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Abstract

We propose a scalable, efficient and accurate approach

to retrieve 3D models for objects in the wild. Our contri-

bution is twofold. We first present a 3D pose estimation

approach for object categories which significantly outper-

forms the state-of-the-art on Pascal3D+. Second, we use

the estimated pose as a prior to retrieve 3D models which

accurately represent the geometry of objects in RGB im-

ages. For this purpose, we render depth images from 3D

models under our predicted pose and match learned im-

age descriptors of RGB images against those of rendered

depth images using a CNN-based multi-view metric learn-

ing approach. In this way, we are the first to report quanti-

tative results for 3D model retrieval on Pascal3D+, where

our method chooses the same models as human annota-

tors for 50% of the validation images on average. In ad-

dition, we show that our method, which was trained purely

on Pascal3D+, retrieves rich and accurate 3D models from

ShapeNet given RGB images of objects in the wild.

1. Introduction

Retrieving 3D models for objects in 2D images, as

shown in Fig. 1, is extremely useful for 3D scene under-

standing, augmented reality applications and tasks like ob-

ject grasping or object tracking. Recently, the emergence of

large databases of 3D models such as ShapeNet [3] initiated

substantial interest in this topic and motivated research for

matching 2D images of objects against 3D models. How-

ever, there is no straight forward approach to compare 2D

images and 3D models, since they have considerably differ-

ent representations and characteristics.

One approach to address this problem is to project 3D

models onto 2D images, which is known as rendering [24].

This converts the task to comparing 2D images, which is,

however, still challenging, because the appearance of ob-

jects in real images and synthetic renderings can signifi-

cantly differ. In general, the geometry and texture of avail-

able 3D models do not exactly match those of objects in real

Figure 1: Given an RGB image (top), we predict a 3D pose

and a 3D model for objects of different categories (bottom).

images. Therefore, recent approaches [2, 10, 23, 28] use

convolutional neural networks (CNNs) [7, 8, 22] to extract

features from images which are partly invariant to these

variations. In particular, these methods compute image de-

scriptors from real RGB images and synthetic RGB images

which are generated by rendering 3D models under multiple

poses. While this allows them to train a single CNN purely

on synthetic data, there are two main disadvantages:

First, there is a significant domain gap between real and

synthetic RGB images: Real images are affected by com-

plex lighting, uncontrolled degradation and natural back-

grounds. This makes it is hard to render photo-realistic im-

ages from the available 3D models. Therefore, using a sin-

gle CNN for feature extraction from both domains is lim-

ited in performance, and even domain adaption [13] does

not fully account for the different characteristics of real and

synthetic images.
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Second, processing renderings from multiple poses is

computationally expensive. However, this step is manda-

tory, because the appearance of an object can significantly

vary with the pose, and mapping images from all poses to a

common descriptor does not scale to many categories [11].

To overcome these limitations, we propose to first pre-

dict the object pose and to then use this pose as an effective

prior for 3D model retrieval. Inspired by recent works on in-

stance pose estimation [4, 19], we present a robust 3D pose

estimation approach for object categories based on virtual

control points. More specifically, we use a CNN to predict

the 2D projections of virtual 3D control points from which

we recover the pose using a PnP algorithm. This approach

does not only outperform the state-of-the-art for viewpoint

estimation on Pascal3D+ [29], but also supports category-

agnostic predictions. Having an estimate of the 3D pose

makes our approach scalable, as it reduces the matching

process to a single rendering per 3D model.

Additionally, we propose to render depth images instead

of RGB images and to use different CNNs for feature ex-

traction from the real and synthetic domain. Thus, we are

not only able to deal with untextured models, but also to

alleviate the domain gap. We implement our 3D model re-

trieval method using a multi-view metric learning approach,

which is trained on real and synthetic data from Pascal3D+.

In this way, we are the first to present quantitative results for

3D model retrieval on Pascal3D+. Moreover, we demon-

strate that our approach retrieves rich and accurate 3D mod-

els from ShapeNet given unseen images from Pascal3D+.

To summarize, we make the following contributions:

– We present a 3D pose estimation approach for object

categories which significantly outperforms the state-

of-the-art on Pascal3D+. Our method predicts virtual

control points which generalize across categories mak-

ing the approach scalable.

– We introduce a 3D model retrieval approach which uti-

lizes a pose prior. For this purpose, we match learned

image descriptors of RGB images against those of

depth images rendered from 3D models under our pre-

dicted pose. In this way, we retrieve 3D models from

ShapeNet which accurately represent the geometry of

objects in RGB images, as shown in Fig. 1.

2. Related Work

Since there is a vast amount of literature on both 3D pose

estimation and 3D model retrieval, we focus our discussion

on recent works which target these tasks for object cate-

gories in particular.

2.1. 3D Pose Estimation

Many recent works only perform 3-DoF viewpoint es-

timation and predict the object rotation using regression,

classification or hybrid variants of the two. [28] directly

regresses azimuth, elevation and in-plane rotation using a

CNN. [12] compares different variants and presents a re-

gression approach which parameterizes each angle using

trigonometric functions. [25, 26] perform viewpoint clas-

sification by discretizing the range of each angle into a

number of disjoint bins and predicting the most likely bin

using a CNN. [24] uses a fine-grained geometric struc-

ture aware classification, which encourages the correla-

tion between bins of nearby views. [15] formulates the

task as a hybrid classification/regression problem: In ad-

dition to viewpoint classification, a residual rotation is re-

gressed for each angular bin, and the 3D dimensions of

the object are predicted. [14] uses a slightly different

parameterization and predicts a 2D translation to refine

the object localization in a coarse-to-fine hybrid approach.

However, predicting a full 6-DoF pose instead of a

3-DoF viewpoint is desirable for many applications. There-

fore, numerous methods compute both rotation and transla-

tion from 2D/3D keypoint correspondences. [18] recovers

the pose from keypoint predictions and CAD models using

a PnP algorithm. [26] presents a keypoint prediction ap-

proach that combines local keypoint estimates with a global

viewpoint estimate. [17] predicts semantic keypoints and

trains a deformable shape model which takes keypoint un-

certainties into account.

These approaches rely on category-specific keypoints

which do not generalize across categories. In the context

of 3D pose estimation for object instances, [4] therefore

considers virtual control points and predicts their 2D pro-

jections to estimate the pose from object parts. [19] takes

a similar approach, but uses the corners of the object’s 3D

bounding box as virtual control points. This work inspired

our approach, however, it is not directly applicable for ob-

ject category pose estimation, since the ground truth 3D

model of an object must be known at runtime.

2.2. 3D Model Retrieval

One intuitive approach to 3D model retrieval is to rely on

classification. [14] performs fine-grained category recog-

nition and provides a model for each category. [1] uses a

linear classifier on mid-level representations of real images

and renderings from multiple viewpoints to predict both

shape and viewpoint.

However, retrieval via classification does not scale.

Therefore, many recent methods take a metric learning ap-

proach. The most common strategy is to train a single CNN

to extract features from real RGB images and RGB render-

ings. [2] uses a CNN pre-trained on ImageNet [21] as a fea-

ture extractor and matches features of real images against

those of 3D models rendered under multiple viewpoints to

predict both shape and viewpoint. [10] takes a similar ap-

proach, but uses a different network architecture for feature
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extraction. [13] also employs a pre-trained CNN, but addi-

tionally performs non-linear feature adaption to overcome

the domain gap between real and rendered images.

[28] finetunes a pre-trained CNN using lifted structure

embedding [16] and averages the distance of a real image

to renderings from multiple viewpoints to be more invariant

to object pose. [23] presents a CNN architecture that com-

bines information of renderings from multiple viewpoints

into a single object pose invariant descriptor. [11] explicitly

constructs an embedding space using a 3D similarity mea-

sure evaluated on clean 3D models and trains a CNN to map

renderings with arbitrary backgrounds to the corresponding

points in the embedding space.

While it is convenient to use RGB images, it is unclear

how to deal with untextured 3D models or how to set the

scene lighting. Therefore, other methods perform 3D model

retrieval using depth instead of RGB images. [5] uses an

ensemble of autoencoders followed by a domain adaption

layer to match real depth images against depth images of 3D

models. [31] computes image descriptors by fusing global

autoencoder and local SIFT features of depth images. How-

ever, real depth images are not available in many scenarios.

Another approach which alleviates the domain gap and

maps different representations to a common space is multi-

view learning. [6] trains two different networks to map

3D voxel grids and RGB images to a low dimensional em-

bedding space, where 3D model retrieval is performed by

matching embeddings of real RGB images against those of

voxel grids. [30] also presents a multi-view approach using

two networks, but maps LD-SIFT features extracted from

3D models and depth images to a common space. In con-

trast to these methods, we map real RGB images and ren-

dered depth images to a common representation. In this

way, we do not need to perform computationally expensive

3D convolutions for high-resolution voxel grids and do not

rely on real depth images.

3. 3D Pose Estimation and 3D Model Retrieval

Given an RGB image containing one or more objects,

we want to retrieve 3D models with a geometry that corre-

sponds well to the actual objects. Fig. 2 shows our proposed

pipeline. We first estimate the 3D pose of an object from an

image window roughly centered on the object. In this work,

we assume the input image windows are known as in [29]

or given by a 2D object detector [20]. Similar to previous

works [15, 17, 26], we also assume the object category to be

known, as it is a useful prior for both pose estimation and

model retrieval. However, we also show that this informa-

tion is not necessarily required in our approach. In fact, we

can retrieve an accurate pose with only a marginal loss of

accuracy, when the category is unknown.

After we estimated the object pose, we render a number

of candidate 3D models under that pose. In particular, we

render depth images, which allows us to deal with untex-

tured 3D models and to circumvent the problem of scene

lighting. In order to compare the real RGB image to syn-

thetic depth renderings, we extract image descriptors using

two CNNs, one for each domain. Finally, we match these

image descriptors to retrieve the closest 3D model.

3.1. 3D Pose Estimation

The first step in our model retrieval approach is to ro-

bustly compute the 3D pose of the objects of interest. For

this purpose, inspired by [4, 19], we predict the 2D image

locations of virtual control points. More precisely, we train

a CNN to predict the 2D image locations of the projec-

tions of the object’s eight 3D bounding box corners. The

actual 3D pose is then computed by solving a perspective-

n-point (PnP) problem, which recovers rotation and trans-

lation from 2D-3D correspondences. This is illustrated in

the first row of Fig. 2.

However, PnP algorithms require the 3D coordinates of

the virtual control points to be known. Therefore, previ-

ous approaches either assume the exact 3D model to be

given at runtime [19] or predict the projections of static 3D

points [4]. To overcome this limitation, we predict the spa-

tial dimensions D = [dx, dy, dz] of the object’s 3D bound-

ing box and use these to scale a unit cube, which approxi-

mates the ground truth 3D coordinates.

For this purpose, we introduce a CNN architecture which

jointly predicts the 2D image locations of the projections of

the eight 3D bounding box corners (16 values) as well as the

3D bounding box dimensions (3 values). As illustrated in

Fig. 3, we implement this architecture as a single 19 neuron

linear output layer, which we apply on top of the penulti-

mate layer of different base networks such as VGG [22] or

ResNet [7, 8]. During training, we optimize the pose loss

Lpose = Lproj + αLdim + βLreg , (1)

which is a linear combination of the projection loss Lproj,

the dimension loss Ldim and the regularization Lreg. The

meta-parameters α and β control the impact of the different

loss terms. Let Mi be the i-th 3D bounding box corner and

ProjR,t(Mi) its projection using the ground truth rotation R

and translation t, then the projection loss

Lproj = E

[
8∑

i=1

‖ProjR,t(Mi)− m̃i‖Huber

]
(2)

is the expected value of the distances between the ground

truth projections ProjR,t(Mi) and the predicted locations of

these projections m̃i computed by the CNN for the training

set. Being aware of inaccurate annotations in datasets such

as Pascal3D+ [29], we use the Huber loss [9] in favor of the

squared loss to be more robust to outliers.
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Rendering
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Figure 2: Overview of our approach. First row: Given an RGB image of an object, we first predict its 3D pose. We use a

CNN to predict the 2D projections of the object’s 3D bounding box corners (red dots). From these, we recover the object

pose using a PnP algorithm. Second row: We render depth images from 3D models under the estimated pose and extract

image descriptors from the real RGB image and the synthetic depth images using two different CNNs. Finally, we match the

computed descriptors to retrieve the closest 3D model. Our approach supports pre-computed synthetic descriptors.

The dimension loss

Ldim = E




∑

i=x,y,z

‖di − d̃i‖Huber


 (3)

is the expected value of the distances between the ground

truth 3D dimensions di and the 3D dimensions d̃i predicted

by the CNN for the training set. To reduce the risk of over-

fitting, the regularization Lreg in Eq. (1) adds weight decay

for all CNN parameters.

3.2. 3D Model Retrieval

Having a robust estimate of the object pose, we render

3D models under this pose instead of rendering them un-

der multiple poses [2, 10, 13, 23]. This significantly re-

duces the computational complexity compared to methods

which process multiple renderings for each 3D model and

provides a useful prior for retrieval. In contrast to recent ap-

proaches [11, 13, 23, 28], we render depth images instead of

RGB images. This allows us to deal with 3D models which

do not have material or texture. Additionally, we circum-

vent the problem of how to set the scene lighting.

Before rendering a 3D model, we re-scale it to tightly fit

into our predicted 3D bounding box. This is done by mul-

tiplying all vertices with the minimum of the ratio between

the predicted 3D dimensions computed during pose estima-

tion and the model’s actual 3D dimensions. In this way,

we improve the alignment between input RGB images and

rendered depth images.

However, since RGB images and depth images have con-

siderably different characteristics, we introduce a multi-

view metric learning approach, which maps images from

both domains to a common representation. We implement

19 Neuron Linear Output Layer

Pose Loss

Last Base Network Layer

First Base Network Layer

Similarity Loss

Last Base Network Layer

First Base Network Layer

Last Base Network Layer

First Base Network Layer

Real Domain CNN

Synth Domain CNN

Input RGB Image Corresponding Depth Image Negative Example Depth Image

Figure 3: The pose loss is computed on the output of the real

domain CNN. The similarity loss is computed on hidden

feature maps extracted from the last base network layer of

the real and synthetic domain CNN.

this mapping using a separate CNN for each domain. For

real RGB images, we extract image descriptors from the

hidden feature activations of the penultimate layer of our

pose estimation CNN (see Fig. 3). As these activations

have already been computed during pose estimation infer-

ence, we get the real image descriptor without any addi-

tional computational cost. For the synthetic depth images,

we extract image descriptors using a CNN with the same ar-

chitecture as our pose estimation CNN, except for the out-

put layer (see Fig. 3).

To finally map images from both domains to a common

representation, we optimize the similarity loss

Lsimilarity = Ldescr + γLreg
2
, (4)

which comprises the image descriptor loss Ldescr and the

regularization Lreg
2

weighted by the meta-parameter γ.
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The image descriptor loss

Ldescr = E
[
max(0, s+ − s− +m)

]
(5)

minimizes the expected value of the Triplet loss [27] for the

training set. Here, s+ is the Euclidean distance between

the real RGB image descriptor and the corresponding syn-

thetic depth image descriptor, s− is the Euclidean distance

between the real RGB image descriptor and a negative ex-

ample synthetic depth image descriptor, and m specifies the

margin, i.e., the desired minimum difference between s+

and s−. To reduce the risk of overfitting, the regularization

Lreg
2

in Eq. (4) adds weight decay for all CNN parameters.

After the optimization of the CNNs, we can pre-compute

descriptors for synthetic depth images. In this case, we gen-

erate multiple renderings for each 3D model, which cover

the full pose space. We then compute descriptors for all

these renderings and store them in a database. At runtime,

we just match descriptors from the viewpoint closest to our

predicted pose, which is fast and scalable, but still accurate

as shown in our experiments.

4. Experimental Results

To demonstrate our 3D model retrieval approach for ob-

jects in the wild, we evaluate it in a realistic setup where we

retrieve 3D models from ShapeNet [3] given unseen RGB

images from Pascal3D+ [29]. In particular, we train our 3D

model retrieval approach purely on data from Pascal3D+,

but use it to retrieve 3D models from ShapeNet. The corre-

sponding results are detailed in Sec. 4.2. As estimating an

accurate object pose is essential for our retrieval approach,

we additionally evaluate our pose estimation approach on

Pascal3D+ in Sec. 4.1.

4.1. 3D Pose Estimation

In the following, we first give a detailed evaluation of our

pose estimation approach. Then, we compare it to previous

methods, outperforming the state-of-the-art for viewpoint

estimation on Pascal3D+. Finally, we demonstrate that we

are even able to top the state-of-the-art without providing

the correct category prior in some cases. For a fair evalua-

tion, we follow the evaluation protocol of [26], which quan-

tifies 3-DoF viewpoint prediction accuracy on Pascal3D+

using the geodesic distance

∆(Rgt, Rpred) =
‖log(RT

gtRpred)‖F√
2

(6)

to measure the difference between the ground truth view-

point rotation matrix Rgt and the predicted viewpoint ro-

tation matrix Rpred. In particular, we report two metrics:

MedErr (the median of all viewpoint differences) and

Accπ

6
(the percentage of all viewpoint differences smaller

than π
6

respectively 30◦). Evaluating our approach using

MedErr Accπ

6

Ours - VGG 11.7 0.8076

Ours - VGG+blur 11.6 0.8033

Ours - ResNet 10.9 0.8341

Ours - ResNet+blur 10.9 0.8392

Table 1: Viewpoint estimation using ground truth detections

on Pascal3D+ for different setups of our approach. We re-

port the mean performance across all categories.

the AV P metric [29], which couples 2D object detection

and azimuth classification, is not meaningful as it is very

different from our specific task.

4.1.1 3D Pose Estimation on Pascal3D+

Table 1 presents quantitative results for 3-DoF viewpoint

estimation on Pascal3D+ using our approach in different se-

tups, starting from a baseline using VGG to a more elabo-

rated version building on ResNet. Specific implementation

details and other parameters are provided in the supplemen-

tary material. For our baseline approach (Ours - VGG) we

build on VGG and fine-tune the entire network for our task

similar to [15, 25, 26]. As can be seen from Table 2, this

baseline already matches the state-of-the-art.

When inspecting the failure cases, we see that many of

them relate to small objects. In these cases, object image

windows need to be upscaled to fit the fixed spatial input

resolution of pre-trained CNNs. This results in blurry im-

ages and VGG, which only employs 3×3 convolutions, per-

forms poorly at extracting features from over-smoothed im-

ages.

Therefore, we propose to use a network with larger ker-

nel sizes that performs better at handling over-smoothed in-

put images such as ResNet50 [7, 8], which uses 7×7 kernels

in the first convolutional layer. As presented in Table 1,

our approach with ResNet-backend (Ours - ResNet) signifi-

cantly outperforms the VGG-based version. In addition, the

total number of network parameters is notably lower (VGG:

135M vs. ResNet: 24M).

To further improve the performance, we employ data

augmentation in the form of image blurring. Using ResNet

as a base network together with blurring training images

(Ours ResNet+blur), we improve on the Accπ

6
metric while

maintaining low MedErr (see Table 1). This indicates that

we improve the performance on over-smoothed images, but

do not loose accuracy on sharp images. While our approach

with ResNet-backend shows increased performance in this

setup, we do not benefit from training on blurred images

using a VGG-backend (Ours - VGG+blur). This also con-

firms that VGG is not suited for feature extraction from

over-smoothed images. For all following experiments, we

use our best performing setup, i.e., Ours - ResNet+blur.
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category-specific

aero bike boat bottle bus car chair table mbike sofa train tv mean

MedErr ([17]) 11.2 15.2 37.9 13.1 4.7 6.9 12.7 N/A N/A 21.7 9.1 38.5 N/A

MedErr ([17]*) 8.0 13.4 40.7 11.7 2.0 5.5 10.4 N/A N/A 9.6 8.3 32.9 N/A

MedErr ([26]) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6

MedErr ([15]) 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.1

MedErr ([24]**) 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7

MedErr (Ours) 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.9

Accπ

6
([26]) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.8075

Accπ

6
([15]) 0.78 0.83 0.57 0.93 0.94 0.90 0.80 0.68 0.86 0.82 0.82 0.85 0.8103

Accπ

6
([24]**) 0.74 0.83 0.52 0.91 0.91 0.88 0.86 0.73 0.78 0.90 0.86 0.92 0.8200

Accπ

6
(Ours) 0.83 0.82 0.64 0.95 0.97 0.94 0.80 0.71 0.88 0.87 0.80 0.86 0.8392

category-agnostic

aero bike boat bottle bus car chair table mbike sofa train tv mean

MedErr (Ours) 10.9 12.2 23.4 9.3 3.4 5.2 15.9 16.2 12.2 11.6 6.3 11.2 11.5

Accπ

6
(Ours) 0.80 0.82 0.57 0.90 0.97 0.94 0.72 0.67 0.90 0.80 0.82 0.85 0.8133

Table 2: Viewpoint estimation using ground truth detections on Pascal3D+. * The ground truth 3D model must be known at

runtime. ** The approach was trained on vast amounts of RGB renderings from ShapeNet, instead of Pascal3D+ data.

4.1.2 Comparison to the State-of-the-Art

Next, we compare our pose estimation approach to state-of-

the-art methods on Pascal3D+. Quantitative results are pre-

sented in Table 2. Our approach significantly outperforms

the state-of-the-art in both MedErr and Accπ

6
consider-

ing mean performance across all categories and also shows

competitive results for individual categories.

However, the Accπ

6
scores for two categories, boat and

table, are significantly below the mean. We analyze these

results in more detail. The category boat is the most chal-

lenging category due to the large intra-class variability in

shape and appearance. Many detections for this category

are of low resolution and often objects are barely visible

because of fog or mist. Additionally, there are a lot of am-

biguities, e.g., even a human cannot distinguish between the

front and the back of an unmanned canoe. Nevertheless, we

outperform the state-of-the-art for this challenging category.

The low Accπ

6
scores for the category table can be ex-

plained by three factors. First, many tables are partly oc-

cluded by chairs (see table in Fig. 4). Second, the evalu-

ation protocol does not take into account that many tables

are ambiguous with respect to an azimuth rotation of π, π
2

or even have an axis of symmetry, e.g., a round table. In

some cases, our system predicts an ambiguous pose instead

of the ground truth pose, while it is not possible to differen-

tiate between the two poses. The evaluation protocol needs

to be changed to take this into account. Last, the number of

validation samples is very small (i.e., 21) and, therefore, the

reported results for this category are highly biased.

4.1.3 Category-Agnostic Pose Estimation

So far, the discussed results are category-specific, which

means that the ground truth category must be known at

runtime. In fact, all methods use a separate output layer

for each category. However, our approach is able to make

category-agnostic predictions which generalize across dif-

ferent categories. In this case, we use a single 19 neuron

output layer which is shared for all categories making our

approach scalable. Our category-agnostic pose estimation

even outperforms the previous category-specific state-of-

the-art for some categories, because it fully leverages the

mutual information between similar categories like bike and

mbike, for example, as shown in Table 2.

4.2. 3D Model Retrieval

Now we demonstrate our 3D model retrieval approach

using our predicted pose. First, we present a quantitative

evaluation of our approach on Pascal3D+. Second, we show

qualitative results for 3D model retrieval from ShapeNet

given images from Pascal3D+. Finally, we use our pre-

dicted 6-DoF pose and 3-DoF dimensions to precisely align

retrieved 3D models with objects in real world images.

4.2.1 3D Model Retrieval from Pascal3D+

Since Pascal3D+ provides correspondences between RGB

images and 3D models as well as pose annotations, we can

train our approach purely on this dataset. In fact, we are

the first to report quantitative results for 3D model retrieval

6



aero bike boat bottle bus car chair table mbike sofa train tv mean

Top-1-Acc (Rand) 0.15 0.21 0.36 0.25 0.25 0.10 0.15 0.10 0.28 0.31 0.27 0.27 0.2250

Top-1-Acc (Cano) 0.12 0.25 0.38 0.35 0.45 0.21 0.20 0.15 0.20 0.21 0.49 0.50 0.2925

Top-1-Acc (Off) 0.48 0.33 0.58 0.41 0.75 0.35 0.28 0.10 0.44 0.28 0.62 0.63 0.4375

Top-1-Acc (Pred) 0.48 0.31 0.60 0.41 0.78 0.41 0.29 0.19 0.43 0.36 0.65 0.61 0.4600

Top-1-Acc (GT) 0.53 0.38 0.51 0.37 0.79 0.44 0.32 0.43 0.48 0.33 0.66 0.72 0.4967

Table 3: 3D model retrieval accuracy using ground truth detections on Pascal3D+.

Figure 4: Qualitative results for 3D pose estimation and 3D model retrieval from ShapeNet given images from Pascal3D+ for

all twelve categories. For each category, we show: the query RGB image; the depth image and RGB rendering of the ground

truth 3D model from Pascal3D+ under the ground truth pose from Pascal3D+; the depth image and RGB rendering of our

retrieved 3D model from ShapeNet under our predicted pose. We provide more results in the supplementary material.

on this dataset. For this purpose, we compute the top-1-

accuracy (Top-1-Acc), i.e., the percentage of evaluated sam-

ples for which the top retrieved model equals the ground

truth model. This task is not trivial, because many models

in Pascal3D+ have similar geometry and are hard to distin-

guish. Thus, we evaluate our approach using five different

pose setups, i.e., the ground truth pose (GT), our predicted

pose (Pred), our predicted pose with offline pre-computed

descriptors (Off ), a canonical pose (Cano) and a random

pose (Rand). Table 3 shows quantitative retrieval results.

As expected, we achieve the highest accuracy assuming

the ground truth pose to be known (GT). In this case, our

approach chooses the same 3D models as human annota-

tors for 50% of the validation images on average. How-

ever, if we render the 3D models under our predicted pose

(Pred), we almost match the accuracy of the ground truth

pose setup. For some categories, we observe even better ac-

curacy when using our predicted pose. This proves the high

quality of our predicted pose. Moreover, our approach is

fast and scalable at runtime while almost maintaining accu-

racy by using offline pre-computed descriptors (Off ). For

this experiment, we discretize the pose space in intervals of

10◦ and pre-compute descriptors for the 3D models. At run-

time, we only match pre-computed descriptors from the dis-

cretized pose which is closest to our predicted pose and do

not have to render 3D models online. If we, in contrast, just

render the 3D models under a random pose (Rand) the per-

formance decreases significantly. Rendering models under

7



Figure 5: Example failure cases of our 3D model retrieval

approach (same image arrangement as in Fig. 4). Top: The

pose estimation fails because no similar pose was seen dur-

ing training, as a result, the model retrieval fails. In this

case, also the ground truth pose annotation from Pascal3D+

is not accurate. Bottom: While we estimate the pose cor-

rectly, the model retrieval fails due to heavy clutter.

Figure 6: We use our predicted 6-DoF pose and 3-DoF di-

mensions to refine the alignment between the object and a

rendering. Left: A detected object, which is not centered

on the image window. Middle: A rendering which just uses

our predicted 3-DoF rotation. Right: A rendering which

uses our predicted 6-DoF pose and 3-DoF dimensions.

a frontal view (Cano) on the other hand provides a useful

bias for the categories train, bus and tv monitor which are

frequently seen from an almost frontal view in this dataset.

These results confirm the importance of fine pose estimation

in our approach.

4.2.2 3D Model Retrieval from ShapeNet

In contrast to Pascal3D+, ShapeNet provides a significantly

larger spectrum of 3D models. Thus, we now evaluate

our retrieval approach trained purely on Pascal3D+ for 3D

model retrieval from ShapeNet given previously unseen im-

ages from Pascal3D+. Fig. 4 shows qualitative retrieval re-

sults for all twelve categories. Our approach predicts accu-

rate 3D poses and 3D models for objects of different cat-

egories. In some cases, our predicted pose (see sofa in

Fig. 4) or our retrieved model from ShapeNet (see aero-

plane and chair in Fig. 4) are even more accurate than the

annotated ground truth from Pascal3D+. While the geome-

try of the retrieved models corresponds well to the objects

in the query images, the materials and textures typically do

not. The reason for this is that we use depth images for re-

trieval, which do not include color information. This issue

can be addressed by extracting texture information from the

query RGB image or by performing retrieval with RGBD

images. However, this is up to future research. Fig. 5 shows

failure cases of our approach. If the pose estimation fails,

the model retrieval becomes even more difficult. This is also

reflected in Table 3, where we observe a strong decrease in

performance when we render models without pose informa-

tion (Rand and Cano). Also, if there is too much clutter in

the query image, we cannot retrieve an accurate 3D model.

4.2.3 3D Model Alignment

Finally, we use our predicted 6-DoF pose and 3-DoF dimen-

sions to precisely align retrieved 3D models with objects in

real world images. Fig. 6 shows how we improve the 2D ob-

ject localization and the alignment between the object and a

rendering using our predicted pose and dimensions. This is

especially useful if the object detection is not fully accurate,

which is true in almost all situations. In this case, the de-

tected image windows are a bit too small and the objects are

not centered in the image windows. Thus, if we just render

a model under our predicted rotation, re-scale it to tightly

fit into the 2D image window, and center it in the 2D image

window, the alignment is poor. However, if we additionally

use our predicted translation and 3D dimensions for scaling

and positioning, we significantly improve the alignment be-

tween the object and the rendering. This is of tremendous

importance for robotics or augmented reality applications.

5. Conclusion

3D object retrieval from RGB images in the wild is an

important but challenging task. Existing approaches ad-

dress this problem by training on vast amounts of synthetic

data. However, there is a significant domain gap between

real and synthetic images which limits performance. For

this reason, we learn to map real RGB images and synthetic

depth images to a common representation. Additionally, we

show that estimating the object pose is a useful prior for

3D model retrieval. Our approach is scalable as it supports

category-agnostic predictions and offline pre-computed de-

scriptors. We do not only outperform the state-of-the-art for

viewpoint estimation on Pascal3D+, but also retrieve accu-

rate 3D models from ShapeNet given unseen RGB images

from Pascal3D+. Finally, these results motivate future re-

search on jointly learning from real and synthetic data.
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3D Pose Estimation and 3D Model Retrieval for Objects in the Wild

Supplementary Material

In the following, we provide additional qualitative re-

sults for our 3D model retrieval approach in Sec. 6, which

complement those presented in the paper. Furthermore, we

analyze failure cases for both 3D model retrieval and the

underlying 3D pose estimation in Sec. 7. Finally, in Sec. 8

we discuss implementation details, parameter choices, and

other relevant settings.

6. 3D Model Retrieval

Fig. 7 shows additional qualitative results for 3D model

retrieval from ShapeNet [3] given previously unseen images

from Pascal3D+ [29] validation data for all twelve cate-

gories. Our approach predicts accurate 3D poses and 3D

models for objects of different categories.

Fig. 8 presents further 3D model alignment results for

object detections which are not fully accurate. We signifi-

cantly improve the alignment between the object in the im-

age and an RGB rendering of our retrieved 3D model by

taking advantage of our predicted 6-DoF pose and 3-DoF

dimensions compared to just using a 3-DoF viewpoint.

7. Failure Modes

Most failure cases of our 3D pose estimation on Pas-

cal3D+ relate to low-resolution or ambiguous objects.

Fig. 9 shows 3D pose estimation results on low-

resolution image windows from Pascal3D+ validation data.

After re-scaling, the over-smoothed input RGB images lack

details and sharp discontinuities, which results in incorrect

pose predictions. In fact, even for a human it is difficult to

identify the correct object poses in these examples.

Fig. 10 shows additional failure cases, observing that

heavy occlusions, bad illumination conditions and difficult

object poses, which are far from the poses seen during train-

ing, result in incorrect pose predictions.

As shown in Fig. 11, some objects from Pascal3D+ are

symmetrical, which makes their poses not well defined. For

example, it is impossible to differentiate between the front

and back of a symmetric unmanned boat. This issue is even

more apparent for tables: Many tables are ambiguous with

respect to an azimuth rotation of π, π
2

or even have an axis

of symmetry, such as a round table. When our approach

predicts one of the possible poses that is not the annotated

ground truth pose, this is considered as a mistake by the

commonly used evaluation protocol [26].

Fig. 12 shows that visual distortions due to wide-angle

lenses (i.e., fish-eye effects), deformed and demolished ob-

jects and heavy occlusions can disturb the model retrieval

step, even if the pose estimation was successful.

8. Implementation Details

In the following, we provide implementation details and

other parameters used in our work:

Intrinsic camera parameters: In Pascal3D+, the ground

truth poses were computed from 2D-3D correspondences

assuming the same intrinsic parameters for all images. We

employ the same parameters in our approach.

Data augmentation: Like others [15, 17, 24, 26], we per-

form data augmentation by jittering ground truth detections

and exclude detections marked as occluded or truncated

from the evaluation. Additionally, we augment samples for

which the longer edge of the ground truth image window is

greater than 224 pixel by applying Gaussian blurring with

various kernel sizes and σ. We randomly sample negative

example 3D models from the available data. All augmenta-

tion parameters are randomized after each training epoch.

Meta parameters: We normalize the projections so that

the image pixel range is mapped to the interval [0,1] and use

the same Huber loss (δ = 0.01) for all 19 estimated values.

Experimentally, we found α = 1, β = 1e−5 and γ = 1e−3

to work well and set m = 1.

Network parameters: We use a batch size of 50, train

our networks for 100 epochs and decrease the initial learn-

ing rate of 1e−4 by one order of magnitude after 50 and 90

epochs, and employ the Adam optimization algorithm.

3D dimensions: For both Pascal3D+ and ShapeNet, 3D

models are normalized to fit within a unit cube centered at

the origin. Thus, we estimate 3D dimensions in model space

in the range [0,1]. Since these dimensions tend to be consis-

tent within a category, estimating them is not a major issue.

Table 4 shows quantitative results for 3D dimension estima-

tion. We achieve high accuracy across all categories.

x y z

Median Absolute Error 0.022 0.015 0.014

Table 4: 3D dimension estimation errors on Pascal3D+. We

report the mean performance across all categories.
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Figure 7: Qualitative results for 3D pose estimation and 3D model retrieval from ShapeNet given images from Pascal3D+ for

all twelve categories. For each category, we show: the query RGB image; the depth image and RGB rendering of the ground

truth 3D model from Pascal3D+ under the ground truth pose from Pascal3D+; the depth image and RGB rendering of our

retrieved 3D model from ShapeNet under our predicted pose.

Figure 8: We use our predicted 6-DoF pose and 3-DoF dimensions to refine the alignment between the object and a rendering.

Left: A detected object, which is not centered on the image window. Middle: A rendering which just uses our predicted 3-

DoF rotation. Right: A rendering which uses our predicted 6-DoF pose and 3-DoF dimensions.
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Figure 9: 3D pose estimation fails due to low-resolution

image windows (same image arrangement as in Fig. 7). In

fact, for more than 55% of Pascal3D+ validation detections

the longer edge of the 2D image window is smaller than

224 pixel, which is the fixed spatial input size of pre-trained

CNNs like VGG [22] or ResNet [7, 8]. If the resolution is

too low, we cannot predict an accurate 3D pose.

Figure 10: 3D pose estimation fails in difficult situations

(same image arrangement as in Fig. 7). We observe that

heavy occlusions (first row), bad illumination conditions

(second row) and difficult object poses (third and fourth

row), which are far from the poses seen during training, re-

sult in incorrect pose predictions. In the last row, we see

that not even the annotated ground truth pose is correct.

Figure 11: Objects with ambiguous poses from Pascal3D+

validation data. First row: It is impossible to differentiate

between the front and back of symmetric boats. Second

row: Tables which are ambiguous with respect to an az-

imuth rotation of π (first image), π
2

(second and third image)

or even have an axis of symmetry (fourth image).

Figure 12: 3D model retrieval results for challenging cases

where pose estimation was successful (same image arrange-

ment as in Fig. 7). The test images can exhibit fish-eye ef-

fects due to wide-angle lenses (first and second row), con-

tain deformed or demolished objects (third row), or objects

under heavy occlusions (fourth row), which disturb object

retrieval. Note however that the ground truth 3D models are

not accurate.
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