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Abstract. We present a novel 3D pose refinement approach based on
differentiable rendering for objects of arbitrary categories in the wild. In
contrast to previous methods, we make two main contributions: First,
instead of comparing real-world images and synthetic renderings in the
RGB or mask space, we compare them in a feature space optimized for
3D pose refinement. Second, we introduce a novel differentiable renderer
that learns to approximate the rasterization backward pass from data in-
stead of relying on a hand-crafted algorithm. For this purpose, we predict
deep cross-domain correspondences between RGB images and 3D model
renderings in the form of what we call geometric correspondence fields.
These correspondence fields serve as pixel-level gradients which are ana-
lytically propagated backward through the rendering pipeline to perform
a gradient-based optimization directly on the 3D pose. In this way, we
precisely align 3D models to objects in RGB images which results in sig-
nificantly improved 3D pose estimates. We evaluate our approach on the
challenging Pix3D dataset and achieve up to 55% relative improvement
compared to state-of-the-art refinement methods in multiple metrics.

1 Introduction

Recently, there have been significant advances in single image 3D object pose
estimation thanks to deep learning [9,38,49]. However, the accuracy achieved by
today’s feed-forward networks is not sufficient for many applications like aug-
mented reality or robotics [10,51]. As shown in Figure 1, feed-forward networks
can robustly estimate the coarse high-level 3D rotation and 3D translation of
objects in the wild (left) but fail to predict fine-grained 3D poses (right) [56].

To improve the accuracy of predicted 3D poses, refinement methods aim
at aligning 3D models to objects in RGB images. In this context, many meth-
ods train a feed-forward network that directly predicts 3D pose updates given
the input image and a 3D model rendering under the current 3D pose esti-
mate [29,45,60]. In contrast, more recent methods use differentiable render-
ing [33] to explicitly optimize an objective function conditioned on the input
image and renderer inputs like the 3D pose [23,41]. These methods yield more
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Fig. 1: Given an initial 3D pose predicted by a feed-forward network (left), we predict
deep cross-domain correspondences between real-world RGB images and synthetic 3D
model renderings in the form of geometric correspondence fields (middle) that enable
us to refine the 3D pose in a differentiable rendering framework (right).

accurate 3D pose updates because they exploit prior knowledge about the ren-
dering pipeline.

However, existing approaches based on differentiable rendering have signifi-
cant shortcomings because they rely on comparisons in the RGB or mask space.
First, methods which compare real-world images and synthetic renderings in
the RGB space require photo-realistic 3D model renderings [33]. Generating
such renderings is difficult because objects in the real world are subject to com-
plex scene lighting, unknown reflection properties, and cluttered backgrounds.
Moreover, many 3D models only provide geometry but no textures or materials
which makes photo-realistic rendering impossible [46]. Second, methods which
rely on comparisons in the mask space need to predict accurate masks from
real-world RGB images [23,41]. Generating such masks is difficult even using
state-of-the-art approaches like Mask R-CNN [13]. Additionally, masks discard
valuable object shape information which makes 2D-3D alignment ambiguous. As
a consequence, the methods described above are not robust in practice. Finally,
computing gradients for the non-differentiable rasterization operation in render-
ing is still an open research problem and existing approaches rely on hand-crafted
approximations for this task [16,23,33].

To overcome these limitations, we compare RGB images and 3D model ren-
derings in a feature space optimized for 3D pose refinement and learn to ap-
proximate the rasterization backward pass in differentiable rendering from data.
In particular, we introduce a novel network architecture that jointly performs
both tasks. Our network maps real-world images and synthetic renderings to a
common feature space and predicts deep cross-domain correspondences in the
form of geometric correspondence fields (see Figure 1, middle). Geometric corre-
spondence fields hold 2D displacement vectors between corresponding 2D object
points in RGB images and 3D model renderings similar to optical flow [7]. These
predicted 2D displacement vectors serve as pixel-level gradients that enable us
to approximate the rasterization backward pass and compute accurate gradients
for renderer inputs like the 3D pose, the 3D model, or the camera intrinsics that
minimize an ideal geometric reprojection loss.
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Our approach has three main advantages: First, we can leverage depth, nor-
mal, and object coordinate [2] renderings which provide 3D pose information
more explicitly than RGB and mask renderings [29]. Second, we avoid task-
irrelevant appearance variations in the RGB space and 3D pose ambiguities in
the mask space [11]. Third, we learn to approximate the rasterization backward
pass from data instead of relying on a hand-crafted algorithm [16,23,33].

To demonstrate the benefits of our novel 3D pose refinement approach, we
evaluate it on the challenging Pix3D [46] dataset. We present quantitative as
well as qualitative results and significantly outperform state-of-the-art refine-
ment methods in multiple metrics by up 55% relative. Finally, we combine our
refinement approach with feed-forward 3D pose estimation [10] and 3D model
retrieval [11] methods to predict fine-grained 3D poses for objects in the wild
without providing initial 3D poses or ground truth 3D models at runtime given
only a single RGB image. To summarize, our main contributions are:

– We introduce the first refinement method based on differentiable rendering
that does not compare real-world images and synthetic renderings in the
RGB or mask space but in a feature space optimized for the task at hand.

– We present a novel differentiable renderer that learns to approximate the
rasterization backward pass instead of relying on a hand-crafted algorithm.

2 Related Work

In the following, we discuss prior work on differentiable rendering, 3D pose esti-
mation, and 3D pose refinement.

2.1 Differentiable Rendering

Differentiable rendering [33] is a powerful concept that provides inverse graph-
ics capabilities by computing gradients for 3D scene parameters from 2D image
observations. This novel technique recently gained popularity for 3D reconstruc-
tion [26,39], scene lighting estimation [1,28], and texture prediction [22,57].

However, rendering is a non-differentiable process due to the rasterization
operation [23]. Thus, differentiable rendering approaches either try to mimic
rasterization with differentiable operations [32,41] or use conventional rasteriza-
tion and approximate its backward pass [8,16,52].

In this work, we also approximate the rasterization backward pass but, in
contrast to existing methods, do not rely on hand-crafted approximations. In-
stead, we train a network that performs the approximation. This idea is not only
applicable for 3D pose estimation but also for other tasks like 3D reconstruction,
human pose estimation, or the prediction of camera intrinsics in the future.

2.2 3D Pose Estimation

Modern 3D pose estimation approaches build on deep feed-forward networks and
can be divided into two groups: Direct and correspondence-based methods.
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Direct methods predict 3D pose parameters as raw network outputs. They
use classification [48,49], regression [36,53], or hybrid variants of both [34,56] to
estimate 3D rotation and 3D translation [27,37,38] in an end-to-end manner. Re-
cent approaches additionally integrate these techniques into detection pipelines
to deal with multiple objects in a single image [24,26,51,55].

In contrast, correspondence-based methods predict keypoint locations and
recover 3D poses from 2D-3D correspondences using PnP algorithms [43,45]
or trained shape models [42]. In this context, different methods predict sparse
object-specific keypoints [42,43,44], sparse virtual control points [9,45,47], or
dense unsupervised 2D-3D correspondences [2,3,10,21,50].

In this work, we use the correspondence-based feed-forward approach pre-
sented in [10] to predict initial 3D poses for refinement.

2.3 3D Pose Refinement

3D pose refinement methods are based on the assumption that the projection
of an object’s 3D model aligns with the object’s appearance in the image given
the correct 3D pose. Thus, they compare renderings under the current 3D pose
to the input image to get feedback on the prediction.

A simple approach to refine 3D poses is to generate many small perturbations
and evaluate their accuracy using a scoring function [31,58]. However, this is
computationally expensive and the design of the scoring function is unclear.
Therefore, other approaches try to predict iterative 3D pose updates with deep
networks instead [29,35,45,60]. In practice, though, the performance of these
methods is limited because they cannot generalize to 3D poses or 3D models
that have not been seen during training [45].

Recent approaches based on differentiable rendering overcome these limita-
tions [23,33,41]. Compared to the methods described above, they analytically
propagate error signals backward through the rendering pipeline to compute
more accurate 3D pose updates. In this way, they exploit knowledge about the
3D scene geometry and the projection pipeline for the optimization.

In contrast to existing differentiable rendering approaches that rely on com-
parisons in the RGB [33] or mask [23,41] space, we compare RGB images and 3D
model renderings in a feature space that is optimized for 3D pose refinement.

3 Learned 3D Pose Refinement

Given a single RGB image, a 3D model, and an initial 3D pose, we compute
iterative updates to refine the 3D pose, as shown in Figure 2. For this purpose, we
first introduce the objective function that we optimize at runtime (see Sec. 3.1).
We then explain how we compare the input RGB image to renderings under
the current 3D pose in a feature space optimized for refinement (see Sec. 3.2),
predict pixel-level gradients that minimize an ideal geometric reprojection loss
in the form of geometric correspondence fields (see Sec. 3.3), and propagate
gradients backward through the rendering pipeline to perform a gradient-based
optimization directly on the 3D pose (see Sec. 3.4).
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Fig. 2: Overview of our system. In the forward pass ( ), we generate 3D model
renderings under the current 3D pose. In the backward pass ( ), we map the RGB
image and our renderings to a common feature space and predict a geometric corre-
spondence field that enables us to approximate the rasterization backward pass and
compute gradients for the 3D pose that minimize an ideal geometric reprojection loss.

3.1 Runtime Object Function

Our approach to refine the 3D pose of an object is based on the numeric opti-
mization of an objective function at runtime. In particular, we seek to minimize
an ideal geometric reprojection loss

e(P) =
1

2

∑

i

‖proj(Mi,Pgt)− proj(Mi,P)‖22 (1)

for all provided 3D model vertices Mi. In this case, proj(·) performs the projec-
tion from 3D space to the 2D image plane, P denotes the 3D pose parameters,
and Pgt is the ground truth 3D pose. Hence, it is clear that argmin e(P) = Pgt.

To efficiently minimize e(P) using a gradient-based optimization starting
from an initial 3D pose, we compute gradients for the 3D pose using the Jacobian
of e(P) with respect to P. Applying the chain rule yields the expression
(

∂e(P)
∂P

)

(Pcurr) =
∑

i

[

∂proj(Mi,P)
∂P

]T [

proj(Mi,Pgt)− proj(Mi,Pcurr)
]

, (2)

where Pcurr is the current 3D pose estimate and the point where the Jacobian

is evaluated. In this case, the term
[

∂proj(Mi,P)
∂P

]T

can be computed analytically

because it is simply a sequence of differentiable operations. In contrast, the term
[

proj(Mi,Pgt)− proj(Mi,Pcurr)
]

cannot be computed analytically because the
3D model vertices projected under the ground truth 3D pose, i.e., proj(Mi,Pgt),
are unknown at runtime and can only be observed indirectly via the input image.

However, for visible vertices, this term can be calculated given a geometric
correspondence field (see Sec. 3.4). Thus, we introduce a novel network architec-
ture that learns to predict geometric correspondence fields given an RGB image
and 3D model renderings under the current 3D pose estimate in the following.
Moreover, we embed this network in a differentiable rendering framework to ap-
proximate the rasterization backward pass and compute gradients for renderer
inputs like the 3D pose of an object in an end-to-end manner (see Figure 2).
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3.2 Refinement Feature Space

The first step in our approach is to render the provided 3D model under the cur-
rent 3D pose using the forward pass of our differentiable renderer (see Figure 2).
In particular, we generate depth, normal, and object coordinate [2] renderings.
These representations provide 3D pose and 3D shape information more explicitly
than RGB or mask renderings which makes them particularly useful for 3D pose
refinement [11]. By concatenating the different renderings along the channel di-
mension, we leverage complementary information from different representations
in the backward pass rather than relying on a single type of rendering [33].

Next, we begin the backward pass of our differentiable renderer by mapping
the input RGB image and our multi-representation renderings to a common
feature space. For this task, we use two different network branches that bridge the
domain gap between the real and rendered images (see Figure 2). Our mapping
branches use a custom architecture based on task-specific design choices:

First, we want to predict local cross-domain correspondences under the as-
sumption that the initial 3D pose is close to the ground truth 3D pose. Thus, we
do not require features with global context but features with local discriminabil-
ity. For this reason, we use small fully convolutional networks which are fast,
memory-efficient, and learn low-level features that generalize well across differ-
ent objects. Because the low-level structures appearing across different objects
are similar, we do not require a different network for each object [45] but address
objects of all categories with a single class-agnostic network for each domain.

Second, we want to predict correspondences with maximum spatial accuracy.
Thus, we do not use pooling or downsampling but maintain the spatial resolution
throughout the network. In this configuration, consecutive convolutions provide
sufficient receptive field to learn advanced shape features which are superior to
simple edge intensities [24], while higher layers benefit from full spatial parameter
sharing during training which increases generalization. As a consequence, the
effective minibatch size during training is higher than the number of images per
minibatch because only a subset of all image pixels contributes to each computed
feature. In addition, the resulting high spatial resolution feature space provides
an optimal foundation for computing spatially accurate correspondences.

For the implementation of our mapping branches, we use fully convolutional
networks consisting of an initial 7 × 7 Conv-BN-ReLU block, followed by three
residual blocks [14,15], and a 1 × 1 Conv-BN-ReLU block for dimensionality
reduction. This architecture enforces local discriminability and high spatial res-
olution and maps RGB images and multi-representation renderings toW×H×64
feature maps, where W and H are the spatial dimensions of the input image.

3.3 Geometric Correspondence Fields

After mapping RGB images and 3D model renderings to a common feature space,
we compare their feature maps and predict cross-domain correspondences. For
this purpose, we concatenate their feature maps and use another fully convolu-
tional network branch to predict correspondences, as shown in Figure 2.
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In particular, we regress per-pixel correspondence vectors in the form of ge-
ometric correspondence fields (see Figure 1, middle). Geometric correspondence
fields hold 2D displacement vectors between corresponding 2D object points in
real-world RGB images and synthetic 3D model renderings similar to optical
flow [7]. These displacement vectors represent the projected relative 2D motion
of individual 2D object points that is required to minimize the reprojection error
and refine the 3D pose. A geometric correspondence field has the same spatial
resolution as the respective input RGB image and two channels, i.e., W ×H×2.

If an object’s 3D model and 3D pose are known, we can render the ground
truth geometric correspondence field for an arbitrary 3D pose. For this task,
we first compute the 2D displacement ∇mi = proj(Mi,Pgt) − proj(Mi,Pcurr)
between the projection under the ground truth 3D pose Pgt and the current
3D pose Pcurr for each 3D model vertex Mi. We then generate a ground truth
geometric correspondence field G(Pcurr,Pgt) by rendering the 3D model using a
shader that interpolates the per-vertex 2D displacements ∇mi across the pro-
jected triangle surfaces using barycentric coordinates.

In our scenario, predicting correspondences using a network has two advan-
tages compared to traditional correspondence matching [12]. First, predicting
correspondences with convolutional kernels is significantly faster than exhaus-
tive feature matching during both training and testing [59]. This is especially
important in the case of dense correspondences. Second, training explicit corre-
spondences can easily result in degenerated feature spaces and requires tedious
regularization and hard negative sample mining [5].

For the implementation of our correspondence branch, we use three consec-
utive 7 × 7 Conv-BN-ReLU blocks followed by a final 7 × 7 convolution which
reduces the channel dimensionality to two. For this network, a large receptive
field is crucial to cover correspondences with high spatial displacement.

However, in many cases local correspondence prediction is ambiguous. For
example, many objects are untextured and have homogeneous surfaces, e.g., the
backrest and the seating surface of the chair in Figure 1, which cause unreliable
correspondence predictions. To address this problem, we additionally employ
a geometric attention module which restricts the correspondence prediction to
visible object regions with significant geometric discontinuities, as outlined in
white underneath the 2D displacement vectors in Figure 1. We identify these
regions by finding local variations in our renderings.

In particular, we detect rendering-specific intensity changes larger than a
certain threshold within a local 5× 5 window to construct a geometric attention
mask watt. For each pixel of watt, we compute the geometric attention weight

watt
x,y = max

u,v∈W

(

δR
(

R(Pcurr)x,y, R(Pcurr)x−u,y−v

)

)

> tR . (3)

In this case, R(Pcurr) is a concatenation of depth, normal, and object coordinate
renderings under the current 3D pose Pcurr, (x, y) is a pixel location, and (u, v)
are pixel offsets within the window W . The comparison function δR(·) and the
threshold tR are different for each type of rendering. For depth renderings, we
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compute the absolute difference between normalized depth values and use a
threshold of 0.1. For normal renderings, we compute the angle between normals
and use a threshold of 15◦. For object coordinate renderings, we compute the
Euclidean distance between 3D points and use a threshold of 0.1. If any of these
thresholds applies, the corresponding pixel (x, y) in our geometric attention mask
watt becomes active. Because we already generated these renderings before, our
geometric attention mechanism requires almost no additional computations and
is available during both training and testing.

Training. During training of our system, we optimize the learnable part of
our differentiable renderer, i.e., a joint network f(·) consisting of our two map-
ping branches and our correspondence branch with parameters θ (see Figure 2).
Formally, we minimize the error between predicted f(·) and ground truth G(·)
geometric correspondence fields as

min
θ

∑

x,y

watt
x,y‖f(I, R(Pcurr); θ)x,y −G(Pcurr,Pgt)x,y‖22 . (4)

In this case, watt is a geometric attention mask, I is an RGB image, R(Pcurr)
is a concatenation of depth, normal, and object coordinate renderings generated
under a random 3D pose Pcurr produced by perturbing the ground truth 3D
pose Pgt, G(Pcurr,Pgt) is the ground truth geometric correspondence field, and
(x, y) is a pixel location. In particular, we first generate a random 3D pose Pcurr

around the ground truth 3D pose Pgt for each training sample in each iteration.
For this purpose, we sample 3D pose perturbations from normal distributions
and apply them to Pgt to generate Pcurr. For 3D rotations, we use absolute
perturbations with σ = 5◦. For 3D translations, we use relative perturbations
with σ = 0.1. We then render the ground truth geometric correspondence field
G(Pcurr,Pgt) between the perturbed 3D pose Pcurr and the ground truth 3D
pose Pgt as described above, generate concatenated depth, normal, and object
coordinate renderings R(Pcurr) under the perturbed 3D pose Pcurr, and compute
the geometric attention mask watt. Finally, we predict a geometric correspon-
dence field using our network f(I, R(Pcurr); θ) given the RGB image I and the
renderings R(Pcurr), and optimize for the network parameters θ.

In this way, we train a network that performs three tasks: First, it maps
RGB images and multi-representation 3D model renderings to a common fea-
ture space. Second, it compares features in this space. Third, it predicts geomet-
ric correspondence fields which serve as pixel-level gradients that enable us to
approximate the rasterization backward pass of our differentiable renderer.

3.4 Learned Differentiable Rendering

In the classic rendering pipeline, the only non-differentiable operation is the
rasterization [33] that determines which pixels of a rendering have to be filled,
solves the visibility of projected triangles, and fills the pixels using a shading
computation. This discrete operation raises one main challenge: Its gradient is
zero, which prevents gradient flow [23]. However, we must flow non-zero gradients
from pixels to projected 3D model vertices to perform differentiable rendering.
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Fig. 3: To approximate the rasterization backward pass, we predict a geometric corre-
spondence field (left), disperse the predicted 2D displacement of each pixel among the
vertices of its corresponding visible triangle (middle), and normalize the contributions
of all pixels. In this way, we obtain gradients for projected 3D model vertices (right).

We solve this problem using geometric correspondence fields. Instead of ac-
tually differentiating a loss in the image space and relying on hand-crafted com-
parisons between pixel intensities to approximate the gradient flow from pixels
to projected 3D model vertices [16,23], we first use a network to predict per-
pixel 2D displacement vectors in the form of a geometric correspondence field,
as shown in Figure 2. We then compute gradients for projected 3D model ver-
tices by simply accumulating the predicted 2D displacement vectors using our
knowledge of the projected 3D model geometry, as illustrated in Figure 3.

Formally, we compute the gradient of a projected 3D model vertex mi as

∇mi =
1

∑

x,y

w
att
x,y w

bar,i
x,y

∑

x,y

watt
x,y w

bar,i
x,y f(I, R(Pcurr); θ)x,y

∀x, y : mi ∈ △IndexMapx,y
.

(5)

In this case, f(I, R(Pcurr); θ) is a geometric correspondence field predicted by our
network f(·) with frozen parameters θ given an RGB image I and concatenated
3D model renderings R(Pcurr) under the current 3D pose estimate Pcurr, w

att
x,y is

a geometric attention weight, wbar,i
x,y is a barycentric weight for mi, and (x, y) is a

pixel position. We accumulate predicted 2D displacement vectors for all positions
(x, y) for which mi is a vertex of the triangle △IndexMapx,y

visible at (x, y). For
this task, we generate an IndexMap which stores the index of the visible triangle
for each pixel during the forward pass of our differentiable renderer.

Inference. Our computed ∇mi approximate the second term in Eq. (2) that
cannot be computed analytically. In this way, our approach combines local per-
pixel 2D displacement vectors into per-vertex gradients and further computes
accurate global 3D pose gradients considering the 3D model geometry and the
rendering pipeline. Our experiments show that this approach generalizes better
to unseen data than predicting 3D pose updates with a network [29,60].

During inference of our system, we perform iterative updates to refine Pcurr.
In each iteration, we compute a 3D pose gradient by evaluating our refinement
loop presented in Figure 2. For our implementation, we use the Adam opti-
mizer [25] with a small learning rate and perform multiple updates to account
for noisy correspondences and achieve the best accuracy.
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4 Experimental Results

To demonstrate the benefits of our 3D pose refinement approach, we evaluate
it on the challenging Pix3D [46] dataset which provides in-the-wild images for
objects of different categories. In particular, we quantitatively and qualitatively
compare our approach to state-of-the-art refinement methods in Sec. 4.1, per-
form an ablation study in Sec. 4.2, and combine our refinement approach with
feed-forward 3D pose estimation [10] and 3D model retrieval [11] methods to
predict fine-grained 3D poses without providing initial 3D poses or ground truth
3D models in Sec. 4.3. We follow the evaluation protocol of [10] and report the
median (MedErr) of rotation, translation, pose, and projection distances. De-
tails on evaluation setup, datasets, and metrics as well as extensive results and
further experiments are provided in our supplementary material.

4.1 Comparison to the State of the Art

We first quantitatively compare our approach to state-of-the-art refinement meth-
ods. For this purpose, we perform 3D pose refinement on top of an initial 3D
pose estimation baseline. In particular, we predict initial 3D poses using the
feed-forward approach presented in [10] which is the state of the art for single
image 3D pose estimation on the Pix3D dataset (Baseline). We compare our re-
finement approach to traditional image-based refinement without differentiable
rendering [60] (Image Refinement) and mask-based refinement with differen-
tiable rendering [23] (Mask Refinement).

RGB-based refinement with differentiable rendering [33] is not possible in
our setup because all available 3D models lack textures and materials. This
approach even fails if we compare grey-scale images and renderings because the
image intensities at corresponding locations do not match. As a consequence,
2D-3D alignment using a photo-metric loss is impossible.

For Image Refinement, we use grey-scale instead of RGB renderings because
all available 3D models lack textures and materials. In addition, we do not
perform a single full update [60] but perform up to 1000 iterative updates with
a small learning rate of η = 0.05 using the Adam optimizer [25] for all methods.

For Mask Refinement, we predict instance masks from the input RGB image
using Mask R-CNN [13]. To achieve maximum accuracy, we internally predict
masks at four times the original spatial resolution proposed in Mask R-CNN and
fine-tune a model pre-trained on COCO [30] on Pix3D.

Table 1 (upper part) summarizes our results. In this experiment, we provide
the ground truth 3D model of the object in the image for refinement. Compared
to the baseline, Image Refinement only achieves a small improvement in the
rotation, translation, and pose metrics. There is almost no improvement in the
projection metric (MedErrP ), as this method does not minimize the reprojection
error. Traditional refinement methods are not aware of the rendering pipeline
and the underlying 3D scene geometry and can only provide coarse 3D pose
updates [60]. In our in-the-wild scenario, the number of 3D models, possible
3D pose perturbations, and category-level appearance variations is too large to
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Table 1: Quantitative 3D pose refinement results on the Pix3D dataset. In the case of
provided ground truth 3D models, our refinement significantly outperforms previous
refinement methods across all metrics by up to 55% relative. In the case of automati-
cally retrieved 3D models (+ Retrieval [11]), we reduce the 3D pose error (MedErrR,t)
compared to the state of the art for single image 3D pose estimation on Pix3D (Base-
line) by 55% relative without using additional inputs.

Rotation Translation Pose Projection

Method Input
MedErrR MedErrt MedErrR,t MedErrP

·1 ·102 ·102 ·102

Baseline [10] RGB Image 6.75 6.21 4.76 3.71

Image Refinement [60] RGB Image + 3D Model 6.46 5.43 4.31 3.67
Mask Refinement [23] RGB Image + 3D Model 3.56 4.06 2.96 1.90
Our Refinement RGB Image + 3D Model 2.56 1.74 1.34 1.27

Image Refinement [60] + Retrieval [11] RGB Image 6.47 5.51 4.33 3.74
Mask Refinement [23] + Retrieval [11] RGB Image 5.47 5.25 4.15 3.12
Our Refinement + Retrieval [11] RGB Image 3.79 2.65 2.14 2.18
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Fig. 4: Evaluation on 3D pose accuracy at different thresholds. We significantly out-
perform other methods on strict thresholds using both GT and retrieved 3D models.

simulate all permutations during training. As a consequence, this method cannot
generalize to examples which are far from the ones seen during training and only
achieves small improvements.

Additionally, we observe that after the first couple of refinement steps, the
predicted updates are not accurate enough to refine the 3D pose but start to
jitter without further improving the 3D pose. Moreover, for many objects, the
prediction fails and the iterative updates cause the 3D pose to drift off. Empiri-
cally, we obtain the best overall results for this method using only 20 iterations.
For all other methods based on differentiable rendering, we achieve the best ac-
curacy after the full 1000 iterations. A detailed analysis on this issue is presented
in our supplementary material.

Next, Mask Refinement improves upon Image Refinement by a large margin
across all metrics. Due to the 2D-3D alignment with differentiable rendering, this
method computes more accurate 3D pose updates and additionally reduces the
reprojection error (MedErrP ). However, we observe that Mask Refinement fails
in two common situations: First, when the object has holes and the mask is not a
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Image GT [10] [60] [23] Ours Image GT [10] [60] [23] Ours

Fig. 5: Qualitative 3D pose refinement results for objects of different categories. We
project the ground truth 3D model on the image using the 3D pose estimated by
different methods. Our approach overcomes the limitations of previous methods and
predicts fine-grained 3D poses for objects in the wild. The last example shows a failure
case (indicated by the red frame) where the initial 3D pose is too far from the ground
truth 3D pose and no refinement method can converge. More qualitative results are
presented in our supplementary material. Best viewed in digital zoom.

single blob the refinement fails (see Figure 5, e.g., 1st row - right example). In the
presence of holes, the hand-crafted approximation for the rasterization backward
pass accumulates gradients with alternating signs while traversing the image.
This results in unreliable per-vertex motion gradients. Second, simply aligning
the silhouette of objects is ambiguous as renderings under different 3D poses can
have similar masks. The interior structure of the object is completely ignored.
As a consequence, the refinement gets stuck in poor local minima. Finally, the
performance of Mask Refinement is limited by the quality of the target mask
predicted from the RGB input image [13].

In contrast, our refinement overcomes these limitations and significantly out-
performs the baseline as well as competing refinement methods across all metrics
by up to 70% and 55% relative. Using our geometric correspondence fields, we
bridge the domain gap between real-world images and synthetic renderings and
align both the object outline as well as interior structures with high accuracy.

Our approach performs especially well in the fine-grained regime, as shown in
Figure 4a. In this experiment, we plot the 3D pose accuracy AccR,t which gives
the percentage of samples for which the 3D pose distance eR,t is smaller than a
varying threshold. For strict thresholds close to zero, our approach outperforms
other refinement methods by a large margin. For example, at the threshold
0.015, we achieve more than 55% accuracy while the runner-up Mask Refinement

achieves only 19% accuracy.

This significant performance improvement is also reflected in our qualitative
examples presented in Figure 5. Our approach precisely aligns 3D models to
objects in RGB images and computes 3D poses which are in many cases visually
indistinguishable from the ground truth. Even if the initial 3D pose estimate
(Baseline) is significantly off, our method can converge towards the correct 3D
pose (see Figure 5, e.g., 1st row - left example). Finally, Figure 6 illustrates the
high quality of our predicted geometric correspondence fields.
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Initial 3D Pose Ground Truth Prediction Initial 3D Pose Ground Truth Prediction

Fig. 6: Qualitative examples of our predicted geometric correspondence fields. Our pre-
dicted 2D displacement vectors are highly accurate. Best viewed in digital zoom.

4.2 Ablation Study

To understand the importance of individual components in our system, we con-
duct an ablation study in Table 2. For this purpose, we modify a specific system
component, retrain our approach, and evaluate the performance impact.

If we use smaller kernels with less receptive field (3 × 3 vs 7 × 7) or fewer
layers (2 vs 4) in our correspondence branch, the performance drops significantly.
Also, using shallow mapping branches which only employ a single Conv-BN-
ReLU block to simulate simple edge and ridge features results in low accuracy
because the computed features are not discriminative enough. If we perform
refinement without our geometric attention mechanism, the accuracy degrades
due to unreliable correspondence predictions in homogeneous regions.

Next, the choice of the rendered representation is important for the perfor-
mance of our approach. While using masks only performs poorly, depth, normal,
and object coordinate renderings increase the accuracy. Finally, we achieve the
best accuracy by exploiting complementary information from multiple different
renderings by concatenating depth, normal, and object coordinate renderings.

By inspecting failure cases, we observe that our method does not converge if
the initial 3D pose is too far from the ground truth 3D pose (see Figure 5, last
example). In this case, we cannot predict accurate correspondences because our
computed features are not robust to large viewpoint changes and the receptive
field of our correspondence branch is limited. In addition, occlusions cause our
refinement to fail because there are no explicit mechanisms to address them.
We plan to resolve this issue in the future by predicting occlusion masks and
correspondence confidences. However, other refinement methods also fail in these
scenarios (see Figure 5, last example).

4.3 3D Model Retrieval

So far, we assumed that the ground truth 3D model required for 3D pose re-
finement is given at runtime. However, we can overcome this limitation by au-
tomatically retrieving 3D models from single RGB images. For this purpose, we
combine all refinement approaches with the retrieval method presented in [11],
where the 3D model database essentially becomes a part of the trained model. In
this way, we perform initial 3D pose estimation, 3D model retrieval, and 3D pose
refinement given only a single RGB image. This setting allows us to benchmark
refinement methods against feed-forward baselines in a fair comparison.
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Table 2: Ablation study of our method. Using components which increase the discrim-
inability of learned features is important for the performance of our approach. Also, our
geometric attention mechanism and the chosen type of rendering effect the accuracy.

Rotation Translation Pose Projection

Method
MedErrR MedErrt MedErrR,t MedErrP

·1 ·102 ·102 ·102

Ours less receptive 3.01 2.12 1.75 1.56
Ours fewer layers 2.84 1.98 1.58 1.41
Ours shallow features 2.76 2.00 1.55 1.42
Ours without attention 2.70 1.92 1.45 1.37
Ours only MASK 2.98 1.85 1.44 1.41
Ours only OBJ COORD 2.57 1.80 1.39 1.31
Ours only DEPTH 2.60 1.77 1.38 1.29
Ours only NORMAL 2.58 1.76 1.36 1.30
Ours 2.56 1.74 1.34 1.27

The corresponding results are presented in Table 1 (lower part) and Fig-
ure 4b. Because the retrieved 3D models often differ from the ground truth 3D
models, the refinement performance decreases compared to given ground truth
3D models. Differentiable rendering methods lose more accuracy than traditional
refinement methods because they require 3D models with accurate geometry.

Still, all refinement approaches perform remarkably well with retrieved 3D
models. As long as the retrieved 3D model is reasonably close to the ground
truth 3D model in terms of geometry, our refinement succeeds. Our method
achieves even lower 3D pose error (MedErrR,t) with retrieved 3D models than
Mask Refinement with ground truth 3D models. Finally, using our joint 3D pose
estimation-retrieval-refinement pipeline, we reduce the 3D pose error (MedErrR,t)
compared to the state of the art for single image 3D pose estimation on Pix3D
(Baseline) by 55% relative without using additional inputs.

5 Conclusion

Aligning 3D models to objects in RGB images is the most accurate way to
predict 3D poses. However, there is a domain gap between real-world images
and synthetic renderings which makes this alignment challenging in practice. To
address this problem, we predict deep cross-domain correspondences in a feature
space optimized for 3D pose refinement and combine local 2D displacement
vectors into global 3D pose updates using our novel differentiable renderer. Our
method outperforms existing refinement approaches by up to 55% relative and
can be combined with feed-forward 3D pose estimation and 3D model retrieval
to predict fine-grained 3D poses for objects in the wild given only a single RGB
image. Finally, our novel learned differentiable rendering framework can be used
for other tasks in the future.
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In the following, we provide additional details and experimental results of
our novel 3D pose refinement approach. In Sec. 6, we present our evaluation
setup and discuss different datasets. In Sec. 7, we formally describe our evaluated
metrics. In Sec. 8, we give specific details on the implementation of our approach.
In Sec. 9, we analyze the iterative refinement behavior of different methods. In
Sec. 10, we present detailed quantitative 3D pose refinement results for individual
object categories. In Sec. 11, we show additional qualitative results. Finally, we
analyze failure cases of our approach in Sec. 12.

6 Datasets and Evaluation Setup

We evaluate our proposed 3D pose refinement approach on the challenging
Pix3D [46] dataset. The Pix3D dataset provides in-the-wild RGB images with
3D pose, 3D model, and focal length annotations for objects of different cat-
egories. We follow the evaluation protocol of previous work [10] and perform
experiments on categories which have more than 300 non-occluded and non-
truncated samples (bed, chair, sofa, table). Further, we restrict the training and
evaluation to samples marked as non-occluded and non-truncated because all
evaluated refinement methods lack explicit mechanisms to deal with occlusions.
In addition, this dataset does not provide information on which objects parts
are occluded nor the extent of the occlusion. For each category, we use 50% of
the samples for training and the other 50% for testing as in [10].

Other category-level datasets do not provide annotations with sufficient ac-
curacy to both train and evaluate fine-grained 3D pose refinement methods. For
example, the Comp [51] and Stanford [51] datasets only provide coarse 3D pose
annotations. In addition to coarse 3D pose annotations, the ScanNet [6], Pas-
cal3D+ [54], and ObjectNet3D [53] datasets also just provide approximate 3D
model annotations. Moreover, the latter two datasets assume constant camera
intrinsics for images captured with different cameras which further decreases
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the annotation quality [10]. As a consequence of this label noise, the training
of refinement methods results in models with poor accuracy, while quantitative
evaluations are not representative of the true refinement performance due to the
lack of accuracy in the annotations.

In contrast, instance-level datasets like LineMOD [17], YCB [4], T-LESS [19],
or NOCS [50] provide accurate annotations but have many images with strong
occlusions. Neither traditional refinement methods [29,35,60], nor differentiable
rendering based refinement methods [23,33,41], nor our approach employ explicit
mechanisms to deal with occlusions. For example, one issue across all evaluated
methods is that they align renderings to real-world images but occlusions are only
present in the real-world images while the renderings are always un-occluded.
Also, simply training methods based on feed-forward CNNs on occluded objects
is in practice not sufficient to handle occlusions [40]. However, we specifically
plan to address occlusions in the future by predicting occlusion masks and cor-
respondence confidences.

In addition, our approach is specifically designed for category-level 3D pose
refinement using untextured 3D models. This task is very different from instance-
level 3D pose estimation where exactly matching colored and textured 3D models
are available. In this case, methods which leverage color and texture information
of 3D models have a clear advantage and should be used instead.

For these two reasons, we did not evaluate our method on instance-level
datasets like LineMOD or YCB which have many images with strong occlusions
and provide 3D models with colors and textures that exactly match those of the
objects in the RGB images.

7 Metrics

We follow the evaluation protocol of previous work [10] and report the median
error (MedErr) of multiple geometric distances:

Rotation: The 3D rotation distance

eR =
‖log(RT

gtRpred)‖F√
2

(6)

represents the minimal angle between the ground truth rotation matrix Rgt and
the predicted rotation matrix Rpred [49].

Translation: The 3D translation distance

et =
‖tgt − tpred‖2

‖tgt‖2
(7)

gives the relative error between the ground truth translation tgt and the pre-
dicted translation tpred [20].
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Pose: The 3D pose distance

eR,t = avg
Mi∈M

dbbox

dimg
· ‖transf(Mi,Pgt)− transf(Mi,Ppred)‖2

‖tgt‖2
(8)

represents the average normalized Euclidean distance of all transformed 3D
model points in 3D space [18,20]. Each 3D point Mi of the ground truth 3D
model M is transformed using the ground truth 3D pose Pgt and the predicted
3D pose Ppred. This distance is normalized by the relative size of the object in
the image using the ratio between the ground truth 2D bounding box diago-
nal dbbox and the image diagonal dimg, and the L2-norm of the ground truth
translation ‖tgt‖2.

Projection: The 2D projection distance

eP = avg
Mi∈M

‖proj(Mi,Pgt)− proj(Mi,Ppred)‖2
dbbox

(9)

is the average reprojection error normalized by the ground truth 2D bounding
box diagonal dbbox [51]. In this case, each 3D point Mi of the ground truth 3D
model M is projected to the 2D image plane using the ground truth 3D pose
Pgt and the predicted 3D pose Ppred subject to a camera model. In this work,
we assume the camera intrinsics to be known.

8 Implementation and Training Details

To train our refinement network, we resize and pad images to a spatial resolution
of 256 × 256 while maintaining the aspect ratio. In this way, we are able to
combine images with different aspect ratios in the same training batch. For our
mapping branches, we adapt a ResNet-50 [14,15] architecture. We utilize all
layers up to the end of the first stage but use a stride of 1 for all convolutional
layers and discard max pooling layers. For our correspondence branch, we use a
channel dimensionality of 64 for all convolutional layers except the output layer.

During training of our network, we additionally employ different forms of
data augmentation like mirroring, affine transformations, and independent pixel
augmentations like additive or multiplicative noise for the RGB image I.

To regularize our network, we use L2 weight decay with a factor of 1e−5.
We train our network f(·) for 1500 epochs using the Adam optimizer [25] with
an initial learning rate of η = 1e−3. We use a batch size of 8 and decrease the
learning rate by a factor of 5 after 1000 and 1400 epochs.

During inference of our system, we compute geometry-level gradients ∇mi

from our predicted geometric correspondence fields. In this way, vertices belong-
ing to self-occluded triangles [23] or to visible triangles which are masked out
by our geometric attention module do not receive gradients. However, since the
geometry is fixed, providing gradients for a subset of all vertices is sufficient to
perform 3D pose refinement.
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9 Iterative Refinement
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Fig. 7: Evaluation on 3D pose refinement after varying numbers of iterations. In contrast
to other methods, our refinement achieves a consistent improvement upon the baseline,
increasing with the number of iterations.

Figure 7 shows the performance of different refinement methods after vary-
ing numbers of iterations. In this experiment, we report the 3D pose metric
MedErrR,t as a function of the number of 3D pose updates. The baseline does
not perform iterative updates, thus, its MedErrR,t score is constant.

For Image Refinement [60], the accuracy increases until 20 iterations but
then starts to decrease. After the first couple of coarse refinement steps, the
predicted updates are not accurate enough to refine the 3D pose but start to
jitter without further improving the 3D pose. Moreover, for many objects the
prediction fails and the iterative updates cause the 3D pose to drift off which
results in high MedErrR,t for large numbers of iterations.

For Mask Refinement [23], we observe an opposite effect. In the beginning,
the accuracy decreases but then the performance increases. This is due to de-
generated masks predicted from RGB images by Mask R-CNN [13]. The mask
prediction often fails to capture fine-grained and thin structures, e.g., ornaments
and legs of a bed (see Figure 8). These degenerated masks cause large gradients
during refinement and quickly pull the 3D pose away from the reasonable initial
estimate predicted by the baseline (also see Figure 9, 2nd row). After five itera-
tions the refinement on samples with correctly predicted masks counteracts this
effect and the performance improves.
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Table 3: Average computation times of different refinement methods for a single itera-
tion using a Titan X GPU. For all evaluated methods, the execution time for computing
a single 3D pose update is within the same order of magnitude.

Method Time per Iteration

Image Refinement [60] 86.5 ms
Mask Refinement [23] 29.7 ms
Our Refinement 36.0 ms

Image GT Mask Predicted Mask

GT 3D Pose Baseline [10] 3D Pose Mask Ref. [23] 3D Pose

Fig. 8: Typical failure case of Mask Refinement [23]. Degenerated predicted masks (top
right) cause large gradients during refinement and quickly pull the 3D pose away from
reasonable initial estimates by the baseline (bottom middle). As a consequence, the 3D
pose refinement using Mask Refinement fails (bottom right). Also see Figure 9, 2nd row.

In contrast to other refinement methods, our approach achieves a consistent
improvement upon the baseline, increasing with the number of iterations. As
expected, the accuracy saturates for large numbers of iterations. Empirically,
we achieve maximum accuracy by performing 1000 3D pose updates using the
Adam optimizer [25] with a learning rate of η = 0.05.

Finally, Table 3 compares the computation times of different refinement
methods. Image Refinement evaluates two large ResNet-style networks [14] dur-
ing inference and, thus, this method is the slowest in our evaluation. Mask Re-

finement generates a mask rendering, computes a loss in the mask space, and
performs the backward pass of its differentiable renderer in each iteration. This
method is the fastest in our evaluation since the target mask predicted from the
input RGB image by Mask R-CNN [13] does not change during refinement. It is
only predicted once before the iterative process and the inference time of Mask
R-CNN is not considered in this experiment.
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Our refinement is only marginally slower than Mask Refinement as we just
evaluate our efficient network branches in addition to the forward and back-
ward pass of our differentiable renderer in each iteration. However, all evaluated
refinement methods show comparable execution time within the same order of
magnitude for computing a single 3D pose update.

10 Detailed Quantitative Results

Tables 4 (GT 3D models) and 5 (retrieved 3D models) show detailed quanti-
tative results for individual object categories on Pix3D. For completeness, we
additionally report the detection accuracy AccD0.5

which gives the percentage
of objects for which the intersection over union between the ground truth 2D
bounding box and the predicted 2D bounding box is larger than 50% [54]. We
do not make 3D pose predictions for objects which are not detected by the base-
line [10]. However, the reported MedErr metrics are computed over all samples,
both detected and not detected.

Our refinement outperforms the baseline as well as competing refinement
methods across all metrics. In fact, we do not only increase themean performance
over all categories but also achieve state-of-the-art results for each individual
category. Using both ground truth (see Table 4) and retrieved (see Table 5)
3D models, we improve the performance compared to other methods by a large
margin for each evaluated category.

Table 4: Detailed 3D pose refinement results for individual categories on Pix3D. In this
experiment, we provide the ground truth 3D model for refinement. We outperform
existing methods across all categories by a large margin.

Detection Rotation Translation Pose Projection

Method Category AccD0.5

MedErrR MedErrt MedErrR,t MedErrP

·1 ·102 ·102 ·102

Baseline [10]

bed 99.0

5.07 6.68 5.18 3.42
Image Refinement [60] 4.65 5.45 4.60 3.38
Mask Refinement [23] 3.03 4.04 3.07 2.00
Our Refinement 2.40 1.84 1.45 1.28

Baseline [10]

chair 95.2

7.36 5.49 3.90 3.32
Image Refinement [60] 7.10 5.31 3.68 3.34
Mask Refinement [23] 4.42 4.89 3.17 1.79
Our Refinement 2.96 1.77 1.23 1.17

Baseline [10]

sofa 96.5

4.40 4.96 3.78 2.57
Image Refinement [60] 4.30 3.87 3.15 2.54
Mask Refinement [23] 2.97 2.89 2.25 1.54
Our Refinement 2.28 1.36 1.19 1.08

Baseline [10]

table 94.0

10.18 7.72 6.17 5.54
Image Refinement [60] 9.81 7.07 5.80 5.40
Mask Refinement [23] 3.81 4.44 3.34 2.27
Our Refinement 2.59 2.00 1.48 1.55

Baseline [10]

mean 96.2

6.75 6.21 4.76 3.71
Image Refinement [60] 6.46 5.43 4.31 3.67
Mask Refinement [23] 3.56 4.06 2.96 1.90
Our Refinement 2.56 1.74 1.34 1.27
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Table 5: Detailed 3D pose refinement results for individual categories on Pix3D. In this
experiment, we automatically retrieve 3D models for refinement using the method
presented in [11]. We outperform existing methods across all categories by a large
margin.

Detection Rotation Translation Pose Projection

Method Category AccD0.5

MedErrR MedErrt MedErrR,t MedErrP

·1 ·102 ·102 ·102

Baseline [10]

bed 99.0

5.07 6.68 5.18 3.42
Image Refinement [60] 4.65 5.86 4.41 3.38
Mask Refinement [23] 4.40 5.32 4.21 2.69
Our Refinement 2.95 2.75 2.18 1.83

Baseline [10]

chair 95.2

7.36 5.49 3.90 3.32
Image Refinement [60] 7.15 5.21 3.67 3.35
Mask Refinement [23] 7.22 6.32 4.53 3.31
Our Refinement 4.89 2.87 2.04 2.19

Baseline [10]

sofa 96.5

4.40 4.96 3.78 2.57
Image Refinement [60] 4.34 3.75 3.02 2.54
Mask Refinement [23] 3.33 3.00 2.34 1.63
Our Refinement 2.60 1.60 1.42 1.19

Baseline [10]

table 94.0

10.18 7.72 6.17 5.54
Image Refinement [60] 9.73 7.23 6.22 5.68
Mask Refinement [23] 6.92 6.34 5.52 4.85
Our Refinement 4.73 3.38 2.93 3.49

Baseline [10]

mean 96.2

6.75 6.21 4.76 3.71
Image Refinement [60] 6.47 5.51 4.33 3.74
Mask Refinement [23] 5.47 5.25 4.15 3.12
Our Refinement 3.79 2.65 2.14 2.18

11 Additional Qualitative Results

Figures 9, 10, and 11 show additional qualitative 3D pose refinement results for
different methods complementary to those presented in the main paper. While
other methods fail to predict fine-grained 3D poses in the wild, our approach
precisely aligns 3D models to objects in RGB images which results in signifi-
cantly improved 3D poses for objects of different categories. In many cases, our
predicted 3D pose is visually indistinguishable from the ground truth 3D pose.

Figures 12 and 13 show additional qualitative results of our predicted geo-
metric correspondence fields. Our predicted 2D displacement vectors are highly
accurate for many different objects and scales in the wild. The illustrations also
show our computed geometric attention masks, outlined in white underneath the
2D displacement vectors.

12 Additional Failure Cases

Figure 14 shows additional failure cases of our approach. In the presence of strong
image noise, we cannot predict accurate geometric correspondence fields and,
thus, our refinement fails. Also, if there are duplicate or ambiguous structures
in the image our method sometimes predicts wrong correspondences and aligns
the 3D model to unintended image parts.
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Image GT [10] [60] [23] Ours

Fig. 9: Additional qualitative 3D pose refinement results for objects of different cate-
gories. We project the ground truth 3D model on the image using the predicted 3D
pose. Our approach overcomes the limitations of previous methods and predicts fine-
grained 3D poses which are in many cases visually indistinguishable from the ground
truth. Best viewed in digital zoom.
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Image GT [10] [60] [23] Ours

Fig. 10: Additional qualitative 3D pose refinement results for objects of different cat-
egories. We project the ground truth 3D model on the image using the predicted 3D
pose. Our approach overcomes the limitations of previous methods and predicts fine-
grained 3D poses which are in many cases visually indistinguishable from the ground
truth. Best viewed in digital zoom.
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Image GT [10] [60] [23] Ours

Fig. 11: Additional qualitative 3D pose refinement results for objects of different cat-
egories. We project the ground truth 3D model on the image using the predicted 3D
pose. Our approach overcomes the limitations of previous methods and predicts fine-
grained 3D poses which are in many cases visually indistinguishable from the ground
truth. Best viewed in digital zoom.
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Initial 3D Pose Ground Truth Prediction

Fig. 12: Additional qualitative examples of our predicted geometric correspondence
fields. Our predicted 2D displacement vectors are highly accurate for many different
objects and scales. Best viewed in digital zoom.
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Initial 3D Pose Ground Truth Prediction

Fig. 13: Additional qualitative examples of our predicted geometric correspondence
fields. Our predicted 2D displacement vectors are highly accurate for many different
objects and scales. Best viewed in digital zoom.
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Image GT GCF Predicted GCF

GT 3D Pose Baseline [10] 3D Pose Our 3D Pose

Image GT GCF Predicted GCF

GT 3D Pose Baseline [10] 3D Pose Our 3D Pose

Fig. 14: Failure cases of our approach. In the presence of strong image noise (top ex-
ample), we cannot predict accurate geometric correspondence fields (GCF) and, thus,
our refinement fails. Also, if there are duplicate or ambiguous structures in the image
our method sometimes predicts wrong correspondences and aligns the 3D model to
unintended image parts (bottom example). Best viewed in digital zoom.
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