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Abstract

The ability to localize and segment objects from unseen

classes would open the door to new applications, such as

autonomous object learning in active vision. Nonetheless,

improving the performance on unseen classes requires addi-

tional training data, while manually annotating the objects

of the unseen classes can be labor-extensive and expensive.

In this paper, we explore the use of unlabeled video se-

quences to automatically generate training data for objects

of unseen classes. It is in principle possible to apply existing

video segmentation methods to unlabeled videos and auto-

matically obtain object masks, which can then be used as

a training set even for classes with no manual labels avail-

able. However, our experiments show that these methods

do not perform well enough for this purpose. We therefore

introduce a Bayesian method that is specifically designed to

automatically create such a training set: Our method starts

from a set of object proposals and relies on (non-realistic)

analysis-by-synthesis to select the correct ones by perform-

ing an efficient optimization over all the frames simultane-

ously. Through extensive experiments, we show that our

method can generate a high-quality training set which sig-

nificantly boosts the performance of segmenting objects of

unseen classes. We thus believe that our method could open

the door for open-world instance segmentation using abun-

dant Internet videos.

1. Introduction

Instance segmentation models are now able to predict the

masks of objects of known classes in query images [19, 50,

55], providing rich information for many downstream ap-

plications such as scene understanding [17, 47] and robot

grasping [53, 59, 62]. Unfortunately, existing instance seg-

mentation methods perform poorly on new classes [12].

This is an obstacle to the development of autonomous sys-

tems evolving in open worlds where there will always be

objects that do not belong to known classes. Being able to

Figure 1. Starting from an instance segmentation model trained

on some classes, we want to learn to localize and segment objects

from new classes without any human label. We do this by using

unlabeled videos, which are an abundant source of data. Our ap-

proach can automatically detect and select the object masks in the

videos. We then use the selected masks to retrain the initial model

that can then localize and segment objects from the new classes in

still frames without losing performance on the old ones.

detect and segment these objects would be the starting point

of learning to grasp and manipulate them, for example.

As Figure 1 illustrates, our goal is therefore to auto-

matically improve the performance of instance segmenta-

tion models on static images containing objects from new

classes without human intervention. This is in contrast

with previous works that aiming at limiting the manual

labeling burden for object segmentation by using bound-

ing boxes only [21, 28, 65] or developing few-shot tech-

niques [15, 60], but still require human intervention for new

classes.

More specifically, we do not aim at predicting the cat-

egories of these new objects, but focus on robustly local-

izing and accurately segmenting them. In this sense, our

work is therefore more related to recent object discovery

methods, which attempt to segment objects without manual

segmentation labels by grouping pixels according to some

criterion [3, 18, 33, 45, 57]. However, these approaches are

still very fragile as they can be easily affected by low-level

perturbations in color, lighting, or texture.

Our strategy is therefore to rely on unlabeled video se-

quences, as unlabeled videos can be acquired without effort
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Input image Confidence score > 0.5

Confidence score > 0.1 Confidence score > 0.01

Figure 2. The class ’tortoise’ does not belong to COCO classes. By

decreasing the confidence score threshold of Mask R-CNN [19]

trained on COCO, we can eventually localize and segment all the

tortoises at the price of introducing many false positives. We filter

these false positives using unlabeled video data.

while providing rich information. The general idea of using

videos for self-supervision is not new [11, 23, 30, 34, 54,

56]. Here, we consider video sequences to automatically

generate masks for the objects visible in their frames. Us-

ing these masks for training an instance segmentation model

should then make it perform better on new objects visible in

the videos, even if no human intervention was provided in

the process. In our experiments, we still provide the videos,

but it is possible to imagine a system that captures videos

by itself.

Unfortunately, our early experiments showed that state-

of-the-art video segmentation methods [14, 35, 42, 30, 51]

were not sufficient for this purpose. We therefore developed

our own method for automatically creating object masks

from videos. Note that our task is subtly different from

video segmentation methods, which aim at keeping track of

the objects over consecutive frames. For our own goal, this

is not needed and we only focus on correctly localizing and

segmenting the objects in each frame. Like some video seg-

mentation methods [35], we start from mask hypotheses for

the objects visible in the videos obtained with a pre-trained

class-agnostic instance segmentation. Such model general-

izes to objects from unseen classes to some extent, but at

the price of introducing many false positives [41]. Figure 2

shows that when the confidence threshold is lowered, both

the detections of objects from unseen classes and incorrect

detections get accepted.

It is however possible to filter the incorrect masks us-

ing information provided by the videos. Some meth-

ods [8, 29, 35, 37, 44] rely on tracklets to track and filter

the masks. We claim that such strategy is not optimal, es-

pecially for our goal: Image background is underexploited,

while it can be very useful by indicating the absence of ob-

jects; The optical flow is not used or underexploited, while

it gives strong cues about moving objects in videos. To fully

exploit the background and motion information across unla-

beled video frames, we therefore developed a (non-realistic)

analysis-by-synthesis approach. Using a Bayesian frame-

work, we derive an objective function with an additional

non-overlapping constraint. The objective function, which

consists of three loss terms, is designed to explore the back-

ground and motion information to remove incorrect masks

and select masks that are temporally consistent over the en-

tire video. The non-overlapping constraint comes from the

fact that one pixel can at most belong to one object in the

image and helps to reject some false positives. Moreover,

we provide a two-stage optimization algorithm to optimize

this objective function efficiently.

To evaluate our approach, we created a novel dataset

named Unseen-VIS based on the YouTube Video Instance

Segmentation (YouTube-VIS) dataset [61], which contains

objects that do not belong to COCO classes. Starting from

the raw masks generated on the training part of Unseen-VIS

using a class-agnostic Mask R-CNN pretrained on COCO

dataset, we apply our method to automatically select the

correct masks. We demonstrate that using these masks can

boost the performance of the Mask R-CNN on the test set of

Unseen-VIS without losing performance on COCO classes.

To summarize our contributions:

• We propose a Bayesian method to generate high-quality

masks on unlabeled videos containing unseen classes;

• We create a benchmark to evaluate the quality of gener-

ated masks on unlabeled videos;

• We demonstrate on our benchmark that our proposed

method can be used to improve the performance of an

instance segmentation model on unseen classes.

2. Related Work

In this section, we first review recent works on instance

segmentation from color images, especially those targeting

new classes. We also review self-learning methods on un-

labeled images. Finally, we review several works for video

object segmentation as this topic is closely related to our

approach.

Image-level Instance Segmentation. While state-of-the-

art methods for object detection and segmentation [19, 50,

55] rely on large amounts of manually labeled images, a

few works aim at reducing the annotation burden for learn-

ing to detect and segment object classes. They however

still require manual annotations: Weakly-supervised meth-

ods require no mask annotations but bounding boxes anno-

tations [21, 28, 65] and few-shot methods require a (small)

number of manual object masks [15, 60].



Self-Learning on Unlabeled Data. Recently, several

methods have been proposed to explore self-supervision us-

ing unlabeled static images. They use data distillation [46],

unlabeled images from the web [31], consistency across im-

age flipping [24], or an estimate of the uncertainty of pre-

diction [38]. While such approaches are very interesting,

unlabelled videos are easily available and have the potential

to make the results much more reliable. We compare our

method against the most representative methods in our ex-

periments and show we achieve much better performance.

Another type of approach proceeds in a bottom-up fash-

ion by grouping pixels with similar colors or image features

to generate masks [3, 18, 33, 45, 57]. However, this can be

easily affected by local textures or colors, and some of these

methods have been demonstrated on synthetic images only.

Because it starts from a pre-trained instance segmentation

model, our approach is much more robust.

Like us, some methods leverage unlabeled videos for

on urban scene segmentation [6] and face and human

detection[25]. However, these works only focus on how

to enhance the model performance on the existing classes

and do not consider novel classes. [40] makes use of stereo

video data together with depth information to reconstruct a

static background, then object proposals are generated from

the foreground regions by subtraction. While this is an in-

teresting approach, they require depth data and static back-

grounds.

Video Object Segmentation. Our work also relates to

One-Shot, Zero-Shot video object segmentation (VOS) and

saliency-based video object segmentation. One-Shot VOS

aims at segmenting the objects in the video when the

ground truth segmentation is given for a frame. One-Shot

VOS methods typically warp the provided segmentation to

other frames [4, 30, 54]. They thus require manual an-

notations and cannot generate new predictions if new ob-

jects appear. Some Zero-Shot methods [9, 39, 51, 52]

are trained with video labels on seen classes and are able

to generalize to unseen classes, but video labeling is very

labor-extensive. Some methods look for salient regions in

videos [7, 10, 11, 14, 22, 27, 34, 42], as salient regions tend

to correspond to objects. However, saliency prediction has

two major limitations for our purpose: (a) It can be fooled

by non-salient camouflaged objects. (b) Two adjacent ob-

jects would be merged into a single salient region, while we

want to identify them individually.

Like us, a few methods already adopt a proposal-based

approach [2, 35, 37], but rely on classical tracking algo-

rithms to track the proposals such as tracklets. By contrast,

our approach relies on (non-realistic) analysis-by-synthesis.

Analysis-by-synthesis is an old concept in computer vision,

but has been recently increasingly popular. By aiming at ex-

plaining the whole image, it can exploit more information.

Moreover, it is conceptually simple and requires few easy-

to-fix hyper-parameters. We show in our experiments that

our method performs better than the state-of-the-art video

object segmentation method UnOVOST [35] for the pur-

pose of generating object masks.

3. Method

As discussed in Section 1, our goal is to improve the per-

formance of a pre-trained class-agnostic instance segmenta-

tion on unseen classes. Our pipeline consists of three steps:

• Mask Generation: We use our baseline instance segmen-

tation network on unlabeled videos containing unseen

classes for mask generation;

• Mask Selection: We apply our method to automatically

select the correct masks on unlabeled videos;

• Model Refinement: We use our generated masks to fine-

tune or retrain our baseline network to boost its perfor-

mance on unseen classes.

In this section, we present our baseline instance segmen-

tation network and our approach for automatically selecting

high-quality masks by exploring the video information. As

we will show in the following section, compared to exhaus-

tive search, our approach is highly efficient and requires few

easy-to-fix hyper-parameters.

3.1. Baseline Network for Mask Generation

To generate masks from unlabeled videos, we use

a class-agnostic Mask R-CNN [19] with a ResNet-50-

FPN [32] backbone as our baseline network. Following

previous work [41], we refer to this class-agnostic Mask

R-CNN as ’MP R-CNN’ for Mask Proposal R-CNN, as it

aims only at generating mask proposals regardless of object

classes. Note that in practice, Mask R-CNN could be re-

placed by any other trainable instance segmentation meth-

ods. As we mentioned in Section 1, the instance segmen-

tation network may assign low confidence scores for some

correct detections of unseen classes. Therefore, during the

mask generation stage, we set the confidence score thresh-

old to 0 to get as many detections as possible.

3.2. Mask Selection

Given a video of T frames, we start from a set of mask

candidates Mt = {Mt,1..Mt,N} for each frame It obtained

using our baseline network, with N the number of masks

candidates in It. To select the mask candidates that actually

correspond to objects, we exploit the following cues and

constraint:

• The “Background cue”: Segmenting typical back-

grounds such as sky or grass gives us a cue about where

the objects are, whether they move or not.

• The “Flow cue”: The optical flow between consecutive

frames gives us a cue about the moving objects.



• The “Consistency cue”: The selected masks should be

consistent not only between consecutive frames, but also

over long sequences.

• The “Non-overlapping constraint”: An additional con-

straint that is usually overlooked is that the masks should

not overlap: Ideally, one pixel in the image can belong to at

most one mask.

As we will show in the following sections, each cue cor-

responds to a loss term in the final objective function. Each

of them and the non-overlapping constraint contribute to re-

moving the false positives, as will be demonstrated by our

ablation study in Section 4.3.

To combine these cues to select the correct masks in a

given video sequence, we rely on a Bayesian framework.

This selection problem can be formalized as maximizing

the probability of the detected masks given the frames of

the video:

P
(

C1, ..,CT |I1, .., IT
)

, (1)

where Ct is a set of binary random variables, with Ct,i = 1
corresponding to the event that mask Mt,i is selected and 0

that it is not. We show in the supplementary material that

maximizing this probability is equivalent to minimizing the

following objective function:

argmin{∆1,..,∆T }

∑

t

(

λILI

(

It,∆t) +

λFLF

(

Ft, It, It+1,∆t,∆t+1

)

+

λpLp(∆t,∆t+1)
)

,

(2)

under the non-overlapping constraint that will be detailed

below. λI , λF , and λp are constant weights. Ft represents

the optical flow for the pair of frames (It, It+1). ∆t =
{δt,1, .., δt,N} denotes the realization of Ct where δt,i is the

realization of the random binary variable Ct,i. δt,i = 1
when Mt,i is selected, otherwise δt,i = 0.

We call LI the Background loss and LF the Flow loss, as

they exploit the Background cue and the Flow cue respec-

tively. Lp enforces consistent selections between consecu-

tive frames. We detail these three losses below.

3.2.1 Background Loss LI

We use LI to exploit the Background cue that hints at where

the objects are. As shown in Figure 3, to evaluate it, we

compare a binary image generated for the selected masks

and the foreground/background probability map predicted

by a binary segmentation network f by calculating their

cross entropy, as the image background should match the

background of the selected masks. By doing this compari-

son over all the image locations, we can exploit information

from the whole image to guide the mask selection—we will

rely on the same strategy for the other terms. Formally, we

take

LI

(

It,∆t

)

= CE
(

Bg(It), 1− Fg(∆t)
)

, (3)

Figure 3. To evaluate the background loss LI of Eq. (3), we com-

pare the background predicted for the image and the background

of the selected masks.

where CE denotes the cross-entropy, Bg(It) is a probability

map for each pixel to belong to the background as predicted

by the network f , and Fg(∆t) is the binary image of masks

in Mt such that δt,i = 1. For f , we use the network archi-

tecture proposed in [26] trained on the same training data

as our baseline network for mask generation. The details

about the segmentation network f can be found in the sup-

plementary material.

3.2.2 Flow Loss LF

We use LF to exploit the Flow cue: The optical flow is the

result of the object motions and the camera motion, and thus

also hints at where the objects are. Even if an object is static

but the camera is in motion, when the distance between the

camera and the background is large enough, relative motion

will make the optical flow of the object regions stand out

from the background optical flow.

Figure 4 shows how we evaluate this term. We compare

the flow predicted by an optical flow estimator g and a “syn-

thetic optical flow” generated using the masks selected in

Mt and Mt+1. Similar to the LI term, this comparison al-

lows us to exploit information from all the image locations.

In practice, we use the method of [49] for g. To generate

the synthetic optical flow, we use the colors of the pixels in

the selected masks to compute their optical flow. We aver-

age the flow in Ft on the pixels that do not belong to any

mask to assign these pixels the resulting value. The detailed

procedure can be found in the supplementary material.

Using this procedure, the measured flow Ft =
g(It, It+1) and the synthetic flow are similar when all mov-

ing objects are correctly selected in both frames, even when

the camera is in motion. More formally, we take:

LF

(

Ft, It, It+1,∆t,∆t+1

)

=
∥

∥Ft − F t

∥

∥

1
, (4)

where F t = F t(It, It+1,∆t,∆t+1) is the synthetic flow

generated for the selected masks in Mt and Mt+1. We use

the L1-norm to compare the two flows to be robust to outlier



Figure 4. To evaluate the flow loss LF of Eq. (4), we compare the

optical flow estimated between two consecutive images and the

optical flow computed for the masks selected in the two images.

Figure 5. To evaluate the regularization loss Lp of Eq. (5), we

compare the binary images of the selected masks in two consecu-

tive images.

values that are very common in the predicted flow. Figure 4

shows examples for Ft and F t.

3.2.3 Regularization Loss Lp and Constraint

As discussed above, the optimization in Eq. (2) should be

done under the constraint that no masks selected for the

same frame overlap each other.

Lp

(

∆t,∆t+1

)

is usually interpreted in tracking prob-

lems as a motion model. We use it to enforce a consis-

tent selection of masks between consecutive frames. Fig-

ure 5 shows how we compute it: We use a very simple

motion model and assume that the objects move slowly, in

other words, the areas segmented as objects do not change

abruptly between two consecutive frames. Formally, we

take :

Lp

(

∆t,∆t+1

)

= −IoU
(

Fg(∆t), Fg(∆t+1)
)

, (5)

i.e. the negative Intersection-over-Union between the binary

images of the masks selected for frames It and It+1. It is set

to 0 when no masks are selected for none of the two images.

3.3. Two­Stage Optimization

In this section, we introduce an efficient way to mini-

mize Eq. (2). Note that minimizing this function requires

to optimize on all the frames simultaneously. A naive ap-

proach is to apply exhaustive search for the solution of the

problem, where the number of evaluations of the objective

function would be O(2NT ), with N the number of mask

candidates per frame and T the number of frames (typical

values N = 15 and T = 180 would require ∼ 10810 evalu-

ations). This is clearly computationally prohibitive.

We provide here an efficient two-stage algorithm, de-

picted in Figure 6. In the first stage, based on the back-

ground loss LI and the non-overlapping constraint, we se-

lect the top-K most promising combinations of masks for

each frame independently. Note that the combinations vio-

lating the non-overlapping constraint are simply discarded.

Then, in the second stage, we optimize the complete ob-

jective function over all frames simultaneously to find the

best combinations for each frame. For both stages, we can

use Dijkstra’s algorithm [13] to significantly decrease the

complexity of the computations. In the worst case, the

number of evaluations of the objective function becomes

O(KTN3 + K2T 2). We use K = 10 in practice, which

reduces the required evaluations from ∼ 10810 to ∼ 107 for

the numerical example above.

This optimization problem is related to many previous

works on multiple object tracking [1, 36, 44, 58, 63, 64],

which typically use graph-based methods to solve related

problems efficiently. One of the main differences with these

works is that, in our video-level optimization, each node

corresponds to a combination of masks instead of a single

bounding box or mask. Besides, we do not have access to

the object classes, and our optimization is under the con-

straint that the masks do not overlap, while these works

typically rely on bounding boxes that can overlap when the

objects are close to each other.

1. Image-Level Optimization. At this stage, for each

frame It, we look for the top-K combinations of masks in

the power set P(Mt) that minimize the Eq.(3) under the

non-overlapping constraint. An exhaustive search would

take 2N evaluations of the objective function.

However, we note that this problem can be formulated

as a K-shortest path search problem in a binary tree, where

each pair of branches of a node corresponds to the selection

or not of a mask, and each branch has an associated weight:

This weight is set to infinity if the branch corresponds to the

selection of a mask that overlaps with one of its ancestors,

otherwise it depends on the value of LI computed only on

the mask. By iteratively applying Dijkstra’s algorithm to

find the top-K combinations of masks, we reduce the num-

ber of evaluations to O(KN3). Note that our proposed al-

gorithm is agnostic to the order of the mask candidates in

Mt. More details can be found in the supplementary mate-

rial.



Figure 6. Given a video, we first run the image-level optimisation

on each frame and get the top-K combinations of masks for each

frame. The video-level optimisation selects the best combination

for each frame efficiently by solving a shortest path problem. For

this figure, K is set to 3. More details are given in Section 3.3.

2. Video-Level Optimization. As shown in Figure 6, we

generate a graph with the remaining top-K combinations

of masks for each frame: Each node corresponds to one

combination and each edge is labeled with the loss given

in Eq.(2) for the two combinations it links. Finding the best

combination for each frame becomes the problem of finding

the shortest path in this graph. Instead of doing 2KT eval-

uations of the objective function to find the shortest path,

we can use Dijkstra’s algorithm [13] here as well to signif-

icantly accelerate the speed of our algorithm. The number

of evaluations is reduced to O(K2T 2). We explain in more

detail how we build the graph in the supplementary mate-

rial.

4. Experiments

In this section, we first present our benchmark for evalu-

ating our approach. Then we compare our method with sev-

eral previous methods for the purpose of generating masks

on unlabeled videos and analyze the results. We also con-

duct a thorough ablation study to show the influence of dif-

ferent components of our method. Due to space limits, im-

plementation details were moved to the supplementary ma-

terial.

4.1. Experimental Setup

Implementation Details. As described in Section 3.1, we

use a class-agnostic Mask R-CNN [19] with a ResNet-50-

FPN [32] backbone as our baseline for mask generation.

Our baseline is pre-trained on the COCO dataset, which

contains 80 classes and 115k training images. We follow the

training strategy as described in [19]. We take λI = λF = 1
and λp = 0.5 for the weights in Eq. (2) in all our experi-

ments.

Evaluation. To benchmark our method, we created

a dataset we call “Unseen-VIS”. The training part of

“Unseen-VIS” consists of videos collected from the

YouTube Video Instance Segmentation (YouTube VIS) [61]

and is used for mask generation. The test part of “Unseen-

VIS” contains static images extracted from YouTube VIS

for evaluation.

The original YouTube VIS dataset contains 2,883 videos

with 131k object instances spanning 40 classes, among

which 24 coincide with COCO. We thus consider the re-

maining 16 classes 1 as unseen classes which results in 795

videos in total. We randomly selected 595 videos as the

training set, which we refer as Unseen-VIS-train. The la-

beled static images in the remaining 200 videos are used

for evaluation, which we refer as Unseen-VIS-test. All the

videos of Unseen-VIS-train are used as unlabeled videos,

and their ground truth masks are ignored.

For quantitative evaluation, we rely on the standard

COCO metrics: AP , AP50, AP75, and AR1, AR3 and AR5

as the maximum number of objects per image in our testing

set is 4. We do not use APS , APM , and APL as the object

scales in COCO differ largely from YouTube VIS.

4.2. Results on Unseen­VIS­test

4.2.1 Video-Annotation-Free Mask Generation

We first compare our method to other approaches that can

also generate masks given video sequences without using

any video annotations. Each method is first applied on

the Unseen-VIS-train dataset for mask generation, then we

compare the performance of MP R-CNN on the Unseen-

VIS-test set after fine-tuning on these masks. As only one

over five frames is annotated in Unseen-VIS-train (19352

annotated frames in total), we thus use only the masks of

these frames for training for fair comparison among differ-

ent methods.

Saliency/Flow-based methods. FST [42] and NLC [14]

can generate masks from videos by estimating the saliency

and motion of the objects in videos. IOA [10] trains a deep

neural network on the output of an unsupervised soft fore-

ground segmentation algorithm [48] to segment objects in

videos. These methods can identify moving regions in the

videos but can not separate adjacent objects in the images,

thus a proposal generated by these methods may actually

correspond to several objects.

Tracking-based methods. TWB [2] and UnOVOST [35]

rely on a frame-by-frame tracking pipeline applied to mask

proposals. These methods are the closest methods to ours as

we all rely on an instance segmentation model for proposal

generation. However, as we mentioned before, for our final

goal (training a better object detector), we do not need to

keep track of the detected objects.

Similarity Propagation. Given masks for a frame,

1panda, lizard, seal, shark, mouse, frog, tiger, leopard, fox, deer, ape,

snake, monkey, rabbit, fish, turtle.



Method used for Unseen-VIS-test

mask generation AP AP50 AP75 AR1 AR3 AR5

(bef. fine-tuning) 35.8 61.2 38.1 33.3 47.3 50.3

NLC [14] 1.2 3.8 1.0 2.4 5.3 6.9

IOA [10] 2.4 8.5 0.9 6.9 8.7 9.5

FST [42] 17.0 41.8 11.3 22.0 30.6 33.1

UnOVOST [35] 31.1 55.6 32.2 29.9 44.5 48.2

TWB [2] 31.2 53.4 32.8 31.5 46.7 50.0

DD [46] 36.6 63.8 38.5 32.5 46.2 49.3

ZS-UVC [30] 21.2 42.6 19.9 26.3 40.0 43.2

Ours 39.0 67.9 41.3 35.2 48.9 51.4

Table 1. Mask Generation without Video Annotation. Per-

formance of MP R-CNN on Unseen-VIS-test after fine-tuning on

masks generated by various methods applied to Unseen-VIS-train

without using any video annotation.

UVC [30] warps these masks to consecutive frames based

on the estimated correspondences between consecutive

frames. For this experiment, we use it in a zero-shot setting

(”ZS-UVC”), where the masks of the first frame are instead

generated by thresholding the confidence score on the first

frame prediction of MP R-CNN (we use a threshold of 0.1
in practice).

Self-training methods. We also compare our method with

the self-learning Data Distillation (DD) method [46]. We

follow their proposed test time augmentation to generate

masks on each frame of the Unseen-VIS-train videos inde-

pendently, as this method performs on single images.

We report the results in Table 1. Compared with the

Saliency/Flow-based methods and Tracking-based meth-

ods, the masks generated by our method are of high qual-

ity and can largely improve the performance of the base-

line network in all metrics. Our method also outperforms

the state-of-the-art self-training method (DD) [46] for two-

stage object detection by a large margin.

4.2.2 Video-Annotation-Dependent Mask Generation

In addition to the aforementioned methods, we further com-

pare with two methods that adopt different settings and ex-

plore the upper bound of our method.

RVOS. RVOS [51] is an end-to-end video object segmenta-

tion framework that directly runs on videos, which requires

labeled videos for training. We adopt the Zero-Shot set-

ting for RVOS, where it is trained with ResNet50 [20] as

backbone on 1089 videos (25869 annotated frames in total)

of seen classes of YouTube VIS and directly applied to the

Unseen-VIS-train videos for mask generation.

OS-UVC. Here, we consider the One-Shot setting for

UVC, where the ground truth masks of the first frame are

given for all Unseen-VIS-train videos.

Selected using GT. We use the ground truth mask labels

of Unseen-VIS-train to select the masks predicted by MP

R-CNN. The similarity among masks is evaluated based on

Method used for Video Annotations Unseen-VIS-test

mask generation Seen Unseen AP AP50 AP75 AR1 AR3 AR5

(bef. fine-tuning) 35.8 61.2 38.1 33.3 47.3 50.3

RVOS [51] X 38.5 68.9 38.0 35.4 49.5 52.8

Ours - - 39.0 67.9 41.3 35.2 48.9 51.4

OS-UVC [30] X 41.5 73.7 42.9 39.1 52.7 54.9

Selected using GT X 42.7 75.1 45.3 37.3 53.4 53.6

Trained with GT X 50.8 80.9 54.6 43.6 58.6 60.6

Table 2. Mask Generation with Video Annotations. Perfor-

mance of MP R-CNN on Unseen-VIS-test after fine-tuning on the

masks generated by various methods that require manual video an-

notations except ours. RVOS uses labeled videos of Seen classes

for training. OS-UVC uses the ground truth masks for the first

frame for mask generation. ”Selected using GT” represents the

masks generated by MP R-CNN selected using ground truth masks

and can be regarded as an upper-bound.

their Intersection-over-Union, and the Hungarian algorithm

is used to select the masks that best match with the ground

truth. This can be regarded as an upper bound that we can

achieve given the predictions of MP R-CNN.

Trained with GT. We report the performance of MP R-

CNN fine-tuned with ground truth mask labels of Unseen-

VIS-train. This can also be regarded as an upper bound,

where all the classes have already been Seen.

We report the results in Table 2. Compared to RVOS [51]

trained with labeled videos, our method can still achieve

comparable results on recall while surpassing their results

by a large margin on AP75, which means that the masks se-

lected by our method are of better quality. Importantly for

practical applications, our method was able to deal with the

large domain gap between the images in COCO on which

we pre-train MP R-CNN and the frames in YouTube VIS

on which we apply and evaluate our method. RVOS was

trained and applied on videos from YouTube VIS, and there-

fore was not confronted to a domain gap.

While OS-UVC [30] achieves higher results than our ap-

proach, it relies mainly on a high-quality first frame mask:

We observe a large performance drop when we replace the

ground truth masks (”OS-UVC” in Table 2) by the predicted

masks (”ZS-UVC” in Table 1). Besides, it can only track

objects visible in the first frame as it does not handle the

emergence of new objects.

After simply retraining from scratch both on the 80 seen

classes of COCO and the masks generated by our approach

on Unseen-VIS-train, MP R-CNN achieves 35.2 mask AP

on COCO minival and 38.9 mask AP on Unseen-VIS-

test. Compared with the MP R-CNN pre-trained only with

COCO dataset, which achieves 35.3 mask AP on COCO

minival, we achieve better performance on Unseen-VIS-test

while maintaining the performance on COCO. More details

can be found in the supplementary material.

Application to Zero-Shot Video Object Segmentation.

As one of the state-of-the-art zero-shot video object seg-



Figure 7. Qualitative results of selected masks on Unseen-VIS-train and detections of new classes on Unseen-VIS-test after fine-

tuning on these selected masks. Top: First row: Masks detected by our baseline network MP R-CNN on two sequences from Unseen-

VIS-train; Second row: Masks selected by UnOVOST [35]; Third row: Masks selected by our approach. Note that we keep the masks for

the pandas and rabbits, and reject the masks that do not correspond to real objects. Bottom: Masks detected in still images from Unseen-

VIS-test. Fourth row: Masks detected by MP R-CNN before we fine-tuned it on the masks selected by our approach on Unseen-VIS-train;

Fifth row: Masks detected by MP R-CNN after fine-tuning. The masks generated by our method results in a significantly better model for

the new classes: We can now correctly segment pandas and rabbits in new videos, even if no manual segmentations for pandas and rabbits

were provided. For more examples, please refer to the video in the supplementary material.

Use Unla- J & F J F
Method beled Data Mean Mean Recall Decay Mean Recall Decay

UnOVOST [35] 56.2 54.4 63.7 -0.01 57.9 65.0 0.00

UnOVOST+ X 59.9 59.1 70.0 -0.06 60.8 70.8 -0.03

Table 3. Zero-Shot Video Object Segmentation evaluation on

the DAVIS dataset [43]. UnOVOST [35] relies on an instance

segmentation network for mask generation. UnOVOST+ row: Af-

ter fine-tuning its mask generation network on the DAVIS training

dataset using the masks generated by our approach, it achieves

higher results on all metrics.

mentation methods 2, UnOVOST [35] segments the objects

in the videos by linking the masks predicted by an instance

segmentation network on each frame. As show in Table 3,

by fine-tuning the original mask generation model on the

masks generated on the DAVIS training dataset [43] using

our method, we achieve much better results. This demon-

strates that downstream tasks can benefit from the perfor-

mance boost brought by our method.

4.3. Ablation Study

Table 4 shows the positive impact made by each loss

term and constraint in Eq. (2). The masks obtained by ap-

plying only the background loss LI can already improve

the performance of baseline on unseen classes. Similarly,

adding the constraint that the masks should not overlap, the

flow loss LF , or the regularization loss Lp has a positive im-

pact. In particular, this shows that both the flow loss LF and

the regularization loss Lp help reranking the combinations

of masks given by the background loss.

2https://davischallenge.org/challenge2019/leaderboards.html

LI Overl.Constr. LF Lp AP AP50 AP75 AR1 AR3 AR5

35.8 61.2 38.1 33.3 47.3 50.3

X 36.6 65.2 37.8 33.3 47.7 50.8

X X 38.1 64.6 40.2 34.2 48.5 51.2

X X X 38.7 67.0 40.5 34.7 48.7 51.3

X X X X 39.0 67.9 41.3 35.2 48.9 51.4

Table 4. Ablation study on the different components of our

method.

5. Conclusion

In this paper, we attacked the problem of localizing and

segmenting objects from unseen classes without any man-

ual mask labels. We showed that, based on an instance

segmentation model pretrained on some seen classes, our

method provides high-quality masks for unseen classes after

analysing unlabeled videos, without requiring difficult-to-

tune hyper-parameters. Moreover, we provided an efficient

implementation by breaking down the computationally pro-

hibitive optimization into a two-stage optimization.

It should nevertheless be noted that, in the unsupervised

case, the concept of objects is quite ill-defined. The bound-

ary between “things” and “stuff” [5, 16] is sometimes fuzzy:

For example, should we consider a stone on the background

as an object? What if a person pushes this stone? The gran-

ularity of the problem is also not clear: Should we consider

a person as one object, or each of their clothes as individ-

ual objects? This ambiguity does not arise in the supervised

case, as the annotators decide what is an object, but makes

the evaluation of unsupervised object detection difficult. It

may be important to rethink the definition of object, either



by its shape or its function, to make the evaluation of unsu-

pervised object segmentation more meaningful.
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