
Dense Methods for Image Alignment with an Application to 3D

Tracking

EPFL Report 197866

Alberto Crivellaro1, Pascal Fua1, and Vincent Lepetit2

1Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
2Institute for Computer Graphics and Vision, Graz University of Technology

March 25, 2014

Abstract

This survey focuses on a class of methods for image alignment based on a global,
iterative optimization. We update the important survey from Baker and Matthews [2],
synthetically describing the existing methods (included the recent Efficient Second Order
Method, not covered by [2]), comparing their theoretical aspects, computational costs and
implementation issues, and describing an example of application to 3D tracking, involving
a complex, non-linear warp.

1 Introduction

Recently, methods for image alignment based on global optimization problems have undergone
a regain of interest for their accuracy and robustness, thanks to the growing power of modern
computing devices, with applications such as image stitching, pose estimation [7], optical
flow, object tracking, face coding, and others.

Since the seminal work of Lucas and Kanade [6], several optimization methods have been
proposed, offering solutions more and more efficient and accurate, and an excellent survey
from Baker and Matthews [2] already reviews them. This present survey is meant to be an
update of [2]:

❼ we provide a synthetic description of the existing methods, highlighting both theoretical
aspects and implementation issues;

❼ we include the Efficient Second-order Method [3], which was absent from [2], in the
same framework;

❼ we also give an example of application to 3D tracking, involving a complex, non-linear
warp.

1

2 Dense image alignment

Let T, I be 2 images, seen here as functions returning the value of the luminous intensity for
a given pixel location x:

T, I : R
2 → R; x 7→ T (x), I(x) . (1)

T will denote a “reference image”, or “template”; I will denote an input image.
Let F be a family of warps, parametrized by n parameters stored in a vector p:

W : R
2 × R

n → R
2, (x,p) 7→ W(x,p) . (2)

Furthermore, we introduce an explicit notation for the warped image Ip:

Ip(x) = I(W(x,p)) ∀x ∈ D , (3)

where D ⊂ R2 the domain of the reference image T .
As shown in Figure 1, image alignment consists in estimating the parameters pI of the

warp mapping the reference image T (template) over an input image I, such that T (x) =
IpI

(x) = I(W(x,pI)).

T

I

Figure 1: The image alignment problem.

This problem can be modelled through the following optimization problem:

pI = argmin
p

∑

x

(

I(W(x,p))− T (x)
)2

, (4)

where the sum is extended over all, or a dense subset of, the pixels of the template. Even for
very simple warps, the optimization problem (4) is highly non-linear because of the presence of
the functions T (·), I(·), and it is usually solved by iterative methods. On the other hand, this
approach does not need to detect nor match any local image features, which makes dense
methods particularly suited for aligning images with low textures or repetitive patterns.
Examples of frequently employed families of warps are 2D and 3D translations, in-plane and
off-plane rotations, affine warps, and homographies.

3 Optimization framework

All the iterative algorithms presented in this survey share the same basic structure. At
iteration c, given the current estimate of the parameters pc, they:

2

1. seek for an increment δp of the current parameters, that minimizes a non-linear objec-
tive function F (δp) somehow related to Equation (4);

2. approximate the non-linear objective function using a finite order development, and
obtain a closed-form formula for δp.

3. update the current estimate of the parameters using the computed value of δp.

The above steps are iterated until some stopping criterion is met, such as ||δp|| < ǫtol for
a threshold ǫtol selected by the user. The methods differ for the kind of objective function
employed (additive or compositional), for the direction of the warping (forward or inverse),
and for the kind of approximation employed (a second order development for the Efficient
Second-order Method, a first-order one for the other methods). In Appendix D a thorough
comparison of all the methods described in this survey is provided.

Depending on the different choices, the methods can be applied to different classes of
warps, and have different computational costs and convergence properties. This is discussed
in the next sections.

4 First order methods

4.1 Forward Additive algorithm

The most widespread dense image alignment method is the well-known Lucas-Kanade al-
gorithm proposed in [6]. At iteration c, given a current estimate of the parameters pc, we
seek for an increment of the parameters δp that minimizes an approximation of the objective
function:

FFA(δp) =
∑

x

(I(W(x,pc + δp))− T (x))2. (5)

According to the classification proposed in [2], this is a forward method, because it seeks
for an update of the warp of the image, and it is additive, because the update is summed to
the current estimate of the parameters. The outline of this Forward Additive algorithm is
schematically represented in Figure 2.

Figure 2: The Forward Additive algorithm. The current warp W(x,p) for a pixel x is
represented as a red arrow, the updated warp as a blue arrow.

3

Approximate solution: Equation (5) is a non-linear function with respect to δp, so we
approximate it by computing a first-order Taylor expansion of I(W(x,pc+δp)) with respect
to the second argument of W around pc:

FFA(δp) ≈
∑

x

(I(W(x,pc)) + JFA(x,pc)δp− T (x))2 ; (6)

JFA(x,pc) is the n× 1 Jacobian matrix of FFA:

JFA(x,pc) = ∇I(W(x,pc))
∂W(x,p)

∂p

∣

∣

∣

p=pc

, (7)

where ∇I is the gradient of I; the second term of Equation (6) is a quadratic form with
respect to δp; by setting its derivative equal to zero, it is possible to obtain the following
closed-form solution for δp:

δp = H(pc)
−1
∑

x

JFA(x,pc)
T (T (x)− I(W(x,pc)) , (8)

where H(pc) =
∑

x JFA(x,pc)
TJFA(x,pc).

Parameters update: After computing an increment δp using Equation (8), the current
estimate of the parameters is updated with the following additive rule:

pc+1 = pc + δp . (9)

Assumption on the set of warps: The only requirement for the warps W(x,p) ∈ F is
to be differentiable with respect to p.

Computational complexity: The main steps of the FA algorithms are summarized in
Algorithm 4.1. The computational complexity of each step is reported as a function of the
number of parameters n and the number of pixels of the template N .

Algorithm 1 Forward Additional algorithm

while ||δp|| > ǫ do
Compute JFA(x,pc) for all x ∈ D with Equation (7) O(nN)
Compute H(pc) =

∑

x JFA(x,pc)
TJFA(x,pc) O(n2N)

Compute δp with Equation (8) O(nN + n3)
Update the parameters using Equation (9) O(n)

end while

One iteration of the FA algorithm has a computational complexity of:

O(n2N + n3) (10)

Note that, for usual applications, n ≤ 10, and N ∈ [103, 105].

4

4.2 Forward Compositional algorithm

An alternative algorithm is the Forward Compositional algorithm (FC), proposed in [8]. At
iteration c, given the current estimate of the parameters pc, we seek for an increment of the
parameters δp minimizing

FFC(δp) =
∑

x

(I(W(W(x, δp),pc))− T (x))2 ; (11)

employing a compositional approach instead of the additional approach of Equation (5) can
lead to better computational performances than the FA algorithm, while, under some assump-
tions, the convergence properties of the two methods are equivalent. This will be discussed in
Section 8. The update of the warp provided by the FC algorithm is represented in Figure 3

Figure 3: Updated warp in the Forward Compositional algorithm. The warp increment
W(x, δp) is shown as a green arrow.

Approximate solution: Assuming that W(x,0) = x, a first-order Taylor expansion of
I(W(W(x,p),pc)) around p = 0 yields:

FFC(δp) ≈
∑

x

(I(W(x,pc)) + JFC(x,pc)δp− T (x))2 , (12)

where

JFC(x,pc) = ∇I(W(x,pc))
∂W(y,pc)

∂y

∣

∣

∣

y=x

∂W(x,p)

∂p

∣

∣

∣

p=0
, (13)

where the last term on the right does not depends on pc and can be pre-computed.
As done in Section 4.1 for the FA algorithm, by deriving the quadratic form of Equa-

tion (12) with respect to δp and setting the derivative equal to zero yields:

δp = H(pc)
−1
∑

x

JFC(x,pc)
T (T (x)− I(W(x,pc))) , (14)

where H(pc) =
∑

x JFC(x,pc)
TJFC(x,pc).

Parameters update: Once an approximate solution δp for the minimization problem (11)
has been found with Equation (14), the warp is updated with the compositional rule:

W(x,pc+1) = W(W(x, δp),pc). (15)

5

If an explicit expression for pc+1 from Equation (15) cannot be found, then it is possible
to estimate it, for instance, by computing W(x,pc+1) for a subset of the pixels and then
fitting a regression model to the correspondences {x ↔ W(x,pc+1)}.

Assumptions on the set of warps: In order to compute the updated warp at each
iteration, the composition of 2 admissible warps must be an admissible warp, that is, F
must be closed with respect to composition. Moreover, in order to compute JFC(x,pc), all
warps W ∈ F must be differentiable. Finally, we require that the identity is an admissible
warp, so that W(x,0) = x (after a re-parametrization if needed, as for the warp described
in Section 7.2). That is, F should form a semi-group of differentiable warps.

Computational complexity: The main steps of the FC algorithms are resumed in Algo-
rithm 2, along with the computational complexity of each step.

Algorithm 2 Forward Compositional algorithm

Pre-compute ∂W(x,p)
∂p

∣

∣

∣

p=0
, for all x ∈ D O(nN)

while ||δp|| > ǫ do
Compute JFC(x,pc) for all x ∈ D with Equation (13) O(nN)
Compute H(pc) =

∑

x JFC(x,pc)
TJFC(x,pc) O(n2N)

Compute H(pc)
−1 O(n3)

Compute δp with Equation (14) O(nN + n2)
Update the parameters using Equation (9) O(n2)

end while

Despite the fact that some quantities can be pre-computed, one iteration of the FC
algorithm has the same computational complexity as the FA algorithm:

O(n2N + n3) (16)

Actually, the complexity of the update of the warp depends on the family of warps, in
Algorithm 2 the computational complexity for affine warps (O(n2)) is reported; for other
kinds of warps the computational cost of this step can change, but it usually it does not
affect the global complexity estimation for one iteration of the algorithm.

4.3 Inverse Compositional algorithm

A major drawback of the forward algorithms is their heavy computational cost, since the
matrix H has to be re-computed at each iteration. A more efficient iterative method, the
Inverse Compositional algorithm (IC), has been proposed in [1]. Given the current estimate
of the parameters pc, the IC algorithm seeks an increment δp that minimizes

FIC(δp) =
∑

x

(T (W(x, δp))− I(W(x,pc)))
2 ; (17)

note that this objective function is very similar to that of the FC algorithm (11), but the roles
of the image and the template are switched. Rather than seeking for an incremental warp

6

that makes the warped image more similar to the template, the template is warped to make
it more similar to the current warped image. This trick allows to decrease the computational
cost. The update of the warp in the IC algorithm is shown in Figure 4

Figure 4: Updated warp provided by the Inverse Compositional algorithm. The inverse of
the warp increment W(x, δp) is shown as a green arrow.

Approximate solution: As in the previous sections, to find an approximated objective
function, we perform a first order expansion of T (W(x,p)) around p = 0. Assuming that
W(x,0) = x and setting the derivative of the resulting quadratic form equal to zero yields:

δp = H−1
∑

x

JIC(x)
T [I(W(x,pc))− T (x)] , (18)

where H =
∑

x JIC(x)
TJIC(x), and:

JIC(x) = ∇T (x)
∂W(x,p)

∂p

∣

∣

∣

p=0
. (19)

Note that JIC(x) and H do NOT depend on the current parameters estimate and can be
pre-computed once and for all.

Parameters update: After computing δp with Equation (18), the current warp is updated
so that:

W(x,pc+1) = W(W(x, δp)−1,pc) . (20)

As for the FC algorithm, if an expression for pc+1 can not be explicitly computed from
Equation (15), it is possible to compute it by fitting a regression model to the correspondences
{x ↔ W(x,pc+1)}.

Assumptions on the set of warps: As for FC, we assume that the warps W ∈ F are
differentiable, that F is closed with respect to the composition and that the identity is an
admissible warp. Moreover, the warps should be invertible and F should be closed under the
inversion. That is, F must form a group.

7

Algorithm 3 Inverse Compositional algorithm

Pre-compute JIC(x) with Equation (19) for all x ∈ D O(nN)
Pre-compute H =

∑

x JIC(x)
TJIC(x) O(n2N)

Pre-compute H−1 O(n3)
while ||δp|| > ǫ do
Compute δp with Equation (18) O(nN + n2)
Update the parameters using Equation (20) O(n2)

end while

Computational complexity: The main steps of the IC algorithms and their computa-
tional complexity are reported in Algorithm 3. As for the FC algorithm, the cost of the
update of the warp depends on the family of warps, but generally it does not affect the global
complexity estimation. Thanks to the fact that H−1 and JIC(x) can be pre-computed, the
computational complexity for one iteration of the IC algorithm is lower than that of the
forward algorithms:

O(nN + n2). (21)

Notice that pre-computing H−1 is numerically less stable than solving a linear system
involving H at each iteration, but this does not represent a problem in most part of practical
applications.

4.4 Inverse Additive algorithm

An Inverse Additive algorithm (IA) has been proposed in [5], which has as a low computa-
tional complexity as the IC algorithm while employing an additive update of the parameters.
Unfortunately, as we will see, this algorithm can only be applied to a very restricted set of
warps. Given the current estimate of the parameters pc, the IA algorithm finds an incre-
ment δp that approximatively minimizes the same objective function as the Forward Additive
algorithm:

FIA(δp) = FFA(δp) =
∑

x

(I(W(x,pc + δp))− T (x))2 . (22)

Approximate solution: We start from the first order expansion of I(W(x,pc + δp))
around pc of Equation (6):

FIA(δp) ≈
∑

x

(I(W(x,pc)) + JIA(x,pc)δp− T (x))2 , (23)

where:

JIA(x,pc) = JFA(x,pc) = ∇I(W(x,pc))
∂W(x,p)

∂p

∣

∣

∣

p=pc

. (24)

Assuming that the current parameters estimate is approximately correct, that is, I(W(x,pc)) ≈
T (x), the following approximation holds:

∂I(W(x,pc))

∂x
= ∇I(W(x,pc))

∂W(x,pc)

∂x
≈ ∇T . (25)

8

Injecting this approximation in Equation (24), yields:

JIA(x,pc) = ∇T (x)

(

∂W(x,pc)

∂x

)−1
∂W(x,p)

∂p

∣

∣

∣

p=pc

. (26)

Minimizing the quadratic form (23), we find the closed-form solution for δp:

δp = H(pc)
−1
∑

x

JIA(x,pc)
T (I(W(x,pc))− T (x)), (27)

where H(pc) =
∑

x JIA(x,pc)
TJIA(x,pc). For keeping notations coherent, in the above

formula we replaced (I(W(x,pc))−T (x)) with (T (x)−I(W(x,pc)). This entails a change of
sign of δp, so that, when updating the parameters estimate, the value of δp will be subtracted
from the current parameters estimate rather than added. To compute δp efficiently, we
assume that:

(

∂W(x,pc)

∂x

)−1
∂W(x,p)

∂p

∣

∣

∣

p=pc

= Γ(x)Σ(pc) (28)

where Γ(x) is a 2× k matrix that is only function of the pixels coordinates on the template
and Σ(pc) is a k × n matrix depending on the current estimate of the parameters, for some
integer k > 0. Then, matrix H(pc) can be re-written as:

H(pc) = Σ(pc)
TH∗Σ(pc) , (29)

where:
H∗ =

∑

x

(∇T (x)Γ(x))T (∇T (x)Γ(x)) . (30)

For simplicity’s sake, we assume here that k = n and that Σ(pc) is invertible (see [5] for
the general case k 6= n); then, the inverse of H(pc) becomes:

H−1(pc) = Σ(pc)
−1H−1

∗ Σ(pc)
−T ; (31)

and the expression in Equation (27) reduces to:

δp = Σ(pc)
−1H−1

∗

∑

x

(∇T (x)Γ(x))T (I(W(x,pc)− T (x)) . (32)

This formula yields an update of the parameters with a lower computational complexity than
the forward algorithms, but under the very restrictive assumption that the composition of
Equation (28) can be explicitely computed.

Parameters update: After computing δp with Equation (32), the current estimate of the
warp is updated with the additive rule:

pc+1 = pc − δp, (33)

where the minus is due to the change of sign introduced in Equation (27).

9

Assumptions on the set of warps: We assume that the warps W ∈ F are differentiable;
moreover, in order to find an expression for H∗ that does not depend on pc, one has to
explicitely find the decomposition of Equation (28). Moreover, in the general case, not only
it is difficult to find an explicit decomposition, but it is not even obvious that it exists. This
makes the IA algorithm usable with only a very limited set of warps in practical cases. In
practice, authors of [5] show that IA algorithm can be employed with 2D translations, 2D
affine warps and “a small number of esoteric non-linear warps” [2].

Computational complexity: The main steps of the IA algorithms are reported in Algo-
rithm 4. The computational complexity of each step is reported as a function of the number
of parameters n and the number of pixels of the template N , supposing for sake of simplicity
that k = n.

Algorithm 4 Inverse Additional algorithm

Pre-compute (∇T (x)Γ(x)) for all the pixels of the template O(nN)
Pre-compute H∗ using Equation (30) O(nN)
Pre-compute H−1

∗ O(n3)
while ||δp|| > ǫ do
Evaluate Σpc

−1 O(n2)
Compute δp with Equation (27) O(nN + n2)
Update the parameters using Equation (33) O(n)

end while

Assuming that evaluating the matrix Σ(p)−1 has a computational complexity of O(n2),
then the computational complexity of an iteration of the IA algorithm is:

O(nN + n2). (34)

5 A second-order method: ESM

All the iterative methods described above are based on a first-order development of the terms
appearing in the objective function. A priori, a second-order development should yield a more
accurate approximation, but computing the second order derivatives is computationally too
expensive for most applications. The Efficient Second-order Method (ESM) proposed in [3]
allows to iteratively minimize a second-order approximation of the objective function using
only first-order derivatives.

We start from same objective function as in the FC algorithm:

FESM (δp) = FFC(δp) =
∑

x

(I(W(W(x, δp),pc))− T (x))2 ;

Approximate solution: We perform the following second-order development around p =
0:

∑

x

(I(W(W(x, δp),pc))−T (x))2 ≈
∑

x

(I(W(x,pc))+JFC(x,pc)δp+
1

2
δpTMδp−T (x))2 ,

(35)

10

where:

JFC(x,pc) =
∂

∂q

(

I(W(W(x,q),pc))
)
∣

∣

∣

q=0
(36)

M = M(x,pc) =
∂2

∂q2

(

I(W((W(x,q),pc))
)∣

∣

∣

q=0
. (37)

Now, let us assume that the following property holds for all the warps W ∈ F :

∃ǫ > 0 such that ∀δp ∈ R
n, ||δp|| < ǫ, then:

W(W(x, δp),p) = W(x,p+ δp) ∀p ∈ R
n .

(38)

Moreover, we assume here that I(W(x,pc)) ≈ T (x) and that δp is the (unknown) parameters
increment such that I(W(W(x, δp),pc)) = T (x).

Under these assumptions, the template jacobian ∂
∂q

(

T (W(x,q))
)
∣

∣

∣

q=0
= JIC(x) can be

approximated with a first-order development of the image jacobian JFC(x,pc) around p = pc,
yielding:

JIC(x) ≈ JFC(x,pc) +Mδp . (39)

In fact we have:

T (x) = I(W(W(x, δp),pc)) ⇔

T (x) = I(W(x,pc + δp)) ⇔

T (W(x,0)) = I(W(W(x,0),pc + δp)) ⇔

JIC(x) =
∂

∂q

(

T (W(x,q))
)∣

∣

∣

q=0
=

∂

∂q

(

I(W(W(x,q),pc + δp)))
∣

∣

∣

q=0
⇔

JIC(x) ≈
∂

∂q

(

I(W(W(x,q),pc))
)
∣

∣

∣

q=0
+

∂

∂p

∂

∂q

(

I(W(W(x,q),p)
)
∣

∣

∣

p=pc, q=0
δp ⇔

JIC(x) ≈ JFC(x,pc) +Mδp,

From Equation (39) we compute the following approximation:

Mδp ≈ JIC(x)− JFC(x,pc); (40)

by employing it into the second-order development of the objective function of Equation (35),
we obtain a second-order approximation of the objective function, which can be computed
using only first-order derivatives of the warp:

∑

x

(I(W(W(x, δp),pc))− T (x))2 ≈
∑

x

(I(W(x,pc)) + JESM (x,pc)δp− T (x))2 , (41)

11

where:

JESM (x,pc) =
JFC(x,pc) + JIC(x)

2
=

(

∇Ipc
(x) +∇T (x)

2

)

∂W(x,p)

∂p

∣

∣

∣

p=0
. (42)

The minimum of the quadratic form of Equation (41) is reached for:

δp = H−1(pc)
∑

x

JESM (x,pc)(I(W(x,pc))− T (x)) ; (43)

where H(pc) =
∑

x JESM (x,pc)
TJESM (x,pc).

Parameters update: After computing a δp minimizing an approximation of FESM (δp)
based on a second order development, we can update the warp as in the FC algorithm, using
Equation (15):

W(x,pc+1) = W(W(x, δp),pc) . (44)

Assumptions on the set of warps: The same assumptions as the FC algorithm should
hold, more in particular that the warps W ∈ F are differentiable, that the identity is an
admissible warp and that F is closed with respect to the composition.

The assumption that the current estimate of the parameters is approximately exact and
that I(W(x,pc)) ≈ T (x) guarantees that the finite order development of Equation (39) is
valid, and that the parameters increment is the same as the one in Equation (35).

Moreover, in order to write the ESM parameters update equations, the cumbersome
assumption (38) has to hold. Notice that this assumption does not only depend on the
family of warps, but also on the parametrization chosen. If assumption (38) does not hold
but F is a group of differentiable warps, the formula provided by ESM is still correct up to
the first-order, as shown in Appendix C.

Computational complexity: The main steps of the ESM and their computational com-
plexities are resumed in Algorithm 5.

Algorithm 5 Efficient Second-order Method

Pre-compute ∂W(x,p)
∂p

∣

∣

∣

p=0
, for all x ∈ D O(nN)

Pre-compute ∇T O(N)
while ||δp|| > ǫ do
Compute JESM (x,pc) for all x ∈ D with Equation (42) O(nN)
Compute H(pc) =

∑

x JESM (x,pc)
TJESM (x,pc) O(n2N)

Compute H(pc)
−1 O(n3)

Compute δp with Equation (43) O(nN + n2)
Update the parameters using Equation (44) O(N)

end while

So, the computational complexity of one iteration of the ESM is the same as the forward
algorithms:

O(n2N + n3) , (45)

12

while, if the family of warps respects the assumptions specified above, ESM provides a more
precise parameters update, thus converging in less iterations.

6 Choice of the appropriate algorithm. Additive vs Compo-

sitional approach

The algorithms described above mainly differ for their computational cost, for the assump-
tions made on the set of warps and for the accuracy of the approximation of the objective
function. While in general cases each algorithm computes a different parameters update, it
can be shown that the 4 first-order algorithms are equivalent [2], in the following sense:

at a given iteration c, the 4 first-order algorithms provide the same updated warp
W(x,pc+1), up to a first-order development in the second argument of the warp.

In Appendix A we show the equivalence of FA, FC and IC (we don’t treat the case of IA
since it’s limited interest for practical applications, the interested reader may refer to [2]).
We observe that ESM is equivalent to the other algorithms in the sense specified above, since
it provides the same update as FC up to the first order.

The choice of the correct algorithm for a practical problem depends, among others, on
the following factors:

❼ assumptions on the set of warps F ;

❼ comparison of the computational complexity for one iteration;

❼ comparison of the computational complexity of the updated parameters estimate.

If Assumption (38) holds, then ESM should converge in less iterations at a computational
cost comparable with that of the first-order forward algorithms. Unfortunately, this seldom
happens, with the important exception of the family of homographies (with an opportune
parametrization).

As for the first-order methods, since usually FC does not improve much the computational
efficiency of FA, the choice is made between FA anc IC algorithms. The latter has a better
computational complexity, but it requires to compute the inverse warp and to find an explicit
update of the parameters starting from the updated warp, so the effective computational cost
should be compared in practical cases.

Another important difference is that, while computing the matrix J, FA uses the gradient
of the image, while IC uses the gradient of the template. If for some reason, one between I
and T is much more affected by noise than the other, one should choose the algorithm that
allows for the less noisy computation of J.

Finally, we observe that, despite the fact that the additive and compositional algorithms
yield to equivalent results, they reflect two different ways of interpreting the problem of image
alignment, as depicted in Figure 5. In the first one, the “additive” point of view, a pixel x
in the system of reference of the template is progressively warped on the image for finding
a pixel with the same intensity. In the “compositional” point of view, at each iteration we
compare 2 images T (x) and Ip(x) in the same reference system, and iteratively look for
an infinitesimal warp W(x, δp) such that either Ip(W(x, δp)) is closer to T (x) (in FC), or
T (W(x, δp)) is closer to Ip(x) (in IC).

13

This can be done by comparing the formulas of the compositional algorithms, FC and
IC. The first term of the jacobian matrix of the FC algorithm reported in Equation (13)
corresponds to the gradient of the warped image Ipc

defined in Equation (3)

∇I(W(x,pc))
∂W(y,pc)

∂y

∣

∣

∣

y=x
= ∇Ipc

(x). (46)

So, JFC(x,pc) can alternatively be computed as:

JFC(x,pc) = ∇Ipc
(x)

∂W(x,p)

∂p

∣

∣

∣

p=0
. (47)

This expression is very close to that of JIC(x) reported in Equation (19):

JIC(x) = ∇T (x)
∂W(x,p)

∂p

∣

∣

∣

p=0
. (48)

Moreover, comparing the formulas for the computation of δp for FC (Equation (14)):

δp = H(pc)
−1
∑

x

JFC(x,pc)
T (T (x)− Ipc

(x)) , (49)

and for IC (Equation (18)):

δp = H−1
∑

x

JIC(x)
T (Ipc

(x)− T (x)) , (50)

it is possible to see that at a given iteration, the computation of δp is performed exactly in
the same way in the 2 compositional algorithms, except that the roles of T (x) and Ipc

(x)
are switched. This does not mean that the computed values of δp are the same for the 2
algorithms, they only provide equivalent warps, as shown in Appendix A.

7 Some examples of warps

In order to illustrate the differences among the alignment methods introduced above, in this
section we show 2 practical examples of warps. The first is a rigid, 2D warp, while the second
is a highly non-linear warp involving a 3D perspective transformation. Other examples (affine
warps, homographies) are reported in [2].

7.1 Rigid 2D warp

Let F be the family of rigid transforms of the plane parametrized by an array of 3 parameters
p ∈ R3. At iteration c, given the current parameters pc = (θ, t1, t2)

T , the warp for a pixel x
is computed as:

W(x,pc) = Rpc
x+ tpc

=

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

][

u

v

]

+

[

t1

t2

]

. (51)

14

T

II

(a)

?
=

(b)

?
=

(c)

Figure 5: Schematic representation of dense image alignment algorithms. (a): FA algorithm.
(b): FC algorithm (c) IC algorithm.

15

the family of warps is closed with respect to the composition and to the inversion. The
warps are differentiable with respect to all the arguments; the derivative with respect to the
parameters is given by:

∂

∂p
W(x,p) =

[

− sin(θ)u+ cos(θ)v 1 0

− cos(θ)u− sin(θ)v 0 1

]

, (52)

while ∂
∂x

W(x,p) = Rp. Finally, we note that W(x,0) = x.

Forward Additive algorithm: The assumptions for FA algorithm hold. Once the pa-
rameters increment δp = (δθ, δt1, δt2) has been computed, the updated warp is given by:

W(x,pc+1) =

[

cos(θ + δθ) − sin(θ + δθ)

sin(θ + δθ) cos(θ + δθ)

][

u

v

]

+

[

t1 + δt1

t2 + δt2

]

, (53)

Forward Compositional algorithm: Assumptions of FC algorithm are satisfied. Once
the parameters increment δp = (δθ, δt1, δt2) has been computed, the updated warp is given
by:

W(x,pc+1) = Rpc
(Rδpx+ tδp) + tpc

; (54)

After computing the updated rotation matrix Rpc+1
= Rpc

Rδp and and the updated trans-
lation vector tpc+1

= Rpc
tδp+ tpc

, we can explicitly estimate the updated parameters as, for
example:

pc+1 =

[

cos−1(R11
pc+1

)

tpc+1

]

, (55)

Inverse Compositional algorithm: the inverse of a rigid warp is a rigid warp; the inverse
warp is given by:

W−1(x,p) = RT
p(x− tp) . (56)

At iteration c, once the parameters increment δp = (δθ, δt1, δt2) has been computed, the
updated warp is given by:

W(x,pc+1) = Rpc
(RT

δp(x− tδp)) + tpc
, (57)

and we can explicitly update the parameters in an analogous way as the FC algorithm.

Inverse Additive algorithm: In order to apply Inverse Additive algorithm, we have to
explicitly compute decomposition of Equation (28). Since:

(

∂W(x,pc)

∂x

)−1
∂W(x,p)

∂p

∣

∣

∣

p=pc

=

[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]

·

[

− sin(θ)u+ cos(θ)v 1 0

− cos(θ)u− sin(θ)v 0 1

]

, (58)

it is not possible to decompose the above Equation in the product of 2 matrices Γ(x)Σ(p),
and thus the Inverse Additive algorithm can not be employed, even with this very simple
warp and this parametrization.

16

Efficient Second-order method: As can be observed comparing the warp updated with
the additional rule (Equation (53)) and that updated with the compositional rule (Equa-
tion (54)), assumption (38) does not hold in this case, so ESM does not minimize a second-
order approximation of the objective function. Nonetheless, since the warps are differentiable
and form a group, ESM will provide a first-order method (see Appendix C for more details).

7.2 A warp for 3D tracking

An interesting family of warps is the one shown in Figure 6, since it allows to estimate the
3D pose of an image in a general, non-planar scene by aligning it against a template with
known pose. We suppose the mapping between a point X ∈ R3 in the 3D world reference
system and its representation x ∈ R2 on a picture is given by the standard projective model:
x = P(X), where the projection is computed as:

x̃ = (u, v, z)T = K(RX+T) ,

x = (u/z, v/z)T .

In this context, the template T is given by an image showing a 3D scene with a known pose
pT . The parameters p ∈ R6 of the warp shown in Figure 6 describe the pose of camera for
another image I showing the same 3D scene (the actual pose of I is given by pT +p, so that
W(x,0) = x).

We suppose all the internal parameters of both images are known. So, the pose of the
image can be estimated applying the methods described above for aligning T and I through
the warp of Figure 6. In order to compute the warp, the 3D structure of the scene (e.g. a
3D model) must be known.

Figure 6: 3D warp between a template T with pose pT , and an image I, with pose pT + p.

The inverse warp is depicted in Figure 7.
The warp W(x,p) of Figure 6 is not continuous with respect to the first argument in

regions close to occluding contours, while, for a given pixel x, it is differentiable with respect
to p, since

∂W(x,p)

∂p
=

∂P(X,p)

∂p
. (59)

The composition of warps is easily computable, but the warp is closed with respect to
composition only for planar scenes, not in a general case. Moreover, W is only piece-wise

17

Figure 7: Inverse warp for 3D tracking.

differentiable with respect to the first argument, since its spatial derivative ∂W(x,p)
∂x

is well-
defined only for pixels far from occluding contours and representing locally smooth surfaces
of the scene.

Moreover, although the warp is mathematically well-defined for all the pixels of T , a pixel
x on T and its corresponding pixel W(x,pI) on I may not represent the same 3D point
X = P−1(x,pT) if X is not visible in both images; in these cases, the inverse warp does not
exist, either.

It is possible to check what are the pixels for which W−1 is well defined, by checking that
W(W(x,pc),pc)

−1 = x, but in practical cases this is un-necessary. If the the poses of T and
I are not too far, the direct and inverse warp are well defined for most part of the pixels, and
the influence of badly warped pixels is limited.

If the template and the image share the same internal calibration matrix then W(x,0) =
x. The generalization to the case of different internal calibration matrices is treated in
Section 7.3.

For the compositional algorithms, at each iteration an explicit estimate of the updated pa-
rameters pc+1 is needed, that can not be analytically computed starting from theW(x,pc+1).
In practical cases, it is possible to compute the updated warp W(x,pc+1) with Equa-
tion (15) or (20) for a subset of the pixels of the template; then, since W(x,pc+1) =
P(X,pT + pc+1), an explicit estimate of pc+1 can be computed from the 3D-2D correspon-
dences X ↔ P(X,pT + pc+1) using, for instance, a PnP algorithm.

Notice that, when computing the updated warp for the IC algorithm with Equation (20),
the following simplification holds:

W(W−1(x, δp),pc)

=P(P−1(P(P−1(x,pT + δp),pT),pT),pT + pc)

=P(P−1(x,pT + δp),pT + pc) .

The IA algorithm is not employable with W, since no decomposition of the form of
Equation (28) is easilly computable.

As for application of ESM algorithm, assumption of Equation (38) does not hold, we
introduce an error in the second order terms, and ESM just provides a first-order method

18

(see Appendix C for more details). Nonetheless, we experimentally observed that applying
ESM to 3D tracking often entails a benefice, since, putting an average of the gradients of the
template and the image in the jacobian matrix can reduce the influence of the noise in the
images.

7.3 3D tracking with different internal matrices

A fundamental hypothesis for employing the FC, the IC and the ESM algorithms is that
W(x,0) = x. That is true for the warp of Figure 6, only if the image and the template
have the same internal calibration matrix. If T and I have different internal calibration
matrices (say, respectively, KT and KIM), one can pre-warp the image and use Ĩ(x) =
I(KTK

−1
IMx). 1 Alternatively, as shown in Figure 8, it is possible to split the global warp

in 2 parts, the warp W(x,p) estimated through image alignment, that employs exclusively
the template internal calibration matrix KT (in the red box in Figure 8), and an additional

transformation Ŵ(x,p) = KIMK−1
T W(x,p) for reading intensity values on the image. From

the implementation point of view, this means there is no need of pre-warping the image, but
only:

1. employ KT to compute the warp derivatives and the jacobian matrices of the 3D warp;

2. use I(Ŵ(x,p)) instead of I(W(x,p)) for retrieving the luminous intensity values of
the image pixels. Notice that

I(KIMK−1
T PKT

(X,pT + p)) = I(PKIM
(X,pT + p)). (60)

8 Appendix A : Equivalence of first-order methods

The equivalence of the 4 first-order methods described above (FA, FC, IC and IA) has been
shown in [2], in the sense that, at a given iteration, all the algorithms provide the same
update for the warp, up to a first order development in δp.

We show here only the equivalence of FA and FC algorithms, and that of FC and IC
algorithms, therefore showing that the 3 algorithms are all equivalent. Even if the same
result holds for IA algorithm, we don’t report demonstration here since IA is of little interest
for most part of applications (the interested reader may refer to [2] for further details).

8.1 Equivalence of FA and FC algorithms

We can approximate the updated warp sought at each iteration of the FA algorithm with the
following first-order development:

W(x,pc+1) = W(x,pc + δp) ≈ W(x,pc) +
∂W(x,p)

∂p

∣

∣

∣

p=pc

δp. (61)

1For sake of simplicity, in this section we employ a slight abuse of notation employing 2D quantities such
as x and W(x,p) and the corresponding quantities in homogeneous coordinates, respectively x̃ = [x 1]T ,
W̃(x,p) = [W(x,p) 1]T , interchangeably, since this does not lead to confusion.

19

Figure 8: Warp between a template T with internal calibration matrix KT and pose pT ,
and an image I, with pose pT + p and internal calibration matrix KIM . Dependence of the
projective transforms on the internal calibration matrix has been highlighted: PK(X,p) =
K(R(p)X+ t(p))

As for the FC algorithm, an analogous approximation gives:

W(x,pc+1) = W(W(x, δp),pc) ≈ W(x,pc) +
∂W(W(x,q),pc)

∂q

∣

∣

∣

q=0
δp. (62)

So, the values of δp minimizing FFA(δp) and FFC(δp) are the same (up to the first

order) if ∂W(x,p)
∂p

∣

∣

∣

p=pc

and ∂W(W(x,q),pc)
∂q

∣

∣

∣

q=0
share the same linear space, that is, if there is

an invertible matrix A ∈ R2×2 such that:

∂W(x,p)

∂p

∣

∣

∣

p=pc

= A
∂W(W(x,q),pc)

∂q

∣

∣

∣

q=0
. (63)

Actually, such matrix exists if the warps are differentiable and closed with respect to inversion
and composition (see Appendix B for a proof).

Therefore, since the optimal update is sought in the same linear space, the updates of
the warps computed by FA and FC at a given iteration are the same up to a first-order
development in δp.

8.2 Equivalence of FC and IC algorithms

We start by interpreting the sum Equation (11) as an integral over the domain of the template
D:

FFC(δp) =

∫

D

(

I(W(W(x, δp),p))− T (x)
)2

dx. (64)

The change of variables y = W(x, δp) gives:

FFC(δp) =

∫

W(D,δp)

(

I(W(y,p))− T (W−1(y, δp))
)2∣
∣

∣

∂W−1(y, δp)

∂y

∣

∣

∣
dy. (65)

20

We observe that W(D, δp) ≈ D up to a zero-th order, and that

∣

∣

∣

∂W−1(y, δp)

∂y

∣

∣

∣
= 1 +O(δp), (66)

since W(x,0) = x. Making the assumption that (I(W(y,p))−T (W−1(y, δp))) (or, equiva-
lently, (I(W(W(x, δp),p))− T (x))) is O(δp), we can approximate Equation (65) up to the
first order ignoring the higher order terms in δp:

FFC(δp) ≈

∫

D

(

I(W(y,p))− T (W−1(y, δp))
)2

dy; (67)

this expression is formally identical to FIC(δp) of Equation (17) (interpreting the sum as
an integral over the domain of the template), except for the inverse warp in the template
T (W−1(y, δp)). Since in the IC update rule of Equation (20) the warp of the template is
inverted before composing it with the current warp, we conclude that the updated warps
computed by FC and IC are equivalent up to a first order development in δp.

9 Appendix B: A theorem about groups of differentiable warps

We prove here the following theorem, needed for demonstrating the equivalence of FA and
FC algorithms in Appendix A:

Theorem 1. Let F be a group of differentiable warps W : R2 × Rn → R2. Then, for any
pixel x ∈ R2, an invertible matrix A ∈ R2×2 exists (eventually depending on x), such that:

∂W(x,p)

∂p

∣

∣

∣

p=pc

= A(x)
∂W(W(x,q),pc)

∂q

∣

∣

∣

q=0
. (68)

In order to prove Theorem 1, we make use of the following:

Theorem 2. Let x ∈ R2 some fixed pixel, and F be a group of differentiable warps W :
R2 × Rn → R2. Then a function φ : Rn → Rn : δp 7→ δp′ = φ(δp) can be defined in some
open ball aroud the origin Bδ(0), such that:

❼ φ(0) = 0;

❼ φ is differentiable and invertible in Bδ(0);

❼ W(x,p+ δp) = W(W(x, φ(δp)),p) ∀p ∈ Rn;

Proof. First, we observe that there is a ǫ > 0 such that, for all δp ∈ Rn, δp ∈ Bǫ(0), there is
δp′ ∈ Rn such that:

W(x,p+ δp) = W(W(x, δp′),p) ∀p ∈ R
n; (69)

Since F is closed under inversion and composition, W−1(W(x,p + δp),p) ∈ F , so there
must be some δp′ so that W(x, δp′) := W−1(W(x,p+ δp),p).

21

Then, we observe that,under the same assumptions, the inverse statement is also true,
that is, there is a ǫ̃ > 0 such that, for all δp ∈ Rn, ||δp|| < ǫ̃, there is δp′ ∈ Rn such that:

W(W(x, δp),p) = W(x,p+ δp′) ∀p ∈ R
n . (70)

Applying the Generalized Implicit Function Theorem ([4]) to the continuously differentiable
function F (δp, δp′) = W(W(x, δp),p)−W(x,p+ δp′), we deduce that a function φ : Rn 7→
Rn : δp 7→ φ(δp) = δp′ exists, which is differentiable and invertible in some open ball
around 0 and such that φ(0) = 0.

Now, we notice that, given a p,q, r ∈ Rn, we have :

∂W(x,p+ q)

∂p
=

∂W(x,p+ q)

∂q
; (71)

and:
∂W(W(x, r+ q),p)

∂r
=

∂W(W(x, r+ q),p)

∂q
. (72)

Now, let δp ∈ Rn small enough, so that we can define a function φ(δp) as in Theorem 2.
We have:

∂W(x,p+ δp)

∂p

∣

∣

∣

p=pc

=
∂W(x,pc + δp)

∂δp
= (73)

∂W(W(x, δp′),pc)

∂δp′

∂δp′

∂δp
≈ ∇φ(δp)

∂W(W(x,q+ δp′),pc)

∂q

∣

∣

∣

q=0
. (74)

Finally, the statement of Theorem 1 is obtained by evaluating the above expression for
δp = 0. So, the invertible matrix A of Equation (68) is given by ∇φ(0): this shows that
∂W(x,p)

∂p

∣

∣

∣

p=pc

and ∂W(W(x,q),pc)
∂q

∣

∣

∣

q=0
share the same linear space, the tangent space of the

manifold W(x,pc).

10 Appendix C: relaxing hypothesis of ESM

In order to apply ESM to a family of warps F , the cumbersome hypothesis of Equation (38)
must hold, seriously limiting the practical applications of ESM. In this section we show that,
if this hypothesis does not hold, but F is a group of differentiable warps, then ESM looses
the second-order accuracy and becomes a first-order method as FC.

As shown in Section 5, ESM is built computing a second-order development of the ob-
jective function (Equation (35)) and replacing the second-order term of this expression with
an approximation based on the first-order development of the image jacobian JFC of Equa-
tion (39). If assumption (38) does not hold, the development of Equation (39) is no longer
valid; however, it is possible to employ Theorem 2 for a quantitative estimate of the error
done in ESM, showing that ESM objective function approximation is still accurate up to the
first order.

Let F a group of differentiable warps and δp ∈ Rn such that ||δp|| is small enough. Then,
thanks to Theorem 2, there’s δp′ = φ−1(δp) such that:

W(x,p+ δp′) = W(W(x, δp),p) ∀p ∈ R
n; (75)

22

So, the development of Equation (39) becomes:

T (x) = I(W(W(x, δp),pc)) ⇔

T (x) = I(W(x,pc + δp′)) ⇔

T (W(x,0)) = I(W(W(x,0),pc + δp′)) ⇔

JIC(x) =
∂

∂q

(

T (W(x,q))
)∣

∣

∣

q=0
=

∂

∂q

(

I(W(W(x,q),pc + δp′)))
∣

∣

∣

q=0
⇔

JIC(x) ≈
∂

∂q

(

I(W(W(x,q),pc))
)
∣

∣

∣

q=0
+

∂

∂p

∂

∂q

(

I(W(W(x,q),p)
)
∣

∣

∣

p=pc, q=0
δp′ ⇔

JIC(x) ≈ JFC(x,pc) +Mδp′ ⇔

JIC(x) ≈ JFC(x,pc) +M∇φ−1(0)δp.

That is, using the approximation Mδp ≈ JIC(x) −JFC(x,pc) in Equation (35), we introduce
an error:

e = (∇φ−1(0)− I))δp (76)

in the second-order term, so that the approximation of the objective function is correct only
up to the first order. If Assumption (38) hold, then φ is the identity function and the error
is null.

Appendix D: Comparative Tables

Table 1 resumes all the algorithms described in this survey, along with their computational
complexity, the order of approximation of the objective function and the hypothesis made on
the family of parametrized warps.

Table 2 shows the formulas employed by each algorithm. All the algorithms seek for
a parameters increment δp, approximately minimizing an objective function F (δp). The
parameters increment δp is computed by all the methods as:

δp = α H−1
∑

x

J(x)T (T (x)− I(W(x,pc))) , (77)

where H =
∑

x(J(x)
T J(x)), and

α =

{

1 for forward algorithms (FA, FC, ESM)

−1 for inverse algorithms (IA, IC) .

23

Algo Order of Computational Assumptions on F

approx. Complexity

FA I O(n2N + n3) W(x,p) differentiable wrt p

FC I O(n2N + n3) W(x,p) differentiable. F is a semi-group

IC I O(n2N + n2) W(x,p) differentiable. F is a group

IA I O(n2N + n2) W(x,p) differentiable. Decomposition of Eq. (28)

ESM II O(n2N + n3) W(x,p) differentiable. F is a semi-group. Hyp. of Eq. (38)

Table 1: Computational complexity and assumptions on the family of warpts for the al-
gorithms described in this survey. The computational complexity for one iteration of each
algorithm is given, as a function of the number N of pixels of the template and the number
n of parameters of the warps. For common applications, N ∈ [103, 105] and n < 10.

References

[1] S. Baker and I. Matthews. Equivalence and Efficiency of Image Alignment Algorithms.
In CVPR, 2001.

[2] S. Baker and I. Matthews. Lucas-Kanade 20 Years On: A Unifying Framework. IJCV,
pages 221–255, March 2004.

[3] S. Benhimane and E. Malis. Homography-Based 2D Visual Tracking and Servoing. IJCV,
2007.

[4] Helge Glöckner. Implicit functions from topological vector spaces to banach spaces. Israel
Journal of Mathematics, 155(1):205–252, 2006.

[5] G.D. Hager and P.N. Belhumeur. Efficient Region Tracking with Parametric Models of
Geometry and Illumination. PAMI, 20(10):1025–1039, 1998.

[6] B. Lucas and T. Kanade. An Iterative Image Registration Technique with an Application
to Stereo Vision. In IJCAI, pages 674–679, 1981.

[7] R.A. Newcombe, S.J. Lovegrove, and A.J. Davison. DTAM: Dense Tracking and Mapping
in Real-Time. In ICCV, 2011.

[8] Heung-Yeung Shum and Richard Szeliski. Systems and experiment paper: Construction
of panoramic image mosaics with global and local alignment. International Journal of
Computer Vision, 36(2):101–130, 2000.

24

A
lg
o

O
b
je
c
ti
v
e
F
u
n
c
ti
o
n

A
p
p
r
o
x
.

J
U
p
d
a
te

F
(δ
p
)

o
r
d
e
r

F
A

∑

x
(I
(W

(x
,p

c
+
δp

))
−
T
(x
))

2
I

J
F
A
=

∇
I
(W

(x
,p

c
))

∂
W

(x
,p

c
)

∂
p

p
c
+
1
=

p
c
+
δp

F
C

∑

x
(I
(W

(W
(x
,δ
p
),
p
c
))
−

T
(x
))

2
I

J
F
C
=

∇
I
(W

(x
,p

c
))

∂
W

(x
,p

c
)

∂
x

∂
W

(x
,0
)

∂
p

W
(x
,p

c
+
1
)
=

W
(W

(x
,δ
p
),
p
c
)

IC
∑

x
(T

(W
(x
,δ
p
))
−

I
(W

(x
,p

c
))
)2

I
J
I
C
=

∇
T
(x
)∂

W
(x

,0
)

∂
p

W
(x
,p

c
+
1
)
=

W
(W

(x
,δ
p
)−

1
,p

c
).

IA
∑

x
(I
(W

(x
,p

c
+
δp

))
−
T
(x
))

2
I

J
F
A
(x
,p

c
)

p
c
+
1
=

p
c
−
δp

E
S
M

∑

x
(I
(W

(W
(x
,δ
p
),
p
c
))
−
T
(x
))

2
II

J
E
S
M

=
J
F
C
+
J
I
C

2
W

(x
,p

c
+
1
)
=

W
(W

(x
,δ
p
),
p
c
)

T
a
b
le

2
:
F
or
m
u
la
s
fo
r
th
e
u
p
d
at
e
of

th
e
w
ar
p
es
ti
m
at
e
fo
r
th
e
al
go

ri
th
m
s
d
es
cr
ib
ed

in
th
is

su
rv
ey
.
T
h
e
su
m
s
ar
e
ex
te
n
d
ed

to
al
l

p
ix
el
s
x
of

th
e
te
m
p
la
te
,
w
h
il
e
p
c
is

th
e
cu

rr
en
t
p
ar
am

et
er
s
es
ti
m
at
e
at

it
er
at
io
n
c.

25

	Introduction
	Dense image alignment
	Optimization framework
	First order methods
	Forward Additive algorithm
	Forward Compositional algorithm
	Inverse Compositional algorithm
	Inverse Additive algorithm

	A second-order method: ESM
	Choice of the appropriate algorithm. Additive vs Compositional approach
	Some examples of warps
	Rigid 2D warp
	A warp for 3D tracking
	3D tracking with different internal matrices

	Appendix A : Equivalence of first-order methods
	Equivalence of FA and FC algorithms
	Equivalence of FC and IC algorithms

	Appendix B: A theorem about groups of differentiable warps
	Appendix C: relaxing hypothesis of ESM

