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Abstract

This paper presents a new visual tracking technology that relies on the use

of a global motion model to achieve robustness. We demonstrate its effec-

tiveness for the purpose of retrieving the 2D spatio-temporal trajectory of

a golf club head from ordinary video sequences of golf swings, so that in-

formation about club orientation, local speed and acceleration can also be

obtained. We have integrated it into a fully automated system that requires

neither user intervention nor the use of instrumented golf club or clothing,

and that is usable in a natural environment with a potentially cluttered back-

ground. Our algorithm robustly fits a global swing trajectory model to club

location hypotheses obtained from single frames. This process makes our ap-

proach very robust and it will soon be integrated into a commercial product.

Several experimental results are presented to illustrate the success of this new

method.

1 Introduction

The use of video in sports training sessions is considered to be a very useful tool by many

coaches and athletes. The opportunity for athletes to watch their own performance on

screen can help them discover and better understand their strengths and weaknesses. How-

ever, the interaction with the video sequence is usually fairly limited, consisting mainly

of slow motion replays. Therefore, there is great interest in enhanced analysis tools that

provide more quantitative information and more interactivity.

This paper presents a robust visual and fully automated tracking technique for retriev-

ing the 2D spatio-temporal trajectory of a club head during a golf swing from “face on”

video sequences such as the ones shown in Figure 1. Since a swing is usually very fast, it

is also hard to track, especially against a potentially cluttered background. Our contribu-

tion is therefore an algorithm that efficiently combines a robust approach to club detection

with a global motion model to achieve both automation and reliability in a natural envi-

ronment. Figure 1 depicts a subset of the database of 35 swings against which we have

tested it.

Our system thus provides the golfer with visual information that can be used to ana-

lyze and compare swings. Useful information such as local speed and acceleration along



Figure 1: A selection of some results of our tracking system. Color-coded trajectories

showing the local speed of the club head in terms of different speed ranges.

the swing trajectory can also be gathered, allowing for very precise comparison of differ-

ent swings, not only in terms of spatial trajectory but also in terms of temporal evolution.

2 Related Work and Approach

Many visual tracking techniques have been proposed in the literature since the beginning

of Computer Vision. The usual approach is recursive: the target position and shape in

the current frame are first predicted from its estimated state in the previous frame, and



then adjusted based on image observations. Many probabilistic approaches using particle

sets such as the Condensation [1] algorithm are also very popular for dealing with more

complex tracking. Data Association [2] approaches are extensively discussed in discrete

targets tracking literature, and seem to be more suitable for our problem of tracking golf

clubs on cluttered background than Condensation.

Using these techniques in a practical setting remains, however, quite difficult, and

very few of those are available as commercial products. The main problem is that they

tend to suffer from a lack of robustness. All of these approaches consider recursive mo-

tion models where the current state of the target can be estimated from its previous state

as: Xt+1 = f (Xt). Their behavior is therefore very local, and it is thus very difficult to

consider a global motion model such as defined by a golf swing. Our method addresses

this problem by introducing a global motion model.

We first process the whole video sequence to create plausible hypotheses for the posi-

tion of the club head in each frame. This is a difficult task because the club head is usually

very small and has no well-defined color or shape. Hence, instead of directly looking for

it, we extract the straight part of the club, or shaft. Since the head remains at the shaft’s

extremity, it becomes easier to find it. The shaft is detected by looking for a moving thin

and straight object. The extraction is thus based on a motion detection followed by a

parallel straight edges detection. This provides us with a complete set of possible shaft

positions in each frame of the sequence. Although the club is often successfully extracted,

it is usually not the only thin object detected in the scene, resulting in several false-alarms

in many frames.

We then process the whole set of hypotheses in order to locate important events in

the sequence such as the beginning and the end of the swing as well as the transition

between upswing and downswing. As shown in Figure 2, upswing refers to the motion

from somewhere close to the ground to the top position, and downswing refers to the

motion from the top position back down.

Figure 2: The golf swing is decomposed into (a)

upswing and (b) downswing.

Finally, upswing and downswing trajectories are obtained by robustly fitting a poly-

nomial curve to club detection using a RANSAC [3] like algorithm. We now turn to

individual components of our approach.

3 Club Extraction

Detecting and extracting a specific object in an image is usually not an easy task. Color

and shape features are most often used to perform the detection. In our case, a golf club

does not have any specific color and is highly reflective. Furthermore, because it is so thin

it may be blurred when its velocity is high.

To detect it, a motion detector is first applied to the current frame. For that purpose,

the difference between the current and the previous frames is computed as the euclidean



distance in the YUV color-space and the result is thresholded, producing a binary mask

representing the moving objects between these two frames. A morphological closing

operation is also applied in order to fill small gaps in the extracted motion regions and to

smooth their borders. The same operation is also applied to the current and next frames

producing a second binary mask. Finally, a logical bitwise AND operation between these

two masks gives the mask of the moving objects in the current frame. Thus,

Mt = C2(HT (It − It−1))∩C2(HT (It − It+1))

where Mt is the final binary mask of the motion regions at time t, It is the current image

at time t, HT is a thresholding operation with threshold T , and Cn consists of n successive

morphological dilatation and erosion operations.

Next, Canny edge detection [4] is applied on the moving regions of the image from

which the method tries to extract straight components. For that purpose, chains of adjacent

pixels are first extracted from the detected edges. Then, straight segments are obtained

from an exhaustive search along these chains using a fixed tolerance for their straight-

nesses. The shaft usually produces a pair of close parallel segments. So, each such pair

of detected segments is then selected and merged into a single one. Unfortunately, only

part of the shaft is usually retrieved, for example because it is slightly bent or because

its extremity blurred enough to be almost undistinguishable from the background. Post-

processing needs therefore to be applied to each detected segment in order to recover the

position of the club head and the golfer’s hands with accuracy. Since it is not known

at this time which extremity of the segment corresponds to the club head, we clone all

segments and assign them opposite directions from the originals. Figure 3 illustrates this

extraction process.

Figure 3: Hypotheses generation. (a) Binary mask obtained from the motion detection.

(b) Current image converted into grayscale and covered by the mask. (c) Result of the

Canny edge detection. (d) Detected segments. (e) Each pair of close parallel segments

are merged into a single segment. Then, each resulting segment is processed, trying to

retrieve the club head and the hands positions with accuracy. (f) Remaining hypotheses

after the rejection tests.

Although this detection presents a good rate of success in extracting the current club

position, false-alarms are inevitable. To limit their number, we analyze all hypotheses and

get rid of all of them presenting a physically impossible position. For example, too short

or too long detected clubs can easily be removed. All remaining hypotheses are stored

and will be processed in the next part of the method to estimate the swing trajectory.



4 Trajectory Estimation

This is the heart of our approach and is key to achieving robustness. It is designed to

retrieve the swing trajectory from the set of hypotheses which can contain many outliers.

The first step consists in analyzing the hypotheses in order to localize the upswing and

downswing regions in the sequence. Then, the trajectory estimation is performed inde-

pendently on both of these regions.

4.1 Trajectory Model

Before introducing our estimation procedure, we need to formalize the choice of our

swing trajectory model. Our goal is to find a simple model able to represent any club

head trajectory from any golf swing with the smallest possible number of parameters that

yields a sufficient level of precision.

We assume that all the golf swings that we want to track are made up of an upswing

and a downswing. We propose two models to represent these trajectories. Two functions

ρup(β ) and ρdown(β ) are defined in polar coordinates using a central point as origin. The

exact location of this reference point has no real influence on the final results. However,

it should be placed roughly in the center of the trajectory. These two functions give the

distance ρ between the club head and the reference point as a function of the angle β .

This angular value β is defined with a vertical origin (looking to the top of the image),

increasing clockwise. The upswing trajectories are defined on the range β ∈ [π,

7π
3

], while

the downswing trajectories are defined on the range β ∈ [ 7π
3

,−π
2
]. Figure 4 presents these

trajectories and the defined referential.

In some cases, β may need to be adjusted by a value of ±2π in order to be coherent

with the current region of the swing. We want that all hypotheses belonging to the up-

swing and the first part of the downswing are in the range β ∈ [π,

7π
3

]. We also want that

all hypotheses belonging to the last part of the downswing are in the range β ∈ [π,−π
2
].

These conditions ensure a continuous evolution of β during the whole swing.

Figure 4: Polar coordinates of the club head

using our defined referential.

We manually acquired many different golf swing trajectories in order to analyze the

behavior of these two functions. We observed that they can usually be very easily and

precisely approximated by simple polynomial functions of rather small degrees. The idea

of our trajectory estimator will thus be to find such a polynomial function of a certain

fixed degree matching with a hypothesis in the highest number of frames.

An important question is how can we determine the optimal degrees to use for these

two polynomial functions. Too small degrees will not allow for a precise representation of

all possible club head trajectories, while too large degrees may present unstable behavior

during the estimation procedure in the presence of outliers, due to a too large number



of degrees of freedom. There is therefore an important tradeoff in the choice of these

degrees. A reasonable choice would thus be to determine the smallest degrees providing

acceptable precision for any swing trajectory approximation.

We tried to estimate an important number of manually acquired swing trajectories

with polynomials of different degrees. For each estimation, we computed its mean square

error and support values. The support is computed as the percentage of acquired points

closer to the estimated curve than a given threshold T . Averaging our results on many dif-

ferent swings, we observed that the MSE drops to a relatively small value for an upswing

estimation of degree 4 and a downswing estimation of degree 6 (see Figure 5). Moreover,

the support reaches quite important values for the same degrees. These two degrees seem

therefore to be optimal choices in order to deal efficiently with the present tradeoff.

Figure 5: Determination of the best degrees

to use for the polynomial trajectories esti-

mations. (Averaged results on an important

set of different trajectories) Degrees 4 for

upswing and 6 for downswing are obtained

from this observation. These two values are

the smallest ones allowing for a relatively

precise representation of any swing trajec-

tory.

4.2 Temporal Segmentation of the Sequence

We want to localize the upswing and downswing regions in the sequence. For that pur-

pose, we need to analyze the set of hypotheses and identify several key events such as the

position of the beginning of the swing, the limit between the upswing and the downswing

and the end of the swing. Analyzing the average elevation (the y coordinate) of the club

head’s hypothetical position along the sequence, we can get an idea about the evolution

of the altitude of the real club head. Assuming a stationary distribution of the position of

the outliers, it is thus possible to statistically estimate the evolution of the positions of the

inliers. We create a sequence s[n] containing the average elevation of the hypotheses in

each frame and we filter it several times with a simple average filter f [n]. s[n] is defined

such that s[i] = 1
Ni

∑Ni
j=1 hi, j for i ∈ [I f irstFrame, IlastFrame], where Ni is the number of hy-

potheses in the ith frame and hi, j is the altitude (y coordinate) of the jth hypothesis of the

ith frame. Whenever Ni = 0, we set s[i] to a certain fixed constant. The filter is defined

such that f [n] = 1
M

for n = 0, . . . ,M−1.

The resulting sequence usually presents a nice and smooth curve corresponding quite

well to the club head altitude evolution, as shown in Figure 6. We can therefore retrieve

the desired bounds corresponding to some easily identifiable peaks. A simple procedure

looks for the top position of the club corresponding to the first peak higher than a certain

threshold. Then, it searches backwards for the start position and forwards for the end

position. It also estimates the position corresponding to the time when the club hits the

ball.



Figure 6: Time bounds retrieval process. The first graph shows the average elevation of

the hypotheses for each frame. The second graph is the result of this sequence filtered

three times with f [n]. A simple analysis of this result allows for a precise estimation of

the desired time bounds.

Using these results, we can now apply a more restrictive rejection test to the remaining

hypotheses. Depending on the current region, we can get rid of some remaining outliers

that do not represent a physically valid position for that region. Decreasing the number of

outliers will obviously help the trajectory estimation, therefore guaranteeing a very high

success rate.

4.3 Robust Trajectory Estimator

Assume that we want to find a polynomial upswing trajectory estimation ρ̂up(β ) of degree

dup and a downswing trajectory estimation ρ̂down(β ) of degree ddown (We typically use

dup = 4 and ddown = 6 as defined in Section 4.1). The algorithm (RANSAC-like) proceeds

as follows. It randomly chooses one hypothesis in Nup = dup +2 distinct frames belonging

to the upswing region, such that the β value of the hypotheses strictly increases in the

range [π,

7π
3

] when looking at them in chronological order. Then, it determines the best

polynomial function of degree dup fitting these hypotheses in the mean square error sense.

Let (βi,ρi) be the polar coordinates of the club head of the ith randomly selected

hypothesis. We want to find the coefficients c = [c0, . . . ,cdup
]T of a polynomial function

such that ‖Ac−ρ‖2 is minimal, where

A =













1 β0 . . . β
dup

0

1 β1 . . . β
dup

1
...

...
. . .

...

1 βNup . . . β
dup

Nup













and ρ =











ρ0

ρ1

...

ρNup











Using the Pseudo-Inverse theorem (and assuming A of maximum rank), we know that this

minimum is obtained for c = [AT A]−1AT ρ .

Once we have this estimation at our disposal, we check for each frame of the upswing

region if it contains a hypothesis close to this trajectory (closer than a certain threshold

Tup). We compute the support S of this estimation as the number of frames in which such

a close hypothesis is present and we compute a distance value as the mean square distance

of these close hypotheses to the estimated trajectory.

This whole process is repeated many times and the estimation presenting the highest

support S is kept. By finding an important sequence of hypotheses corresponding to a



trajectory defined by a smooth polynomial function, we can ensure that these hypotheses

are inliers.

The final upswing trajectory is redefined using the S hypotheses belonging to the

support of the best estimation found. We compute the polynomial function best fitting all

these hypotheses in the mean square error sense as previously. The coefficients c of the

polynomial function ρ̂up(β ) are thus obtained as c = [AT
bigAbig]

−1AT
bigρ

big
, where

Abig =













1 β0 . . . β
dup

0

1 β1 . . . β
dup

1
...

...
. . .

...

1 βS . . . β
dup

S













and ρ
big

=











ρ0

ρ1

...

ρS











Once the final upswing trajectory estimation ρ̂up(β ) is defined, we use it to adjust the

previously estimated temporal position between the upswing and downswing. Then, the

same approach is used to find the estimation ρ̂down(β ) of the downswing trajectory.

4.4 Speed Estimation

In the previous section, we proposed a method to robustly retrieve the spatial trajectory

of the club head. Here, we present an additional approach used to estimate the tempo-

ral evolution of the club head along this trajectory. Let the two functions βup(t) and

βdown(t) correspond to the temporal evolution of the angular coordinate β of the club

head during the upswing and downswing. We want to approximate these functions with

two polynomial functions β̂up(t) of degree dup, growing in the range [π,

7π
3

] and defined

for t ∈ [tstart , tup], and β̂down(t) of degree ddown, decreasing in the range [ 7π
3

,−π
2
] and de-

fined for t ∈ [tup, tend ]. The best polynomial degrees to use for these temporal estimations

have been determined using the same approach as for the trajectory estimations (see Sec-

tion 4.1), and are dup = 3 and ddown = 5. The time indexes tstart , tup and tend correspond

respectively to the beginning of the swing, the limit between upswing and downswing and

the end of the swing.

In order to find a good approximation of βup(t), we use all the S hypotheses belonging

to the support of our estimated trajectory ρ̂up(β ). Let βi be the β coordinate of the ith

selected hypothesis and ti be the index of the frame containing it. We find the coefficients

c = [c0, . . . ,cdup
]T of the best polynomial estimation β̂up(t) as c = [DT D]−1DT β , where

D =













1 t0 . . . t
dup

0

1 t1 . . . t
dup

1
...

...
. . .

...

1 tS . . . t
dup

S













and β =











β0

β1

...

βS











The same approach is then used to compute the estimation β̂down(t).

Having ρ̂up(β ), β̂up(t), ρ̂down(β ), β̂down(t) and the three time indexes tstart , tup and

tend , we have a complete spatio-temporal model of the whole swing trajectory. This model

can be used to draw the swing trajectory when playing the sequence or to compare differ-

ent trajectories. Local speed and acceleration can also easily be derived from it.



5 Experimental Results

As shown in Figure 1, the system has been tested on many different sequences from

various players in various environments. The video sequences were interlaced DV-PAL

encoded. The PAL system has a frame rate of 25 frames per second, which means that

50 fields are captured every second. Such a high acquisition frequency is quite important

in order to provide sufficiently close detections for precise trajectory estimation. Never-

theless, in some sequences, the club head reaches a speed of about 160km/h just before

hitting the ball. At such a speed, the displacement of the club head is of about 90cm

between two consecutive fields, which is quite large, meaning that only few club head

positions are available during this part of the swing.

Our system behaved successfully on most of the test sequences, including those pre-

senting a very fast swing. The sequences on which the system failed to extract a correct

trajectory presented some foreseeable problems. For example, the shutter speed used for

recording most of these sequences was too slow, producing extremely blurred clubs dur-

ing the fast parts of the swings, making it impossible for the club extraction to retrieve

them. Too few detections were therefore available to estimate the correct trajectory. Our

system is very robust, given a reasonable quality for the video sequences. Actually, when-

ever the club is relatively well detected throughout the whole swing (no long sequence of

misdetections), the trajectory is correctly returned, even in the presence of a high number

of outliers. Figure 7 presents a wrong trajectory estimated from a sequence acquired with

a too slow shutter speed.

Figure 7: Trajectory estimation failure due to video sequence quality problem. (a) The

estimated trajectory is seriously wrong during the fast part of the downswing. (b) Club

position at the beginning of the upswing; since it is moving slowly, the club is clearly

represented on the video sequence and will be correctly extracted. (c) Club position just

before the ball hit; due to its high velocity and the too slow shutter speed of the acquisition

system, it is almost undistinguishable from the background and won’t be detected during

the club extraction. Having no correct detection in this area, it will therefore be impossible

for the trajectory estimation to find the correct trajectory.

The estimated trajectories present a good level of precision. No deflection between

them and the real club head positions can usually be noticed. Only during the fastest part

of the swings have some precision problems been observed. Since only few frames are

usually available in these regions, an abrupt change of direction or acceleration is hardly

detectable. Even they, the estimated trajectory is usually off by no more than ten pixels,

which is quite reasonable. Obtaining the speed and acceleration of the club head just

before it hits the ball with a higher precision might be very interesting, but would require

the use of a video camera with a higher acquisition frequency.



6 Conclusion

We have proposed a new approach to tracking that is applicable when a global trajectory

model is available. This approach relies on robustly fitting a polynomial trajectory model

to a set of detections. It makes the tracker robust and automated enough to be integrated

into a commercial product that does not require particular knowledge from the user and

that is designed to work in true outdoor environments.

We believe that our approach is very general and can be extended to more complex

motion models using splines or PCA-based [8] representations. It can therefore be a

valuable alternative to standard tracking approaches for any application where a specific

motion has to be tracked, which is the case for many sports gestures, and more generally

in all training situations in which one deals with specific gestures that are parts of known

procedures.

In future work, we plan to acquire swings from multiple golfers of different skills,

and classify them with respect to the recovered model parameters to build an annotated

swings database. Then, the system should be able to provide a description of the user’s

faults by matching his swing parameters against the database.
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