, because the sig-

natures are sparse, these random projections entail almost

no information loss and this is what gives our approach its

power. Remarkably, as will be shown in the experimental

section, using either a Random Ortho-Projection or a PCA

projection yields virtually the same results. This sheds light

on the inner workings of the many methods [16], which per-

form PCA dimensionality reduction of SIFT-style descrip-

tors. It suggests that their success owes more to the under-

lying sparsity of these descriptors than to PCA itself.

More significantly, our approach is different from earlier

ones that compute high-dimensional descriptors and then

reduce their dimensionality. We can perform the projec-

tions offline: since we use Ferns to compute the signatures

by averaging distributions and since the projection is linear,

we can project these distributions offline and only compute

the means online. As a result, we never explicitly have to

handle high-dimensional vectors, which is key to reducing

memory requirements by a factor of about 20 to 45 with

respect to the original approach [6]. Testing on standard

benchmarks shows a matching performance similar to that

of the original approach and better than that of SURF [5],

while being about 4 times faster than the former and 32

times faster than the latter when running on the same CPU.

Computing 1000 signatures takes 15 ms and 4.1 MB of

RAM on a regular Intel 2.4 GHz PC. Since a SLAM algo-

rithm such as [11, 10] typically needs to learn far fewer than

1000 points per frame, we have been able to successfully

integrate our algorithm into the publicly available PTAM

code [11]. This yields automated and reliable reinitializa-

tion of the algorithm whenever needed, as shown in Fig. 5,

without slowing down the tracking.

The real-time capability of our approach has also been

demonstrated in an online robotics application [12], where

it was used for geometric matching of images as part of

a place recognition algorithm. Non-approximative feature

matching is the time-critical component of the algorithm,

and compact signatures enable continuous online relocal-

ization with no false positives.

2. Related Work

State-of-the-art approaches to feature point matching

can be partitioned into two main classes, those that rely

on invariant descriptors and those that treat matching as a

classification problem. For the purpose of this discussion,

please bear in mind that our approach can handle several

thousand signatures at frame-rate on a standard CPU

without requiring GPU acceleration.

Invariant Descriptors. Methods in this class rely on local

descriptors designed to be invariant, or at least robust, to

specific image distortions [20, 14]. They often require scale

and orientation estimates provided by a keypoint detector.

Among these, the SIFT descriptor [14], computed from lo-

cal gradient histograms, has been shown to work remark-

ably well, especially if one rectifies the image patches sur-

rounding the feature points [15, 17]. However, because the

SIFT descriptor is complex, it is relatively slow to evaluate.

A standard implementation on a modern PC requires ap-

proximately 1 ms per feature point, which limits the number

of points that can be handled simultaneously to less than 50

if one requires frame-rate performance and it takes a GPU

implementation to achieve a 10-fold speed-up [21].

SURF [5] is closely related to SIFT and achieves a 3 to

7-fold speed increase by using integral images and box fil-

ters to compute the descriptor, which means that from 150

to 350 keypoints can be handled while still achieving high-

quality matching. Even though matching SURF descriptors

can also be sped up using a GPU [7], such a GPU implemen-

tation is still about 7% slower than matching signatures on

an ordinary CPU, not to mention the fact that computing the

descriptors in the first place is about 32 times slower. Nev-

ertheless, to the best of our knowledge, SURF currently rep-

resents one of the best compromises between speed and re-

liability and we use it to provide the baseline against which

to compare our approach.

Of course, both SIFT and SURF already are unquestion-

ably effective for well-designed real-time applications. For

example, natural feature tracking at frame rates of up to

20 Hz has recently been demonstrated on cell phones [24],

which is very impressive but requires a highly sophisticated

approach to combining detection and tracking to avoid

computing and matching too many descriptors. Similarly,

feature points have been used as visual words [22] for

fast image retrieval in very large image databases [18].

The feature points are labeled by hierarchical k-means

clustering of their SIFT descriptors, which allows the use

of very many visual words. However, it is worth noting

that the performance is measured in terms of the number

of correctly retrieved documents rather than the number of

correctly classified feature points. For applications such as

pose estimation or SLAM, the latter criterion is much more

important.

Matching as Classification. A second class of approaches

to feature point matching relies on statistical learning tech-

niques to compute a probabilistic model of the patches sur-

rounding them. The one-shot approach of [8] uses PCA

and Gaussian Mixture Models but does not account for per-

spective distortion. Since the set of possible appearances of

patches around an image feature, seen under changing per-

spective and lighting conditions, can be treated as a class,

it was later shown that a classifier based on Randomized

Trees [1] can be trained to recognize them independently

of pose [13]. This is done using a database of patches that

is obtained by warping keypoints of a reference image by

randomly chosen homographies. The resulting algorithm

has very fast run-time performance but requires a computa-

tionally intensive training phase that precludes online learn-

ing of new feature points. This limitation has been par-

tially lifted by optimizing the design of the classifier and

exploiting the power of modern graphic cards [25], but still

only allows for incremental learning of relatively few fea-

ture points.

It was recently shown that the slow training phase could

be eliminated by describing a new keypoint in terms of its

signature, taken to be the set of responses of a Fern classi-

fier trained offline to recognize a number of keypoints ex-

tracted from an image database [6]. In practice, this signa-

ture is a long sparse vector that effectively characterizes the

point. Its computation is very fast but requires RAM storage

of many large distributions to evaluate the Fern’s response.

In this paper, we explicitly exploit the sparsity of the sig-

natures to achieve an implementation that is both fast and

memory efficient.

3. Method

We first briefly summarize the approach to keypoint de-

scription set forth in [6] and formalize its memory require-

ments. We then show how we take advantage of Compres-

sive Sensing [2, 4, 9] insights to turn the sparse signature

vectors it produces into compact ones saving memory while

speeding up the computation.

3.1. Sparse Signatures

The signature vectors introduced in [6] describe the ap-

pearance of an image patch p in terms of the responses of

a Fern classifier [19] trained offline to recognize a prede-

fined set B of N reference keypoints. Let this base classi-

fier be composed of J Fern units {Fi}
J
i=1

, which are binary

structures such as those depicted in Fig. 1. Each Fi parti-

tions patches into 2d leaves by performing d binary com-

parisons between pixel intensities. Each leaf contains an

N -dimensional vector ti(p) storing the probabilities that p

is one of the N reference keypoints given p reached that

leaf. The full response vector r(p) for all J Ferns is taken

to be

r(p) =
1

Z

∑

1≤i≤J

ti(p) , (1)

where Z a normalizer s.t. its elements sum to one1. In prac-

tice, when p truly corresponds to one of the reference key-

points, r(p) contains one element that is close to one where

all others are close to zero. Otherwise, it contains a few rel-

atively large values that correspond to reference keypoints

that are similar in appearance and small values elsewhere.

Furthermore, this distribution of small and large values is

highly invariant to changes in viewpoint and lighting. By

definition, the sparse signature is given by

s(p) = Θ(r(p), θ) , (2)

where Θ(·, θ) represents element-wise thresholding with

threshold θ. It is an N -dimensional vector with only a

few non-zero elements that is mostly invariant to different

imaging conditions and therefore presents a useful descrip-

tor for matching purposes. The whole process is depicted

by Fig. 1 TOP.

Good parameter choices to achieve good matching per-

formance are J = 50, d = 10, and N = 500 and therein

lies the drawback of this approach. To perform the compu-

tation described above, we need for each of the 2d leaves in

each of the J Ferns an N -dimensional vector of floats. This

means that the total memory requirement to store the Fern

classifier is

µ = b J 2d N bytes , (3)

where b is the number of bytes required to store a float, usu-

ally 4 or 8. As discussed earlier, this works out to more

than 100 MB that are needed even before starting to learn

descriptors for any new keypoint.

3.2. Compact Signatures

The Compressive Sensing literature [2, 4, 9] shows

that high-dimensional sparse vectors can be reconstructed

1Note that this response is computed as the average response as in [1]

and not as a Naive Bayesian score as in [19].

Figure 1. Illustration of the signature creation process for a new

keypoint surrounding patch p. TOP Creating a sparse signature.

(a) p is dropped through all ferns Fi, yielding J ti vectors. (b) All

ti are summed up to compute r(p) of Eq. 1. (c) Only in the case

of sparse signatures, the r(p) are thresholded yielding a sparse

signal. BOTTOM For a compact signature, instead of summing the

ti, we sum the much shorter t
′

i and skip the thresholding step.

from their linear projections into much lower-dimensional

spaces. Many kinds of matrices can be used for this

purpose. As discussed in the Appendix, Random Ortho-

Projection (ROP) matrices are a good choice and can be

easily constructed by applying a Gram-Schmidt orthonor-

malization process to a random matrix [23].

This has provided us with the key insight of this paper,

which is that the sparse signature vectors of Section 3.1 can

be turned into much-lower dimensional ones using the same

kind of projection matrix. This reduces the memory require-

ments at no loss in matching performance.

More formally, let Φ ∈ R
M×N with M ≪ N be a ROP

matrix. Given the Fern’s response r(p) of Eq. 1, we take

the compacted signature to be the M -dimensional vector

s′(p) = Φ r(p). The key to the effectiveness of our ap-

proach is that s′(p) can be evaluated without explicitly per-

forming the matrix multiplication or even calculating r(p).
Since

s′(p) = Φ
[1

Z

∑

1≤i≤J

ti(p)
]

=
∑

1≤i≤J

1

Z
Φ ti(p) , (4)

s′(p) can be computed by simply summing the appropriate

compressed leaf vectors t′i := 1

Z
Φ ti(·) ∈ R

M , all of which

can be computed offline once the base Fern classifier has

been trained. See Fig. 1 BOTTOM for an illustration.

In Eq. 3, this replaces N by M ≪ N and divides the

memory requirements by N/M . Furthermore, evaluating
∑J

i=1
t′i requires again N/M times fewer elementary oper-

ations than Eq. 1 would. This is central as it is done every

time a descriptor is computed.

Note that when computing s′, we used the Fern’s re-

sponse vector of Eq. 1 instead of the thresholded signature

of Eq. 2. This is justified by Compressive Sensing theory

that only requires the to-be-compressed signal to be inher-

ently sparse without making the sparsity explicit.

3.3. Quantization

The computation can be further streamlined by quantiz-

ing the compressed leaf vectors t′i and representing them

using one byte per element instead of the 4 bytes required

by floats, which reduces memory requirements by an addi-

tional factor 4.

Let {tji}
M
j=1

denote the elements of t′i. Then we define

the elements {t̄ji}
M
j=1

of the quantized version t̄i of t′i as

t̄ji =

⌊

min(tji , p95) − p0

p95 − p0

(2q − 1)

⌋

, (5)

where q the number of bits required to code individual el-

ements of the signature and p0 denotes the minimum value

occurring over all leaves in the current Fern and p95 is the

corresponding 95% percentile. We noticed empirically that

using this percentile actually increases stability. Since we

use bytes to represent the signatures, we could use q = 8.

However, taking q = 4 does not affect matching perfor-

mance but allows us to more effectively take advantage of

hardware acceleration when computing the full signature
∑J

i=1
t̄′i.

There are two appealing ramifactions to the quantization.

First, experiments showed that after the quantization we can

reduce the depth d of the Ferns from 10 to 9 without any loss

in accuracy, and hence reduce the memory requirements by

another factor of 2. Second, we observe a speed-up in cre-

ating the compact signature2

s̄(p) =
(

∑

1≤i≤J

t̄i(p)
)

⊲ (⌈log
2
J⌉ + q − 8) , (6)

where a ⊲ b denotes a bit-wise right shift of each of the el-

ements of a by b bits. Storing the sum of J leaf values, each

with a maximum value 2q − 1, requires ⌈log
2
J⌉ + q bits.

However, experiments showed that the least significant bits

of those values do not carry substantial information. Hence,

we can fit them into one byte of the final signature by a

right-shift by ⌈log
2
J⌉+ q − 8 bits. In our implementation,

J = 48 and q = 4, which means that we shift by 2.

The speed-up in signature creation arises from the fact

that the summations, now of bytes and not of floats any-

more, can be carried out faster. This applies to native C

code of course, but if supported by the hardware, also allows

for vectorization using SIMD3 instructions. In addition, the

2Before, we referred to the s
′ as compacted signatures. For the remain-

der of the paper, when we mention compact signatures we always refer to

the quantized, short vectors s̄.
3Single Instruction Multiple Data, in our case SSE2.

same speed-up argument applies to nearest neighbor search

as well, especially as we found the L1 norm resulting in

the same ordering of distances among signatures as the L2

norm. For this reason we always use the L1 norm to match

compact signatures, as it is computed more efficiently.

4. Results

In this section we first compare, both in terms of match-

ing performance and speed, our compact signatures against

the original sparse signatures [6] that inspired this work and

against SURF-64 [5], which is a broadly-used approach for

real-time applications. We then discuss the integration of

our signatures into two SLAM software packages [12, 25]

for reinitialization and place recognition purposes, which

leads to a substantial performance increase in both cases.

4.1. Comparing with Sparse Signatures and SURF

To assess matching performance and speed, we use the

four publicly available datasets: Wall4, Light4, Jpg4 and

Fountain5. The Wall and Light scenes are planar and the

relationship between two images in the database can be ex-

pressed by a homography. By constrast the Fountain scene

is fully three-dimensional and we have access to an accurate

laser-scan that can be used to establish explicit one-to-one

correspondences at arbitrary locations. The Jpg dataset was

generated by simply saving a reference image at various lev-

els of compression, keeping all other parameters constant.

4.1.1 Matching Performance

The Wall and Fountain datasets test for robustness to view-

point changes, the Light one for changes lighting condi-

tions, and the Jpg one for the influence of JPG compres-

sion artifacts. All three kinds of robustness are important in

practice.

Given several images from the same database, we take

m|n to indicate that we use image m as a reference image

from which we extract keypoints that we try to match in im-

age n. For the Wall and Light datasets, we tested {1|2, . . . ,

1|6}, corresponding to substantial changes in viewpoint and

lighting, respectively. From the Jpg dataset, we tested {1|2,

. . . , 1|5}, and from the Fountain dataset only 1|2 and 1|3, as

for this dataset the number of matches quickly decays due

to occlusion.

We define the recognition rate as the ratio of the num-

ber of correct matches to the total number of interest-points

in the reference image. To compute it, we first extract a

number of SURF keypoints from the reference image and

compute the coordinates of their corresponding points in

4avail. http://www.robots.ox.ac.uk/∼vgg/research/

affine
5avail. http://cvlab.epfl.ch/∼strecha/multiview

1 | 2 1 | 3 1 | 4 1 | 5 1 | 6
0

10

20

30

40

50

60

70

80

test case

re
co

g
n
iti

o
n
 r

a
te

 [
%

]

WALL dataset

sparse signatures−176
compact signatures−176
compact signatures−88
SURF−64

1 | 2 1 | 3 1 | 4 1 | 5 1 | 6
0

20

40

60

80

100

test case

re
co

g
n

it
io

n
 r

a
te

 [
%

]

LIGHT dataset

sparse signatures−176
compact signatures−176
compact signatures−88
SURF−64

1 | 2 1 | 3
0

10

20

30

40

50

60

70

80

test case

re
co

g
n
iti

o
n
 r

a
te

 [
%

]

FOUNTAIN dataset

sparse signatures−176
compact signatures−176
compact signatures−88
SURF−64

1 | 2 1 | 3 1 | 4 1 | 5
0

20

40

60

80

100

test case

re
co

g
n

iti
o

n
 r

a
te

 [
%

]

JPG dataset

sparse signatures−176
compact signatures−176
compact signatures−88
SURF−64

Figure 2. Recognition rate on four datasets, testing practically most relevant invariance requirements of keypoint descriptors. The number

following the method name indicates the descriptor length. Note that SURF uses floats whereas compact signatures consist of bytes.

the test image using the known geometric relationship be-

tween the two. We then evaluate the SURF descriptors and

the sparse and compact signatures on the reference and test

points which yields 3 × 2 = 6 sets of descriptors that we

store in a database. Matching a point in a reference image

then simply amounts to finding the nearest neighbor to its

descriptor in the appropriate database. Note that not de-

tecting interest-points in the test image but using geometry

instead prevents repeatability problems of the keypoint de-

tector from influencing our results. Furthermore, since we

apply the same procedure for SURF and for compact signa-

tures, we do not favor either technique over the other. In the

experiments depicted by Figure 2, we use sparse signatures

of size N = 500 and compact signatures of size M either

88 or 176, the latter being divisible by 16, which allows for

code optimization. The corresponding memory usage and

number of bytes per descriptor are given in Table 1. These

experiments show that:

• Provided that we use the M = 176 compact signa-

tures, the dimensionality reduction does not impact

performance, as predicted by the Compressive Sens-

Classifier Descriptor

Sparse Sig. 93.75 MB ≈ 175B

Compact Sig.-176 4.13 MB 176 B

Compact Sig.-88 2.06 MB 88 B

SURF-64 n/a 256 B

Table 1. Memory usage statistics. Using the compact signatures

drastically reduces the memory requirements. Furthermore, even

though the M = 176 compact descriptor is longer than the SURF

descriptor, it requires less storage because it is made of bytes in-

stead of floats.

ing theory.

• In 14 out of a total of 16 test cases the signature-based

methods are slightly more accurate than SURF.

• The performance drops slightly if we use M = 88,

which might be warranted if we need to run on a very

low-memory device.

In other words, M is a parameter that lets us control the

trade off between memory requirements and matching reli-

ability and there is no reason to ever go beyond M = 176,

as further illustrated by Figure 3. As argued in the intro-

100 200 300 400 500
0

10

20

30

40

50

60

70

80
X: 170
Y: 79.49

compressed signature length M

re
c
o

g
n

it
io

n
 r

a
te

 [
%

]

Test set: Fountain 1 | 2

X: 85
Y: 75.2

∆M = −50%

∆rr = −4.3%

Figure 3. Recognition rate as a function of the compact signature

length M . It stops increasing significantly beyond M = 170.

1 | 2 1 | 3 1 | 4 1 | 5 1 | 6
0

10

20

30

40

50

60

70

80
WALL dataset

test case

re
co

g
n
iti

o
n
 r

a
te

 [
%

]

compact signatures (ROP)
compact signatures (PCA)

Figure 4. Recognition rate on the Wall dataset using compact sig-

natures. The plot compares two different methods for dimension-

ality reduction: ROP and PCA.

duction, the effectiveness of the presented approach arises

from the intrinsic sparseness of the signatures, rather than

from the method employed for dimensionality reduction. To

demonstrate this, we compare the performance of compact

signatures based on a Random Ortho-Projection (ROP) to

one based on principal component analysis (PCA). To as-

sess the effect of PCA, we simply substitute the M × N
ROP projection matrix Φ in Eq. 4 by the PCA matrix. The

M rows of the PCA matrix contain by definition the eigen-

vectors of the covariance matrix of the Fern’s leaf distri-

butions, which can be computed once the training of the

Fern finished. Hence using PCA instead of a ROP does

not induce any structural change of the presented method.

Interestingly, as shown in Figure 4, it does not result in any

significant change in recognition rate. We believe this has

potential implications for all methods that rely on PCA for

dimensionality reduction of image descriptors. Their dis-

criminative power arises from the underlying sparsity of the

representation and the correct theoretical framework to un-

derstand their behavior might be that of Compressive Sens-

ing theory.

4.1.2 CPU Time and Memory Consumption

In Table 2 we summarize the time spent on a 2.4 GHz ma-

chine both to compute the descriptor and to perform an

exhaustive nearest-neightbor search (n2) for matching pur-

poses. In this case, 512 keypoints were used. The values

for SURF are given in [5, 7] and were slightly rescaled in

order to make all values comparable on a 2.4 GHz CPU.

The GPU implementation [7] is a general one for matching

floating point vectors and thus also applicable to SURF-64.

Description n2-Matching

(512 kpts) (512×512 kpts)

Sparse Signatures 31.3 ms 27.7 ms

Compact Signatures-176 7.9 ms 6.3 ms

SURF-64 255 ms 200 ms

SURF-64 + ANN – 91 ms

SURF-64 on GPU – 6.8 ms

Table 2. Timings. All values were measured on the CPU, except

for the last row. ANN: Approximative Nearest Neighbor.

4.2. Applications

SLAM Relocalization. Thanks to their high efficiency,

compact signatures are well suited to be employed in

ressource-demanding real-time applications. To demon-

strate this, we integrated them in a recent SLAM system

called Parallel Tracking and Mapping [11, 10]. PTAM runs

in parallel in two threads, one estimating the pose from

the map and one constantly bundle-adjuststing the map and

keyframes, which are special frames that have the full 3D

pose attached and are collected from time to time. Their

purpose is to allow for automated re-initialization when the

system gets lost, for example due to total occlusion or image

blur from too fast movement. In the publicly availabe code,

relocalization is achieved by creating a small blurry version

of the actual image from the camera and matching this via

a sum of squared differences-approach with all the small

blurry images of the keyframes. Taking the best match, the

two blurry images are aligned in a least square sense, thus

yielding a 2D rotation plus translation that allows–together

with the 3D information of the best keyframe–to estimate

the 3D position of the frame in question.

The blurry image idea works well but is not suited for

large viewpoint changes. This restriction can be removed

by employing compact signatures to match frames based

on keypoints. For every new keyframe, the signatures of

the 100 strongest keypoints are computed and stored along

with the keyframe. When relocalizing, the 100 strongest

keypoints’ signatures of the new frame are matched against

those of every keyframe, which yields the best match along

with a score that can be thresholded to decide if the matched

frame is the correct one. No geometric consistency check is

applied. In the typically small environment PTAM is de-

Figure 5. Screenshot from the PTAM system running in a desktop

environment.

signed for, the number of keyframes hardly exceeds a few

tens making exhaustive search among the keyframes fea-

sible while still operating in real-time. Figure 5 gives an

idea from the PTAM system in action. The tripods in the

top left quadrant are the poses where keyframes were taken.

When lost in some reasonable distance from a keyframe,

the compact signatures allow for a quick and accurate re-

localization. The map contains about 3700 points and 38

keyframes.

Place Recognition. We also incorporated our compact

signatures in a view-based stereo Visual SLAM system [12]

for online place recognition purposes. It relies on a view-

based map that consists of individual views and metric

6DOF links between them formed by geometric matching.

The map is optimized online to minimize the total error of

the links among the views.

Fig. 6 LEFT depicts the map obtained for a large indoor

environment from six different runs using only information

from stereo images. Place recognition (PR) was success-

fully used to patch together the different runs, and to close

large and small loops within a run and among the different

runs.

To close loops and recover from localization failures, we

employ an online PR system that matches the current refer-

ence view against the whole map. It involves a vocabulary

tree prefilter [18] that proposes candidate matches followed

by a robust geometric SfM consistency check to confirm

valid candidates.

For the geometric check, we need to generate n2 matches

from the reference view features to the candidate view fea-

tures. Typically there are 300 features per view, and we

check the top 15 candidates. Using compact signatures for

the features has several advantages: They are robust to light-

ing and viewpoint changes, they are cheap to compute, and

accurate n2 matching is very fast. Fig. 6 RIGHT shows the

timing for PR and map optimization over the course of a run

with 1200 keyframes. Note that the geometric check has a

constant average time of around 70 ms, about half of which

is from n2 matching. Using SURF-64, the best available

alternative, would slow the matching step to over 500 ms,

dominating the time budget for place recognition.

5. Conclusion and Future Work

We have proposed a highly efficient feature point de-

scriptor with a matching performance comparable to some

of the best state-of-the-art methods while being either much

faster or much less greedy in terms of memory. The strength

of our compact signatures comes from explicitly exploiting

the sparsity of the signatures produced by Generic Trees [6]

and their theoretical underpinning comes from Compressive

Sensing theory.

In practice, compact signatures require almost 50 times

less memory than sparse ones and can be computed and

matched several times faster. This makes them ideally

suited for implementation on low-memory low-power de-

vices, which is something we will demonstrate in future

work by implementing place recognition algorithms on such

devices.

Appendix

In this appendix, we link our approach to the Compres-

sive Sensing theory [2, 4, 9] which provides the theoretical

underpinning for using the ROP matrices of Section 3.2.

It has been shown that the dimensionality of sparse vec-

tors xi can be reduced by applying the linear transformation

T : R
N → R

M , yi = Φ xi, Φ ∈ R
M×N (7)

where M ≪ N , without information loss for an appropri-

ately chosen matrix Φ. This means that the transformation

exhibits the following two properties:

1. It preserves the metric structure of the original space,
which means that ∀xi ∈ R

N , ∀yi ∈ R
M

‖x1 − x2‖ < ‖x1 − x3‖ → ‖y1 − y2‖ < ‖y1 − y3‖ ,

where ‖·‖ is the Euclidean 2-norm.

2. Any x can be uniquely recovered from y.

These two properties are provably fulfilled if Φ has the k-

Restricted Isometry Property (k-RIP) w.r.t. all k-sparse vec-

tors x. This requires that there exists a sufficiently small

constant δk > 0 such that

(1 − δk) ‖x‖
2

2
≤ ‖Φx‖

2

2
≤ (1 + δk) ‖x‖

2

2
. (8)

δk measures the degree to which Φ deviates from the perfect

RIP where δk = 0. In other words, the k-RIP ensures that

A

B

C

D

E

F

Node index

T
im

e
(m

s
)

Optimization

Geometric check
Get 15 candidates

Figure 6. LEFT Map created online solely from stereo views during 6 robot runs in a large indoor environment. Place recognition is used to

stitch them together and close loops. A laser-based map is shown in light gray underlining that the trajectories of the robot are reasonable.

The map has 1228 views and 3826 connecting links. Distances are in meters. RIGHT Timing for view integration of keyframes into a

view-based map.

all submatrices of Φ ∈ R
M×k are close to being isometries

and hence distance preserving.

Even though designing such a Φ is in general NP-

complete, both i.i.d. matrices and ROP ones have the k-RIP

with probability almost 1, provided that M ≥ c k log(N/k)
with c being small constant [3].

In our experiments, we found that ROPs actually perform

about 10% better than purely random ones, which is why

we use them. A M × N , M ≪ N , ROP matrix can be

constructed via Gram-Schmidt orthonormalization.

References

[1] Y. Amit and D. Geman. Shape Quantization and Recognition

with Randomized Trees. Neural Computation, 1997.

[2] R. Baraniuk. Compressive sensing. Signal Processing,

24(4):118–120, 2007.

[3] R. Baraniuk, M. Davenport, R. Devore, and M. Wakin. A

simple proof of the restricted isometry property for random

matrices. Constructive Approximation, 2007.

[4] R. G. Baraniuk, M. Davenport, R. A. DeVore, and M. Wakin.

A simple proof of the restricted isometry property for ran-

dom matrices. Construct. Approximation, 2008.

[5] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Surf: Speeded

up robust features. CVIU, 10(3):346–359, 2008.

[6] M. Calonder, V. Lepetit, and P. Fua. Keypoint signatures for

fast learning and recognition. In ECCV’08.

[7] A. Chariot and R. Keriven. Gpu-boosted online image

matching. In ICPR’08.

[8] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of

object categories. PAMI, 28(4):594–611, 2006.

[9] C. Hegde, M. Wakin, and R. Baraniuk. Random projections

for manifold learning. In NIPS’08.

[10] G. Klein and D. Murray. Improving the agility of keyframe-

based SLAM. In ECCV’08.

[11] G. Klein and D. Murray. Parallel tracking and mapping for

small AR workspaces. In ISMAR’07.

[12] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calon-

der, V. Lepetit, and P. Fua. View-based maps. In RSS’09,

2009.

[13] V. Lepetit and P. Fua. Keypoint recognition using random-

ized trees. PAMI, 28(9):1465–1479, 2006.

[14] D. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. IJCV, 20(2):91–110, 2004.

[15] K. Mikolajczyk and C. Schmid. A Performance Evaluation

of Local Descriptors. In CVPR’03.

[16] K. Mikolajczyk and C. Schmid. A Performance Evaluation

of Local Descriptors. PAMI, 27(10):1615–1630, 2004.

[17] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A com-

parison of affine region detectors. IJCV, 65:43–72, 2005.

[18] D. Nister and H. Stewenius. Scalable Recognition with a

Vocabulary Tree. In CVPR’06.

[19] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast Key-

point Recognition using Random Ferns. PAMI, 2009. Ac-

cepted for Publication.

[20] C. Schmid and R. Mohr. Local Grayvalue Invariants for Im-

age Retrieval. PAMI, 19(5):530–534, 1997.

[21] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc. GPU-

based video feature tracking and matching. In Workshop on

Edge Comp. Using New Commodity Architectures, 2006.

[22] J. Sivic and A. Zisserman. Video Google: Efficient visual

search of videos. In Toward Category-Level Object Recog-

nition, volume 4170 of LNCS. 2006.

[23] L. N. Trefethen and D. Bau. Numerical Linear Algebra.

SIAM, 1997.

[24] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and

D. Schmalstieg. Pose Tracking from Natural Features on

Mobile Phones. In ISMAR’08.

[25] B. Williams, G. Klein, and I. Reid. Real-time slam relocali-

sation. In ICCV’07.

