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Abstract

Absolute camera pose estimation is usually addressed by

sequentially solving two distinct subproblems: First a fea-

ture matching problem that seeks to establish putative 2D-

3D correspondences, and then a Perspective-n-Point prob-

lem that minimizes, w.r.t. the camera pose, the sum of so-

called Reprojection Errors (RE). We argue that generating

putative 2D-3D correspondences 1) leads to an important

loss of information that needs to be compensated as far as

possible, within RE, through the choice of a robust loss and

the tuning of its hyperparameters and 2) may lead to an RE

that conveys erroneous data to the pose estimator. In this

paper, we introduce the Neural Reprojection Error (NRE) as

a substitute for RE. NRE allows to rethink the camera pose

estimation problem by merging it with the feature learning

problem, hence leveraging richer information than 2D-3D

correspondences and eliminating the need for choosing a

robust loss and its hyperparameters. Thus NRE can be used

as training loss to learn image descriptors tailored for pose

estimation. We also propose a coarse-to-fine optimization

method able to very efficiently minimize a sum of NRE terms

w.r.t. the camera pose. We experimentally demonstrate that

NRE is a good substitute for RE as it significantly improves

both the robustness and the accuracy of the camera pose es-

timate while being computationally and memory highly effi-

cient. From a broader point of view, we believe this new way

of merging deep learning and 3D geometry may be useful in

other computer vision applications. Source code and model

weights will be made available at hugogermain.com/nre.

1. Introduction

Absolute camera pose estimation is a fundamental step

to many computer vision applications, such as Structure-

from-Motion (SfM) [20, 38, 39, 44] and visual localiza-

tion [36, 42, 43]. Given a pre-acquired 3D model of the

world, we aim at estimating the most accurate camera pose

(a) (b) (c)

Figure 1. Neural Reprojection Error (NRE) as a substitute for

Reprojection Error (RE): (a) Given a 3D point u, a query image

I and its ground truth camera pose, u can be reprojected into the

image plane of I to obtain a 2D point ×. (b) RE takes as input a

camera pose and a putative 2D-3D correspondence between u and

a 2D location + in I, reprojects u to obtain a 2D point q, com-

putes the euclidean distance between + and q and finally applies

a robust loss function (shown in turquoise as a function of q). In

ambiguous (middle) or multimodal (bottom) cases, generating a

2D-3D correspondence may lead to a loss function that conveys

erroneous data to the pose estimator. (c) NRE does not rely on

2D-3D correspondences, thus + does not exist anymore. Instead,

NRE employs a dense loss map (shown in turquoise as a function

of q) that contains much more information than RE, especially in

ambiguous and multimodal cases. As a result, a pose estimator is

significantly more accurate and robust using NRE than RE.

of an unseen query image. In practice, as illustrated on the

left hand-side of Figure 2, this problem is often addressed

by sequentially solving two distinct subproblems: First, a

feature matching problem that seeks to establish putative

2D-3D correspondences between the 3D point cloud and

the image to be localized, and then a Perspective-n-Point

(PnP) problem that uses these correspondences as inputs to

minimize a sum of so-called reprojection errors w.r.t. the

camera pose. The Reprojection Error (RE) is a function of
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a 2D-3D correspondence and the camera pose. It consists

in reprojecting the 3D point, using the camera pose, into

the query image plane, computing the euclidean distance

between this reprojection and its putative 2D correspon-

dent, and applying a robust loss function, such as Geman-

McClure or Tukey’s biweight [4,55]. The robust loss allows

to reduce the influence of outlier 2D-3D correspondences.

We argue that this strong decoupling of the matching

stage from the PnP stage limits both the accuracy and the

robustness of the camera pose estimate. Generating putative

2D-3D correspondences leads to an important loss of infor-

mation since the 3D model and the query image are sum-

marized into a set of 2D-3D coordinates. This loss of infor-

mation needs to be compensated as far as possible within

RE through the choice of a robust loss and the tuning of

its hyperparameters, which usually depend on both the vi-

sual content and the amount of outliers generated by the

matching stage. Moreover, outlier correspondences convey

erroneous data to the pose estimator (see fig. 1).

Contributions:

(i) We propose the Neural Reprojection Error (NRE) as a

substitute for RE. NRE does not require a 2D-3D correspon-

dence as input but relies on a dense loss map. A dense loss

map contains much more information than a simple 2D-3D

correspondence and conveys data of higher quality to the

pose estimator. As a result, the need for choosing a robust

loss and its hyperparameters is also eliminated. Computing

a dense loss map essentially involves cross-correlations be-

tween descriptors that are extracted using a neural network,

hence the name Neural Reprojection Error.

(ii) Our derivation of NRE makes it differentiable not only

w.r.t. to the camera pose but also w.r.t. the descriptors. Thus,

providing ground-truth camera poses and minimizing NRE

w.r.t. the descriptors yields a well-posed feature learning

problem tailored for pose estimation. NRE merges the fea-

ture learning problem and the camera pose estimation prob-

lem in a new way and allows to rethink the recent end-to-

end direct feature metric pose refinement methods that need

to consider two different losses.

(iii) To estimate the camera pose efficiently, we propose to

minimize a sum of NRE terms in a coarse-to-fine manner.

As a result, we never compute or store any high-resolution

dense loss map. We also describe how to perform the opti-

mization using an M-estimator sample consensus approach

followed by a graduated non-convexity procedure. We ex-

perimentally demonstrate that our novel NRE-based pose

estimator is a good substitute for RE-based pose estimators

as it significantly improves both the robustness and the ac-

curacy of the camera pose estimate while being computa-

tionally and memory highly efficient.

In the remainder of the paper, after discussing the re-

lated work, we introduce some notations and describe our

method. We provide a detailed discussion to highlight the

differences between NRE and existing approaches. We fi-

nally present our evaluation results.

2. Related work

NRE has connections with several research areas,

namely, feature learning, learning to match features, end-

to-end camera pose estimation and robust optimization. A

detailed literature review on these topics seems out of the

scope of this paper. Instead, for each topic, we will explain

how NRE is related to it and refer the reader to recent papers

containing a detailed literature review on it.

Feature learning methods [6,7,16,17,19,27,29,32,33,40,

49,51,53,54] learn to transform an image into robust dense

descriptors. Minimizing NRE w.r.t. the descriptors allows

to learn features tailored for pose estimation. Our training

loss is similar to the one proposed in S2DNet [19]. Thus

S2DNet features are in theory well suited to be used as in-

puts of our novel NRE-based pose estimator. However, as

we show in our experiments, S2DNet computes by nature

high-resolution dense correspondence maps which is both

computationally and memory highly inefficient, hence mak-

ing our NRE-based pose estimator impractical. By merging

feature learning and pose estimation, our loss intrinsically

integrates a bilinear interpolation operator. It allows us to

learn coarse robust features and fine discriminative features

which we combine in a coarse-to-fine strategy. As a result,

using our “NRE features” as input, our NRE-based pose es-

timator is both fast and memory highly efficient but also

significantly more robust and accurate compare to the case

where we use S2DNet features as input.

Learning-based matching methods [11, 13, 31, 34, 41, 57]

take descriptors and/or putative correspondences as input

and output probabilities of correspondences. NRE takes

as input dense loss maps which are essentially the nega-

tive logarithm of probabilities of correspondences. In our

current formulation, we do not employ any sophisticated

learning-based matching method to produce these inputs,

but a single dot product between descriptors followed by

a softmax. Using a state-of-the-art matching architecture

would likely improve the results of NRE but we left this as

future work.

End-to-end camera pose estimation methods [9, 10, 12,

22,23,28,47,52] learn jointly all the parameters of the cam-

era pose estimator by backpropagating through it. Different

architectures of camera pose estimators have been proposed

in the literature. Among these architectures, end-to-end fea-

ture metric pose refinement methods [28, 47, 52], are the

ones that are the closest to NRE as their architectures ex-

plicitly minimize a sum of reprojection errors by leveraging

richer information than simple 2D-3D correspondences. In

Sec. 7.2 we provide a detailed discussion to explain the fun-

damental differences between these methods and NRE.

Robust optimization methods [2–5, 15, 56] are tailored to
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Figure 2. NRE-based pose estimator vs. RE-based pose estimator. Left: In an RE-based pose estimator, putative 2D-3D correspondences

are initially established. Then, a sum of RE terms is minimized, w.r.t. the camera pose, using these correspondences, a robust loss and its

hyperparameters as inputs. Right: In an NRE-based pose estimator, dense loss maps are computed instead of 2D-3D correspondences.

Then the query pose is estimated by minimizing a sum of NRE terms, effectively leveraging richer information than simple 2D-3D corre-

spondences and alleviating the need for choosing a robust loss and its hyperparameters.

minimize a sum of non-convex terms. This is essentially

what the PnP stage seeks to achieve as it consists in min-

imizing a sum of RE terms. In Sec. 7.1 we provide a de-

tailed discussion to highlight the fact that RE is a special

case of NRE which allows to relate NRE to standard ro-

bust optimization problems. From another point of view, re-

cent methods, such as [3, 5], allow to eliminate the need for

setting the hyperparameter of the robust loss by marginal-

izing it. NRE is also able to eliminate this need but in a

very different manner. Consequently, in the experiments

we will compare the performances of these RE-based esti-

mators against our novel NRE-based estimator.

3. Background and notations

In this paper, we assume a sparse 3D point cloud

{uG
n}n=1...N , whose coordinates are expressed in a global

coordinate system G, as well as a database D of geo-

localized (w.r.t. G) reference images are given, and we seek

to estimate the pose (i.e. the rotation matrix RQG and the

translation vector tQG) of a query image IQ coming from

a calibrated camera.

Dense descriptors HQ of IQ are extracted using a con-

volutional neural network F with parameters Θ: HQ :=
F (IQ; Θ). Similarly, F is used to compute a set of de-

scriptors {hn}n=1...N for each 3D point {uG
n}n=1...N in the

database D.

The warping function ω(uG
n,RQG,tQG):=Kπ (RQGu

G
n+ tQG)

allows to warp a 3D point uG
n to obtain a 2D point pQ

n

onto the image plane of IQ, i.e. pQ
n = ω (uG

n, RQG, tQG),
where K is the camera calibration matrix and π (u) :=
[ux/uz,uy/uz]

T
is the projection function.

Let us now introduce the concept of correspondence

map. In this paper, the correspondence map CQ,n of uG
n in

IQ is computed as follows: CQ,n = g (hn ∗ HQ) where g is

the softmax function and ∗ is the spatial convolution opera-

tor. The value CQ,n (p
Q
n) describes how likely it is that pixel

location pQ
n in IQ corresponds to uG

n. CQ,n also has an ex-

tra category pQ
n = out that corresponds to the case where

uG
n is not seen in IQ. By definition, CQ,n (p

Q
n = out) := 0.

Thus, CQ,n has |Ω̊Q| = 1 +HQ ×WQ categories, where HQ

and WQ are the number of rows and columns of HQ, ΩQ is

the set of all the pixel locations in HQ and Ω̊Q := {ΩQ,out}.

The following notations will also be useful: J·K is the

Iverson bracket (JTrueK = 1 and JFalseK = 0), ⌊·⌋ is the

floor function and ‖·‖ is the L2 norm.

4. Neural reprojection error

In this section, we first introduce the standard RE and

then we present our novel NRE.

4.1. Reprojection error

The RE, that is used by most of the camera pose estima-

tion methods, corresponds to the following equation:

RE
(

uG
n,p

Q
n, RQG, tQG

)

:=ψσ

(
∥

∥pQ
n−ω

(

uG
n, RQG, tQG

)
∥

∥

)

(1)

where {pQ
n,u

G
n} is a 2D-3D correspondence and ψσ (·) is a

parametric robust loss, such as Geman-McClure or Tukey’s

biweight [4,55], that allows to reduce the influence of large

residuals. Estimating the camera pose by minimizing a sum

of RE terms enforces the 3D model and the query image to

be summarized into a set of putative correspondences which

results in a significant and irreversible loss of information.

This loss of information needs to be compensated as far as

possible through the choice of a robust loss and the tuning

of its hyperparameters, that usually depend on both the vi-

sual content and the outliers distribution. Moreover, outlier

correspondences convey erroneous data to the pose estima-

tor. On the contrary, our novel loss, which we introduce in

the next section, leverages richer information from the 3D

model and the query image than RE and as a result elimi-

nates the need for choosing a robust loss and its hyperpa-

rameters.
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Figure 3. Learning image descriptors tailored for camera pose estimation: Given a pair of target/source images (IT, IS), 3D points
{

u
S
n

}

n=1...N
(seen in both IS and IT) and ground truth camera poses (RTS and tTS), we first extract dense representations for both images.

For each 3D, we compute dense loss maps and minimize the S2D-CE loss with respect to the backbone parameters Θ.

4.2. Our novel loss

Instead of computing the loss as a robust parametric

function of the euclidean distance between the reprojected

3D point and its putative 2D correspondent in the query im-

age, our novel loss function evaluates the discrepancy be-

tween two probability mass functions (pmf): the matching

pmf and the reprojection pmf. In the rest of this section, we

first define these two pmf and then introduce our novel loss.

Matching probability mass function: This pmf describes

how likely it is that the descriptor at the 2D image location

pQ
n in HQ corresponds to the descriptor hn of the 3D point

uG
n.

qm

(

pQ
n|sn, HQ,hn

)

:= sn CQ,n
(

pQ
n

)

+
1− sn

|Ω̊Q|
, (2)

where the binary selector variable sn ∈ {0, 1} allows

to choose between two components: the predicted cor-

respondence map and the outlier uniform pmf. The

latter component introduces robustness against erroneous

correspondence maps that may occur because of non-

covisibility, occlusions, failure of the deep network, etc.

We show in Fig. 4(b) an example of the negative logarithm

of a correspondence map.

Reprojection probability mass function: This pmf de-

scribes how likely it is that a 2D location pQ
n ∈ Ω̊Q cor-

responds to the reprojection of a 3D point uG
n using camera

pose RQG and tQG.

qr (p
Q
n|u

G
n, RQG, tQG) :=

w00,n JpQ
n = ⌊ω (uG

n, RQG, tQG)⌋K+
w10,n

r
pQ
n = ⌊ω (uG

n, RQG, tQG)⌋+ [1, 0]
T
z
+

w01,n

r
pQ
n = ⌊ω (uG

n, RQG, tQG)⌋+ [0, 1]
T
z
+

w11,n

r
pQ
n = ⌊ω (uG

n, RQG, tQG)⌋+ [1, 1]
T
z
,

(3)

where the weights wi,j are bilinear interpolation coeffi-

cients, i.e.

w00,n := (1− xn) (1− yn) , w10,n := xn (1− yn) ,
w01,n := (1− xn) yn, w11,n := xnyn,

with

xn := (⌊ω (uG
n, RQG, tQG)⌋ − ω (uG

n, RQG, tQG))x ,
yn := (⌊ω (uG

n, RQG, tQG)⌋ − ω (uG
n, RQG, tQG))y .

Equation 3 sets a non-zero weight to the four image loca-

tions surrounding the reprojection of the 3D point uG
n un-

der camera pose parameters RQG and tQG, and a zero weight

to the rest of the image. In a slight abuse of notation,

if a reprojection ω (uG
n, RQG, tQG) falls outside of the im-

age boundaries or if the 3D point has negative depth, i.e.

(RQGu
G
n + tQG)z ≤ 0, we consider that

⌊ω (uG
n, RQG, tQG)⌋+ [·, ·]

T := out and

w00,n := 1, w10,n = w01,n = w11,n := 0.

We show in Fig. 4(d) an example of a reprojection pmf.

Assuming perfect descriptors and a perfect camera pose,

the two pmf should be the same. This analysis is the fun-

damental idea of this paper: (a) given ground truth camera

pose, we will make the matching pmf fit the reprojection

pmf to learn descriptors tailored for pose estimation, (b)

given descriptors, we will make the reprojection pmf fit the

matching pmf to estimate the camera pose.

We propose to evaluate the discrepancy between the

matching pmf (Eq. 2) and the reprojection pmf (Eq. 3) using

the following Cross-Entropy (CE):

CE
(

qr

(

pQ
n|u

G
n, RQG, tQG

)

||qm

(

pQ
n|sn, HQ,hn

))

= -
∑

p
Q
n∈Ω̊Q

qr

(

pQ
n|u

G
n, RQG, tQG

)

ln
(

qm

(

pQ
n|sn, HQ,hn

))

= snC̃Q,n
(

ω
(

uG
n, RQG, tQG

))

+ (1− sn) ln |Ω̊Q|

:= NRE
(

uG
n, HQ,hn, RQG, tQG, sn

)

(4)

where C̃Q,n (p) := − ln (CQ,n (p)) ∀p ∈ Ω̊Q is called a

dense loss map. The notation C̃Q,n (ω (uG
n, RQG, tQG)) cor-

responds to performing a bilinear interpolation at location

ω (uG
n, RQG, tQG) in C̃Q,n.

From the point of view of the 3D point uG
n, Eq. 4 is a

reprojection loss that depends on descriptors extracted by a

convolutional neural network F (see Sec. 3). Thus, we will

refer to Eq. 4 as the Neural Reprojection Error.

4



(a) (b) (c) (d) (e)

Figure 4. Visualizations of maps involved in the derivation of NRE: We show an example of (a) a source image and a reprojected 3D

point uG
n using ground truth camera pose, (b) the non-robust dense loss map C̃Q,n with respect to the target image (e), (c) the robust dense

loss map LQ,n, and (d) the target reprojection probability mass function used at training time.

From a practical point of view, given query dense

descriptors HQ as well as 3D points and descriptors

{uG
n,hn}n=1...N , it is possible to estimate the camera pose

by minimizing a sum of NRE terms w.r.t. RQG, tQG and

{sn}n=1...N (see Sec. 5). Here, NRE relies on the dense

loss maps directly which significantly reduces the amount

of lost information compared to RE. Consequently, the need

for choosing a robust loss and its hyperparameters is elim-

inated and all the information is kept available to estimate

the camera pose.

Our novel NRE is differentiable not only w.r.t. to the

camera pose but also w.r.t. the descriptors HQ and hn. Thus,

providing ground-truth camera poses and minimizing NRE

w.r.t. the descriptors yields a well-posed feature learning

problem tailored for the pose estimation (see Sec. 6). NRE

merges the feature learning problem and the camera pose

estimation problem in a new way and allows to rethink

the recent end-to-end feature metric pose refinement (see

Sec. 7.2).

5. Camera pose estimation

Our novel NRE can be used to estimate the camera pose.

Given a query image, from which query dense descrip-

tors HQ are extracted, as well as 3D points and descriptors

{uG
n,hn}n=1...N , we obtain a camera pose estimate by min-

imizing the following sum of NRE terms (Eq. 4) w.r.t. RQG
and tQG:

L (RQG, tQG)

= min
s1,s2,...,sN

N
∑

n=1

NRE
(

uG
n, HQ,hn, RQG, tQG, sn

)

=
N
∑

n=1

min
(

ln |Ω̊Q|, C̃Q,n
(

ω
(

uG
n, RQG, tQG

))

)

(5)

≈

N
∑

n=1

LQ,n

(

ω
(

uG
n, RQG, tQG

))

(6)

where the loss maps LQ,n are defined as follows:

LQ,n (p) := min
(

ln |Ω̊Q|, C̃Q,n (p)
)

∀p ∈ Ω̊Q . (7)

Instead of performing a bilinear interpolation in C̃Q,n fol-

lowed by a truncation as in Eq. 5, we apply a truncation

to each element of C̃Q,n once (Eq. 7) and then perform a

bilinear interpolation (Eq. 6). This approximation enables

both a sparse storage of each loss map LQ,n and an efficient

smoothing procedure (see Sec. 5.2).

Our loss function is robust against outliers, since large

values in C̃Q,n are truncated at ln |Ω̊Q|. We show in Fig. 4(c)

an example of a robust dense loss map (LQ,n).

Minimizing Eq. 6 is a non-convex optimization problem,

thus we proceed in two steps: a sampling-based initializa-

tion step followed by gradient-based refinement step.

5.1. Initialization step

To obtain an initial pose estimate, we employ an M-

estimator SAmple Consensus approach (MSAC) [50]. The

method is very similar to a RANdom SAmple Consensus

approach (RANSAC) [18]) but does not require any user

defined inlier/outlier threshold. Each iteration consists of

1) randomly sampling 3 loss maps, 2) estimating a putative

camera pose from these 3 loss maps and 3) evaluating Eq. 6

with that putative camera pose. Step 2 can be efficiently

implemented using a standard P3P solver since:

argmin
RQG,tQG

3
∑

n=1

LQ,n

(

ω
(

uG
n, RQG, tQG

))

= P3P

({

uG
n, argmin

p

LQ,n (p)

}

n=1...3

)

. (8)

5.2. Refinement step

Refining the initial camera pose remains a difficult op-

timization problem since each loss map in Eq. 6 may have

plateaus and local minima (see Fig. 1 middle and bottom

rows) and the initial pose estimate may not be accurate

enough for a gradient-based method to avoid a poor local

minimum.

Thus, we employ a Graduated Non-Convexity approach

(GNC) [8] that builds a sequence of successively smoother

(and therefore easier to optimize) approximations of the

original loss function. The optimization scheme consists

5



of optimizing the sequence of loss functions, with the so-

lution from the previous objective used as starting point for

the next one. However, Eq. 6 is not a standard robust op-

timization problem [56]. Therefore, we propose to apply a

Gaussian-homotopy-like method [30] and consider the fol-

lowing smoothed version of the original loss function (a

derivation of that equation is given in the appendix):

L̆σ (RQG, tQG) :=

N
∑

n=1

∑

q∈ΓQ,n

-
(

ln |Ω̊Q|-LQ,n (q)
)

kσ
(
∥

∥q-ω
(

uG
n, RQG, tQG

)
∥

∥

)

(9)

where kσ (‖r‖) := 1
2πσ2 e

−
‖r‖2

2σ2 is an isotropic Gaussian

kernel with standard variation σ and ΓQ,n is the set of pixel

locations whose corresponding values in C̃Q,n have not been

truncated in Eq. 7. In Eq. 9, a large value of σ leads to a

highly smoothed version of the original loss function while

a small value of σ corresponds to a loss function that is

very similar to Eq. 6. Therefore, in practice, we will start

the optimization with a value of σ that is large enough, to

avoid getting stuck in a poor local minimum and progres-

sively decrease its value. Since Eq. 9 is a standard robust

optimization problem, we employ an Iterated Reweighted

Least Squares (IRLS) approach to minimize each optimiza-

tion problem within the GNC [8] and use the stopping cri-

terion proposed in [56].

5.3. Coarse­to­fine strategy

From a practical point of view, the robustness and the ac-

curacy of the camera pose estimate directly depends on the

loss maps, especially their resolution. However, producing

high resolution loss maps is an inefficient strategy: most

of the computational time would be spent computing cross-

correlations in regions distant from the true correspondent

locations. Instead, we propose a coarse-to-fine strategy: we

first estimate a coarse camera pose using low-resolution loss

maps and then refine it using local high-resolution ones.

For a given query image of size H × W × 3, we

proceed as follows: 1) Coarse dense descriptors of size

H/16×W/16×1280 are extracted using a coarse network

(Fcoarse). 2) Low-resolution loss maps of sizeH/16×W/16
are computed. 3) We run an MSAC [50]+P3P to obtain an

initial coarse pose estimate. 4) We apply a GNC [8] pro-

cedure (still using low-resolution correspondence maps) to

refine that initial coarse estimate. 5) Fine dense descriptors

of sizeH/2×W/2×288 are extracted using a fine network

(Ffine). 6) Local high-resolution loss maps of size 64 × 64
are computed at the location of the reprojected 3D points

using the coarse pose estimate. 7) We apply a GNC [8] pro-

cedure starting from the coarse pose estimate to obtain our

final pose estimate. Implementation details are provided in

the appendix.

This coarse-to-fine strategy allows to obtain a camera

pose estimate very efficiently while significantly reducing

the amount of required memory, since we never compute or

store any high-resolution loss map (see Tab. 3).

6. Learning image descriptors

Our novel camera pose estimation method (see Sec. 5)

essentially consists in minimizing a sum of NRE terms,

w.r.t. the camera pose, assuming that the underlying de-

scriptor extractor networks Fcoarse and Ffine provide robust

and discriminative descriptors. Therefore, we need to learn

these networks. Let us recall that NRE (Eq. 4) is differ-

entiable w.r.t. the descriptors HQ and hn. Thus we can

learn to extract descriptors using NRE as training loss. We

provide pairs of target/source images (IT, IS), 3D points

{uS
n}n=1...N (seen in both IS and IT) and ground truth cam-

era poses (RTS and tTS). For each pair of images, we per-

form gradient descent over the following loss function (see

Fig. 3):

L (Θ) =

N
∑

n=1

NRE
(

uS
n, HT,hn, RTS, tTS, sn = 1

)

, (10)

with HT=F (IT; Θ), HS=F (IS; Θ) and hn=HS (Kπ (u
S
n)).

The selector variable sn is set to one in order to ease the

gradient propagation. As explained in Sec. 5.3, in practice,

we employ two networks: a coarse network Fcoarse and a

fine network Ffine. Thus we need to train two networks with

different architectures, which are detailed in the appendix.

7. Discussion

7.1. RE is a special case of NRE

In RE-based pose estimation, we are given 2D-3D corre-

spondences {uG
n,p

Q
n}n=1...N . Let us consider a single 2D-

3D correspondence. Assuming that pQ
n has integer pixel co-

ordinates, we can build a one-hot-encoded correspondence

map CQ,n such that CQ,n (p
Q
n) = 1 and zeros everywhere

else. In this case, Eq. 7 is a dense loss map LQ,n that equals

zero at the location pQ
n and ln |Ω̊Q| everywhere else, and

Eq. 9 becomes:

Lσ(RQG, tQG)=
N
∑

n=1

- ln |Ω̊Q|kσ
(∥

∥pQ
n-ω

(

uG
n, RQG, tQG

)∥

∥

)

. (11)

In Eq. 11, each term within the sum corresponds to Eq. 1

with a negative gaussian function as robust loss, whose

shape is similar to the truncated quadratic kernel [55]. Thus,

RE is a special case of NRE. In the experiments, we will

consider minimizing Eq. 11 to fairly compare RE vs. NRE.
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Features Pose estimator Hyperparam. Translation Error Rotation Error

0.25m 1m 5m 2◦ 5◦ 10◦

S2DNet [19] RE LO-RANSAC [14] τ = 4 0.54 (+23%) 0.45 (+32%) 0.33 (+32%) 0.54 (+23%) 0.47 (+27%) 0.45 (+32%)

S2DNet [19] RE GC-RANSAC [2] τ = 4 0.54 (+23%) 0.43 (+26%) 0.31 (+24%) 0.53 (+20%) 0.47 (+27%) 0.43 (+26%)

S2DNet [19] RE MAGSAC++ [5] N/A 0.51 (+16%) 0.43 (+26%) 0.31 (+24%) 0.51 (+16%) 0.45 (+22%) 0.42 (+24%)

S2DNet [19] RE Minimize Eq. 11 σ = 5 0.53 (+20%) 0.44 (+29%) 0.31 (+24%) 0.52 (+18%) 0.46 (+24%) 0.43 (+26%)

S2DNet [19] FPR Minimize Eq. 12 Cf. Appendix 0.49 (+11%) 0.42 (+24%) 0.30 (+20%) 0.48 (+ 9%) 0.44 (+19%) 0.42 (+24%)

S2DNet [19] NRE N/A 0.44 (+ 0%) 0.34 (+ 0%) 0.25 (+ 0%) 0.44 (+ 0%) 0.37 (+ 0%) 0.34 (+ 0%)

Table 1. NRE-based vs. RE-based pose estimators: We evaluate the gain in performance of our novel NRE-based pose estimator against

state-of-the-art RE-based pose estimators on the MegaDepth dataset [25]. For a fair comparison, each method employs S2DNet [19]

features, even our NRE-based pose estimator. For the methods that have an hyperparameter, we optimized it and report the best results.

We report the error at several thresholds for translation and rotation (lower is better). The scores between brackets show the relative

deterioration w.r.t. to NRE. We find that our NRE-based pose estimator significantly outperforms all the RE-based estimators. We include

the performance of the best feature-metric pose refinement estimator, which is covered in more details in the appendix.

7.2. NRE vs. End­to­end feature metric pose refine­
ment

End-to-end Feature metric Pose Refinement (FPR) meth-

ods [28,47,52] seek to minimize a loss of the following form

at ”test-time”:

Lσ (RQG, tQG) :=

N
∑

i=1

ψσ

(
∥

∥hn-HQ
(

ω
(

uG
n, RQG, tQG

))
∥

∥

)

. (12)

In Eq. 12, each term within the sum consists in reprojecting

a 3D point into the query image plane but taking the dis-

tance in the space of descriptors. From this point of view,

FPR is similar to NRE as it tries to leverage richer image

information than simple 2D-3D correspondences. However

FPR still requires choosing/learning a robust loss and tun-

ing/learning its hyperparameters, so from this point of view

it has the same limitations as RE.

But the major difference between FPR and NRE is that

minimizing Eq. 12 w.r.t. the descriptors does not yield a

well-posed feature learning problem. In order to learn de-

scriptors tailored for pose estimation, FPR methods must

consider at least two losses. In [52], a pixelwise contrastive

loss is added (as well as a term involving the Hessian of the

pose), while [28] and [47] unroll several steps of an opti-

mizer to obtain a computational graph and use a distance

between the ground truth pose and the predicted pose to

supervise the training. On the contrary, minimizing NRE

w.r.t. the descriptors yields a well-posed feature learning

problem. Thus NRE is the first method to unify the feature

learning problem and the camera pose estimation problem

in a single loss and allows to rethink the end-to-end FPR

strategy.

8. Experiments

In this section, we experimentally demonstrate that

our novel NRE-based pose estimator significantly outper-

forms state-of-the art RE-based pose estimators. We also
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Figure 5. Ablation study: We report the cumulative error curves

in pose estimation (lower is better), on the hardest category of our

Megadepth study. We find that each step of our NRE-based coarse-

to-fine estimator brings significant improvements.

show that our coarse-to-fine strategy markedly reduces the

amount of required memory and the overall computational

time of our NRE-based pose estimator.

8.1. Dataset and method

We assembled an evaluation dataset of 3000
Megadepth [25] image pairs, sampled from the vali-

dation set. Using the provided SfM model reconstructed

using SIFT [26], we create image pairs which contain

at least 50 covisible 3D points. We evenly split them

based on their viewpoint distances to create three difficulty

categories, which we name Easy, Medium and Hard. At

test-time for every pair of source and target images, we

aim at predicting the absolute camera pose of the target

image, based on the 3D points visible in the source image.

We report the pose estimation error for several precision

thresholds.

8.2. RE­based vs. NRE­based pose estimator

In this first evaluation, we compare RE-based pose esti-

mators against our novel NRE-based pose estimator. In or-
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Category Features Pose estimator Translation Error Rotation Error

0.25m 1m 5m 2◦ 5◦ 10◦

Easy
S2DNet NRE 0.17 (+ 42%) 0.12 (+100%) 0.09 (+200%) 0.16 (+ 45%) 0.13 (+ 86%) 0.10 (+100%)

NRE Features NRE 0.12 (+ 0%) 0.06 (+ 0%) 0.03 (+ 0%) 0.11 (+ 0%) 0.07 (+ 0%) 0.05 (+ 0%)

Medium
S2DNet NRE 0.29 (+ 53%) 0.20 (+ 67%) 0.15 (+150%) 0.27 (+ 60%) 0.22 (+ 69%) 0.19 (+ 90%)

NRE Features NRE 0.19 (+ 0%) 0.12 (+ 0%) 0.06 (+ 0%) 0.17 (+ 0%) 0.13 (+ 0%) 0.10 (+ 0%)

Hard
S2DNet NRE 0.44 (+ 30%) 0.34 (+ 42%) 0.25 (+108%) 0.44 (+ 33%) 0.37 (+ 37%) 0.34 (+ 42%)

NRE Features NRE 0.34 (+ 0%) 0.24 (+ 0%) 0.12 (+ 0%) 0.33 (+ 0%) 0.27 (+ 0%) 0.24 (+ 0%)

Table 2. NRE-based pose estimator using NRE features vs. NRE-based pose estimators using S2DNet features: We evaluate the gain

in performance of our NRE features against S2DNet [19] features using the same NRE-based pose estimator. We compare pose estimation

on Megadepth [25] images evenly split in three difficulty categories. We report the error at several thresholds for translation and rotation

(lower is better). The scores between brackets show the relative deterioration w.r.t. to NRE features. We show that using our NRE features,

the resulting estimated pose is markedly more accurate than using S2DNet features.

Features S2DNet S2DNet NRE

Pose estimator RE NRE NRE

Feature extraction 28.2ms 28.2ms N/A

Feature extraction coarse N/A N/A 15.5ms

Feature extraction fine N/A N/A 7.2ms

Compute correspondence maps 300ms 300ms N/A

Compute coarse correspondence maps N/A N/A 8ms

Compute local fine correspondence maps N/A N/A 3ms

Pose initialization (single iteration) 0.9ms 1.1ms 1.1ms

Pose refinement 0.11s 0.61s N/A

Pose refinement coarse N/A N/A 0.15s

Pose refinement fine N/A N/A 0.28s

Total features memory 2949MB 2949MB 591MB

Total correspondence maps memory 7680MB 7680MB 46MB

Table 3. Computational time and memory requirement study:

We report the average inference time on Megadepth [25] images

with 1000 3D points. We show that our coarse-to-fine approach

enables a much faster pose estimation and allows for larger scene

scaling.

der to have a fair comparison, we use S2DNet [19] features

for all methods evaluated in this study.

Baselines: We compare our NRE-based pose estimator

against multiple state-of-the-art RE-based pose estimators.

This includes LO-RANSAC [14], GC-RANSAC [2] and

MAGSAC++ [5], which all aim at finding inlier correspon-

dences from putative matches. We also add the minimiza-

tion of Eq. 11 and Eq. 12.

For all RE-based pose estimators, we follow

S2DNet [19] and provide raw putative 2D-to-3D matches

based on the correspondence map argmax location. For

our NRE estimator, we use the same correspondence maps

but preserve all the information. For all methods requiring

hyperparameter tuning, we run several evaluations to find

the optimal one on our dataset. More details are provided

in the appendix.

Results: We report pose estimation errors for the aforemen-

tionned methods in Tab. 1. We find our NRE-based pose es-

timator consistently provides significant improvements over

other RE-based estimators. In addition as shown in the

appendix, we find hyperparameter tuning has a significant

impact on performance for parametric RE estimators. Our

NRE-estimator however, requires no tuning.

8.3. Coarse­to­fine experiment

We provide an ablation study in Fig. 5 of our coarse-to-

fine strategy. We find that each step of our NRE-based es-

timator brings significant improvements. We now compare

the performance coupling the NRE estimator with NRE fea-

tures trained on the same training set as S2DNet [19], using

our coarse-to-fine strategy. We report in Tab. 2 the pose es-

timation error on all categories from our Megadepth [25]

benchmark. We find that using NRE features brings an ad-

ditional leap in performance, by up to 200%. Thanks to our

coarse-to-fine formulation, this is all achieved at a fraction

of the cost of S2DNet [19]. As reported in Tab. 3, NRE

features have a memory footprint which is over 16 times

lighter, while also performing a lot faster. This is a key

component for practical applications, or when scaling up to

larger amount of keypoints or images. Additional qualita-

tive and quantitative results are provided in the appendix.

9. Conclusion

In this paper, we introduced the Neural Reprojection Er-

ror (NRE) as a substitute for the widely used Reprojection

Error (RE). NRE allows to perform absolute camera pose

estimation by leveraging richer information than RE and

eliminates the need for choosing a robust loss and its hy-

perparameters. We also proposed a coarse-to-fine optimiza-

tion strategy that allows to very efficiently minimize a sum

of NRE terms w.r.t. the camera pose. We experimentally

demonstrated that replacing RE with NRE significantly im-

proved the accuracy and the robustness of the camera pose

estimate while being computationally and memory highly

efficient. Our derivation of NRE merges the feature learning

problem and the absolute camera pose estimation problem

in a new way that allows to rethink the end-to-end feature-

metric pose refinement strategy. From a broader point of

view, we believe this new way of merging deep learning

and 3D geometry may be useful in other computer vision

applications.
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Appendix

In the following pages, we present additional quanti-

tative results, qualitative results and experimental details

about the Neural Reprojection Error.

A. Additional Experiments

A.1. NRE­based pose estimator vs. Feature metric
Pose Refinement

We compare our novel NRE-based pose estimator

against Feature-Metric Pose Refinement (FPR) methods.

As explained in Section 7.2, FPR methods seek to mini-

mize Eq. 12. As such, FPR benefits from dense information

contained in query feature maps, but requires to choose a

robust loss function and tune its hyperparameters.

To complement our RE-based vs. NRE-based pose es-

timators study presented in Tab. 1, we propose to reuse

S2DNet [19] features to perform FPR, initialized from

our best RE pose estimator (MAGSAC++ [5]). To merge

information from all three feature extraction levels from

S2DNet [19], we try upsampling and concatenating descrip-

tors, as well as a coarse-to-fine alternative in which we iter-

atively refine predictions from the previous (coarser) level.

We report pose estimation errors in Tab. 4 for FPR and

NRE estimators. We show results using the Huber [21] ro-

bust loss as well as the Barron [4] loss. We find that NRE

performs consistently better while eliminating the need for

choosing a robust loss.

A.2. Experiments on Aachen Night [35]

So far, we evaluated the performances of our NRE-based

pose estimator on MegaDepth [25]. Here, we run a simi-

lar study on the Aachen Night [35, 37] dataset. This chal-

lenging outdoor dataset consists of 4, 328 sparsely sampled

daytime database images, and 98 nighttime query images.

To have a fair comparison between NRE-based and RE-

based pose estimators, we pair each query image with an

oracle nearest-neighbor database image and use all of its

visible 3D points to predict the query pose. Similar to the

MegaDepth study, we report results for RE-based, FPR-

based and NRE-based pose estimators, using S2DNet fea-

tures in Tab. 5. For FPR-based pose estimators we pick the

best configuration from 4.

As in the MegaDepth experiment, our NRE-based pose

estimator consistently provides significant improvement

over other pose estimators. We also compare the perfor-

mance coupling the NRE-based pose estimator with NRE

features trained on the same training set as S2DNet [19].

We report in Tab. 6 the pose estimation errors. We again

find that using NRE features brings an additional leap in

performance.

A.3. Experiments on InLoc [46]

To evaluate the generalization capabilities in an indoor

scenario, we run the same experiment on the InLoc [46]

dataset. This dataset consists of 329 query images, for

9, 972 database images. Unlike Aachen Night, we have ac-

cess to dense aligned depth maps for all database images.

To provide a fair comparison, we also pair each query image

with an oracle nearest-neighbor database image and use Su-

perPoint [16] detections (lifted to 3D using the depth maps)

in the database images as inputs. Results are reported in

Tab. 5.

We find that our NRE-based pose estimator provides

consistent improvements at the coarsest threshold, and over-

all competitive performance on the medium and fine ones.

The fact the relative improvement brought by our NRE-

based pose estimator is not as significant as for the other

datasets can be attributed to the domain shift with respect to

the training images. Nonetheless, despite being trained on

outdoor images we find that our NRE features bring addi-

tional improvements compared to S2DNet [19] features, as

shown in Tab. 6.

B. Qualitative results

In Fig. 6, we show several examples of query images

from the MegaDepth [25] validation set with a reprojected

3D point and the corresponding coarse dense loss map com-

puted using our coarse NRE features. It highlights that the

dense loss maps keep much more information than RE. As

a consequence, as we show in our experiments, our novel

NRE-based pose estimator significantly outperforms RE-

based pose estimators.

C. Derivation of Equation 9

In this section, we show how Eq. 8 (in the submited wer-

sion of the paper) is obtained.

The robust dense loss map LQ,n,σ can be smoothed using

an isotropic Gaussian kernel as follows:

L̆Q,n,σ (p) :=
∑

r

kσ (‖r‖) LQ,n (p+ r)

= LQ,n (out)
∑

r

kσ (‖r‖)

+
∑

r

kσ (‖r‖) (LQ,n (p+ r)− LQ,n (out)) (13)

=
∑

r

kσ (‖r‖) (LQ,n (p+ r)− LQ,n (out)) + cstp (14)

=
∑

q∈ΩQ

kσ (‖q− p‖) (LQ,n (q)− LQ,n (out)) + cstp

(15)
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Figure 6. Qualitative results: These qualitatives results correspond to additional examples for columns (a) and (b) in Fig.1. It highlights

that the dense loss maps keep much more information than RE. As a consequence our novel NRE-based pose estimator significantly

outperforms RE-based pose estimators.

Features Pose estimator Fusion ψ Translation Error Rotation Error

0.25m 1m 5m 2◦ 5◦ 10◦

S2DNet [19] RE MAGSAC++ [5] N/A N/A 0.51 (+ 16%) 0.43 (+ 26%) 0.31 (+ 24%) 0.51 (+ 16%) 0.45 (+ 22%) 0.42 (+ 24%)

S2DNet [19] FPR Min. Eq. 12 C2F Huber [21] 0.70 (+ 59%) 0.65 (+ 91%) 0.52 (+108%) 0.69 (+ 57%) 0.63 (+ 70%) 0.58 (+ 71%)

S2DNet [19] FPR Min. Eq. 12 C2F Barron [4] 0.55 (+ 25%) 0.44 (+ 29%) 0.30 (+ 20%) 0.55 (+ 25%) 0.48 (+ 30%) 0.43 (+ 26%)

S2DNet [19] FPR Min. Eq. 12 Concat. Huber [21] 0.49 (+ 11%) 0.42 (+ 24%) 0.30 (+ 20%) 0.48 (+ 9%) 0.44 (+ 19%) 0.42 (+ 24%)

S2DNet [19] FPR Min. Eq. 12 Concat. Barron [4] 0.49 (+ 11%) 0.42 (+ 24%) 0.30 (+ 20%) 0.48 (+ 9%) 0.44 (+ 19%) 0.42 (+ 24%)

S2DNet [19] NRE N/A N/A 0.44 (+ 0%) 0.34 (+ 0%) 0.25 (+ 0%) 0.44 (+ 0%) 0.37 (+ 0%) 0.34 (+ 0%)

Table 4. NRE-based pose estimator vs. Feature-Metric Pose Refinement: We evaluate the gain in performance of our novel NRE-based

pose estimator against the Feature-Metric Pose Estimation (FPR) variant on the MegaDepth dataset. Here FPR consists in minimizing

Eq. 12 using as initialization the camera pose estimate from RE MAGSAC++ [5]. We find here that minimizing Eq. 12 allows to improve

the camera pose estimate from MAGSAC++, however our novel NRE again shows superior performance, while requiring no robust kernel

selection. The scores between brackets show the relative deterioration w.r.t. to NRE.

=
∑

q∈ΩQ

kσ (‖q− p‖)
(

LQ,n (q)− ln |Ω̊Q|
)

+ cstp (16)

=
∑

q∈ΓQ,n

kσ (‖q− p‖)
(

LQ,n (q)− ln |Ω̊Q|
)

+ cstp (17)

where kσ (‖r‖) := 1
2πσ2 e

−
‖r‖2

2σ2 is an isotropic Gaussian

kernel with standard variation σ and ΓQ,n is the set of pixel

locations whose corresponding values in LQ,n are lower than

ln |Ω̊Q|. Equation 17 leads to the smoothed cost function:

L̆σ (RQG, tQG) :=

N
∑

n=1

∑

q∈ΓQ,n

-
(

ln |Ω̊Q|-LQ,n (q)
)

kσ
(∥

∥q-ω
(

uG
n, RQG, tQG

)∥

∥

)

,

(18)

which is a robust non-linear least squares problem and

therefore can be minimized using the IRLS algorithm.

D. Technical details

D.1. Coarse­to­Fine Strategy (Sec. 5.3)

Step 6 of our coarse-to-fine strategy consists in com-

puting local high-resolution loss maps of size 64 × 64 at

the location of the reprojected 3D points using the coarse

pose estimate. The idea of that step is to transform the low-

resolution loss maps into high-resolution loss maps to ob-

tain a much more accurate pose estimate. The question is:

How can we combine a low-resolution robust loss map with

a local high-resolution discriminative loss map ? We pro-

ceed as follows:

1. A coarse correspondence map Ccoarse is of size

H/16 × W/16. Let us recall that by definition
∑

p∈Ω̊coarse
Ccoarse (p) = 1.

2. Compute the local high resolution correspondence

map Cfine of size 64 × 64 at the location of the repro-

jected 3D points (using the coarse pose estimate) q:
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Features Pose Estimator Aachen Night InLoc-DUC1 InLoc-DUC2

0.25m, 2◦ 0.5m, 5◦ 5m, 10◦ 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦ 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

S2DNet MAGSAC++ [5] 0.46 (+ 55%) 0.28 (+ 80%) 0.10 (+229%) 0.62 (+ 3%) 0.41 (+ 2%) 0.31 (+ 11%) 0.70 (+ 11%) 0.44 (+ 5%) 0.30 (+ 2%)

S2DNet RE Min. Eq. 10 0.32 (+ 7%) 0.20 (+ 27%) 0.08 (+165%) 0.58 (- 4%) 0.40 (+ 1%) 0.31 (+ 13%) 0.66 (+ 6%) 0.47 (+ 13%) 0.39 (+ 31%)

S2DNet FPR Min. Eq. 11 0.32 (+ 7%) 0.20 (+ 27%) 0.06 (+ 97%) 0.61 (+ 1%) 0.41 (+ 4%) 0.29 (+ 4%) 0.63 (+ 1%) 0.41 (- 4%) 0.31 (+ 5%)

S2DNet NRE 0.30 (+ 0%) 0.15 (+ 0%) 0.03 (+ 0%) 0.60 (+ 0%) 0.39 (+ 0%) 0.28 (+ 0%) 0.62 (+ 0%) 0.42 (+ 0%) 0.29 (+ 0%)

Table 5. NRE-based vs. RE-based vs. FPR-based pose estimators on Aachen Night [35] and InLoc [46]: We evaluate the gain in per-

formance of our novel NRE-based pose estimator against state-of-the-art RE-based and FPR-based pose estimators. For a fair comparison,

each method uses the same oracle nearest-neighbor database image for each query image. Moreover, each method employs S2DNet [19]

features, even our NRE-based pose estimator. For the methods that have an hyperparameter, we optimized it and report the best results.

We report the error at several thresholds for translation and rotation (lower is better). The scores between brackets show the relative de-

terioration w.r.t. to NRE. On Aachen, there is no strong domain shift w.r.t. MegaDepth images that are used to train S2DNet, as a result

the dense loss maps are accurate and our NRE-based pose estimator significantly outperforms its competitors. On InLoc, there is a strong

domain shift (InLoc is an indoor dataset), as a result the dense loss maps are not very informative and our NRE-based pose estimator does

not significantly outperform its competitors.

Features Pose

Estim.

Aachen Night InLoc-DUC1 InLoc-DUC2

0.25m, 2◦ 0.5m, 5◦ 5m, 10◦ 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦ 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

S2DNet NRE 0.30 (+ 12%) 0.15 (+ 37%) 0.03 (+ 55%) 0.60 (+ 1%) 0.40 (+ 3%) 0.28 (+ 10%) 0.63 (+ 1%) 0.42 (+ 10%) 0.30 (+ 3%)

NRE Features NRE 0.26 (+ 0%) 0.11 (+ 0%) 0.02 (+ 0%) 0.59 (+ 0%) 0.39 (+ 0%) 0.25 (+ 0%) 0.62 (+ 0%) 0.38 (+ 0%) 0.29 (+ 0%)

Table 6. NRE features vs. S2DNet features for NRE-based pose estimators on Aachen Night [35] and InLoc [46]: We evaluate the gain

in performance of our NRE features against S2DNet [19] features using the same NRE-based pose estimator. We compare pose estimation

on Aachen Night [35] and InLoc [46] images. For a fair comparison, each method uses the same oracle nearest-neighbor database image

for each query image. We report the error at several precision thresholds for translation and rotation (lower is better). The scores between

brackets show the relative deterioration w.r.t. to NRE features. On Aachen, there is no strong domain shift w.r.t. MegaDepth images that

are used to train both S2DNet and our NRE feature, as a result the dense loss maps are accurate and we obtain improvements similar to the

ones we obtained in our MegaDepth experiment. On InLoc, there is a strong domain shift (InLoc is an indoor dataset), as a result neither

S2DNet dense loss maps nor the dense loss maps obtained using our NRE features are very informative. As a result, the pose estimated

ugin NRE features is not markedly more accurate than the pose obtained using S2DNet features.

(a) Extract a 64×64 region in the dense fine descrip-

tors around q.

(b) Compute the dot product with the fine descriptor

of the 3D point and apply a softmax to obtain

Cfine.

Thus by definition
∑

p∈N64×64(q)
Cfine (p) = 1.

3. Cfine corresponds to a region of size 8x8 in Ccoarse.

Compute the sum of these 64 pixels in Ccoarse. We call

this scalar normcoarse.

4. Multiply Cfine by normcoarse

64 to obtain Cfine norm.

Cfine norm is a local high-resolution version of Ccoarse.

5. The final local high resolution loss map is obtained

classically:

Lfine = min
(

ln |Ω̊fine|,− ln (Cfine norm)
)

. By defini-

tion, outside of the 64 × 64 region, the value of the

loss is ln |Ω̊fine|.

D.2. Network Architectures (Sec. 6)

Coarse network architecture. The purpose of the coarse

network Fcoarse is to provide robust descriptors that are used

to obtain a coarse pose estimate. To deal with ambiguous

cases, it should leverage image context. This motivates a

deep architecture with a wide receptive field and a large de-

scriptor size. On the other hand, the network should out-

put dense descriptors of sufficient resolution to reliably es-

timate a coarse camera pose. We experimentally found that

an effective stride of 16 is sufficient. To satisfy these spec-

ifications, we opted for an Inception-v3 [45] backbone and

modified it accordingly. We changed some kernel sizes and

truncated the network at the layer Mixed-6e. In the end our

final architecture has a receptive field of 927 pixels and pro-

duces dense descriptors of size H/16×W/16× 1280.

Fine network architecture. The purpose of the fine

network Ffine is to provide discriminative high-resolution

descriptors that are used to refine the coarse pose estimate.

However, producing high-resolution descriptors takes a

lot of memory. This motivates a deep architecture with

a small receptive field and a small descriptor size. We
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Figure 7. Tuning the hyperparameter of an RE-based pose estimator: We report the cumulative error curves in pose estimation (lower

is better), on the hardest category of our Megadepth study, for the RE-based pose estimator that consists in minimize Eq. 10. We find

that a careful hyperparameter tuning is very important. On the contrary, our novel formalism leads to a loss that does not possess any

hyperparameter.

experimentally found that an effective stride of 2 is a good

balance between accuracy and memory consumption. To

satisfy these specifications, we opted again for a modified

Inception-v3 [45] backbone. We only keep the stride of 2

at the first layer and remove any Max-Pooling layer, and

we truncate the model at the Mixed-5d layer. Our final

architecture has a receptive field of 43 pixels and produces

dense descriptors of size H/2×W/2× 288.

Implementation details. The coarse network Fcoarse and

the fine network Ffine are trained independently. Both net-

works use the same training data which comes from the

MegaDepth dataset [25]. As D2-Net [17], we remove

scenes which overlap with the PhotoTourism [1,48] test set.

We train our networks on image pairs (IS and IT) with an

arbitrary overlap.

To train Ffine, we extract random crops of size 800×800
and randomly sample a maximum of 64 3D points visi-

ble in both IS and IT. Using such large crops may seem

an overkill since Ffine has a small receptive field. Let us

highlight that using C × C crops allows to produce cor-

respondence maps of size C/2 × C/2 which essentially

consists in comparing each source patch against C2 target

patches. Thus, even if Ffine has a small receptive field, the

larger the crops during training the better the descriptors,

and 800 × 800 is the maximum size that could fit in mem-

ory.

To train Fcoarse, we use entire images as inputs since

the network has a very large receptive field and randomly

sample a maximum of 64 3D points visible in both IS and

IT. Each network is trained using early stopping on the

MegaDepth validation set. We use Adam [24] with an initial

learning rate of 10−3 and apply a multiplicative decaying

factor of e−0.1 at every epoch.

D.3. Timing

We run all our training and experiments on a ma-

chine equipped with an Intel(R) Xeon(R) E5-2630 CPU at

2.20GHz, and an NVIDIA GeForce GTX 1080Ti GPU. The

timing results reported in Tab. table:timings where obtained

using a Python implementation of the previously described

algorithms. Source code will be made available.

D.4. Implementation details about the RE­based vs.
NRE­based pose estimators study

• In our RE-based vs. NRE-based pose estimators

study, we used LO-RANSAC [14], GC-RANSAC [2]

and MAGSAC++ [5] implementations provided in

OpenCV 4.5.0 1.

• We show in Fig. 7 the cumulative errors curves for sev-

eral σ values when minimizing Eq. 1 on the hardest

category of our Megadepth [25] study. These results

stress how important a careful hyperparameter tuning

is in standard RE pose estimators.

• Throughout our paper we run the coarse GNC with de-

creasing σ values ranging from 2.0 to 0.6. For the fine

GNC, we use values between 8.0 and 0.6.
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