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Abstract

We propose a method for annotating images of a hand

manipulating an object with the 3D poses of both the hand

and the object, together with a dataset created using this

method. Our motivation is the current lack of annotated

real images for this problem, as estimating the 3D poses is

challenging, mostly because of the mutual occlusions be-

tween the hand and the object. To tackle this challenge, we

capture sequences with one or several RGB-D cameras and

jointly optimize the 3D hand and object poses over all the

frames simultaneously. This method allows us to automat-

ically annotate each frame with accurate estimates of the

poses, despite large mutual occlusions. With this method,

we created HO-3D, the first markerless dataset of color im-

ages with 3D annotations for both the hand and object. This

dataset is currently made of 77,558 frames, 68 sequences,

10 persons, and 10 objects. Using our dataset, we develop

a single RGB image-based method to predict the hand pose

when interacting with objects under severe occlusions and

show it generalizes to objects not seen in the dataset.

1. Introduction

Methods for 3D pose estimation of rigid objects and

hands from monocular images have made significant

progress recently, thanks to the development of Deep Learn-

ing, and the creation of large datasets or the use of syn-

thetic images for training [33, 36, 47, 57, 73, 75]. However,

these recent methods still fail when a hand interacts with an

object, mostly because of large mutual occlusions, and of

the absence of datasets specific to 3D pose estimation for

hand+object interaction. Breaking this limit is highly de-

sirable though, as 3D hand and object poses would be very

useful in augmented reality applications, or for learning-by-

imitation in robotics, for example.

Several pioneer works have already considered this prob-

lem, sometimes with impressive success [27, 54, 63]. These

works typically rely on tracking algorithms to exploit

temporal constraints, often also considering physical con-

straints between the hand and the object to improve the pose

estimates. While these temporal and physical constraints re-

main relevant, we would like to also benefit from the power

of data-driven methods for 3D hand+object pose estimation

from a single image. Being able to estimate these poses

from a single frame would avoid manual initialization and

drift of tracking algorithms. A data-driven approach, how-

ever, requires real or synthetic images annotated with the

3D poses of the object and the hand. Unfortunately, cre-

ating annotated data for the hand+object problem is very

challenging. Both common options for creating 3D annota-

tions, annotating real images and generating synthetic im-

ages, raise challenging problems.

Annotating real images. One can rely on some algo-

rithm for automated annotation, as was done for current

benchmarks in 3D hand pose estimation [46, 56, 59, 73, 76],

where the “ground truth” annotations are obtained automat-

ically with a tracking algorithm. Though these annotations

are noisy, they are usually taken for granted and used for

training and evaluation [38]. Another approach is to use

sensors attached to the hand as in [15] (bottom right image

of Fig. 1). This directly provides the 3D poses, however,

the sensors are visible in the images, and thus bias learning

methods. Significant effort is still required in developing

algorithms for automated annotation of real images.

Generating synthetic images. Relying on synthetic

images is appealing, as the 3D poses are known perfectly.

Realistic rendering and domain transfer can be used to train

3D pose estimation on synthetic images [32, 48, 75]. Gen-

erating physically correct grasps is possible [30], as shown

in [19], but complex manipulation is difficult to simulate.

However, real images with accurate 3D annotations would

still be needed to evaluate the generalizability of the method

to real data.

We therefore propose a method to automatically annotate

real images of hands grasping objects with their 3D poses.

Our method works with a single RGB-D camera, but can

exploit more cameras if available for better robustness and

1

ar
X

iv
:1

90
7.

01
48

1v
6 

 [
cs

.C
V

] 
 3

0 
M

ay
 2

02
0

https://www.tugraz.at/index.php?id=40231


[76] [54]

[19] [15]

Our proposed HO-3D dataset Existing datasets

Figure 1: We introduce a method for labelling real images of hand+object interaction with the 3D poses of the hand and of

the object. With this method, we automatically created a dataset made of more than 75,000 frames, 10 different objects and

10 different users. In comparison, existing datasets have several limitations: The 3D objects are very simple, the interaction

is not realistic, the images are synthetic, corrupted by sensors, and/or the number of samples is limited. More illustrations of

annotations in our dataset are shown in the supplementary material.

accuracy. The single-camera setup works under the assump-

tion that the grasp pose varies marginally over the sequence;

the multi-camera setup can handle complex hand+object in-

teraction scenarios. Instead of tracking the poses frame-by-

frame, our method optimizes jointly all the 3D poses of the

hand and the object over the sequence. As our evaluations

show, this allows us to exploit temporal consistency in a

stronger way than a tracking algorithm. Using differentiable

rendering, we can optimize a complex objective function by

exploiting the new powerful gradient descent methods orig-

inally developed for Deep Learning [25]. We see this ap-

proach as the equivalent of bundle adjustment for SLAM

algorithms, where we track objects instead of points.

We rely on the MANO hand model [51], and the 3D

model of the objects. We use objects from the YCB-Video

dataset [70], as they have various shapes and materials, and

can be bought online [1] by researchers interested in per-

forming their own experiments. Being able to use a sin-

gle camera also enables easier expansion of the dataset by

other researchers with a larger variety of objects and grasp-

ing poses as multi-camera capture is often complex to setup.

Using our method, we created a dataset, depicted in

Fig. 1, which we call HO-3D. In addition, we used this

dataset to learn to predict from a single RGB image the 3D

pose of a hand manipulating an object. More exactly, we

train a Deep Network to predict the 2D joint locations of

the hand along with the joint direction vectors and lift them

to 3D by fitting a MANO model to these predictions. This

validates the fact that the 3D poses estimated by our anno-

tation method can actually be used in a data-driven method

for hand pose estimation. By comparing with an existing

method for hand+object pose estimation [19] that directly

estimates MANO parameters, we show that predicting 2D

keypoints and lifting them to 3D performs more accurately.

2. Related Work

The literature on hand and object pose estimation is ex-

tremely broad, and we review only some works here.

2.1. 3D Object Pose Estimation

Estimating the 3D pose of an object from a single frame

is still one of the fundamental problems of Computer Vi-

sion. Some methods are now robust to partial occlu-

sions [21, 37, 42], but many works rely on RGB-D data to

handle this problem [5, 8, 23, 31], by fitting the 3D object

model to depth data. This can fail when a hand grasps the

object, since the surface of the hand can be mistaken for the

surface of the object.

2.2. 3D Hand Pose Estimation

Single image hand pose estimation is also a very pop-

ular problem in Computer Vision, and approaches can be

divided into discriminative and generative methods. Dis-

criminative approaches directly predict the joint locations

from RGB or RGB-D images. Recent works based on Deep

Networks [16,33,35,36,61,71,75] show remarkable perfor-

mance, compared to early works based on Random Forests

such as [24]. However, discriminative methods perform

poorly in case of partial occlusion.

Generative approaches take advantage of a hand model

and its kinematic structure to generate hand pose hypothe-

ses that are physically plausible [13, 29, 46, 52, 55, 65, 72].

[32, 41] predict 2D joint locations and then lift them to

3D. Generative approaches are usually accurate and can be

made robust to partial occlusions. They typically rely on

some pose prior, which may require manual initialization or

result in drift when tracking.

Our work is related to both discriminative and generative

approaches: we use a generative approach within a global

optimization framework to generate the pose annotations,



and use a discriminative method to initialize this complex

optimization. [66] also combines generative and discrim-

inative approaches to train a network in a self-supervised

setting. However, they only consider hands. We also train a

discriminative method using our dataset, to predict the hand

poses which are robust to occlusions from interacting ob-

jects.

2.3. Synthetic Images for 3D Pose Estimation

Being able to train discriminative methods on synthetic

data is valuable as it is difficult to acquire annotations for

real images [75]. [19, 48] show that because of the domain

gap between synthetic and real images, training on synthetic

images only results in sub-optimal performance. A GAN

method was used in [32] to make synthetic images of hands

more realistic. While using synthetic images remains ap-

pealing for many problems, creating the virtual scenes can

be expensive and time-consuming. Generating animated re-

alistic hand grasps of various objects, as it would be re-

quired to solve the problem considered in this paper remains

challenging. Being able to use real sequences for training

has thus also its advantages. Moreover, evaluation should

be performed on real images.

2.4. Joint Hand+Object Pose Estimation

Early approaches for joint hand+object pose estima-

tion [2,39,67] typically relied on multi-view camera setups,

and frame-by-frame tracking methods, which may require

careful initialization and drift over time. [40, 64] propose

generative methods to track finger contact points for in-hand

RGB-D object shape scanning. [44, 45] consider sensing

from vision to estimate contact forces during hand+object

interactions using a single RGB-D camera, and then esti-

mate the hand and the object pose. However, these methods

are limited to small occlusions.

[27,63] propose to use a physics simulator and a 3D ren-

derer for frame-to-frame tracking of hands and objects from

RGB-D. [28] uses an ensemble of Collaborative Trackers

for multi-object and multiple hand tracking from RGB-

D images. The accuracy of these methods seems to be

qualitatively high, but as the ground truth acquisition in a

real-world is known to be hard, they evaluate the proposed

method on synthetic datasets, or by measuring the standard

deviation of the difference in hand/object poses during a

grasping scenario.

[62] considers the problem of tracking a deformable ob-

ject in interaction with a hand, by optimizing an energy

function on the appearance and the kinematics of the hand,

together with hand+object contact configurations. How-

ever, it is evaluated quantitatively only on synthetic images,

which points to the difficulty of evaluation on real data. In

addition, they only consider scenarios where the hand is vis-

ible from a top view, restricting the range of the hand poses

and not allowing occlusions.

Very recently, [26] uses a coarse hand pose estimation to

retrieve the 3D pose and shape of hand-held objects. How-

ever, they only consider a specific type of object and do not

estimate the object pose. [19] presents a model with con-

tact loss that considers physically feasible hand+object in-

teraction to improve grasp quality. However, to estimate

3D hand pose, they predict PCA components for the pose,

which results in lower accuracy compared to ours, as our

experiments show. [60] proposes a deep model to jointly

predict 3D hand and object poses from egocentric views,

but the absence of physical constraints might result in in-

feasible grasps.

2.5. Hand+Object Datasets

Several datasets for hand+object interactions have al-

ready been proposed. Many works provide egocentric RGB

or RGB-D sequences for action recognition [3, 6, 7, 14, 49].

However, they focus on grasp and action labels and do not

provide 3D poses. [11,33,50,62] generate synthetic datasets

with 3D hand pose annotations, but fine interaction between

a hand and an object remains difficult to generate accurately.

[63,65] captured sequences in the context of hand+hand

and hand+object interaction, with 2D hand annotations

only. [34] collected a dataset of real RGB images of hands

holding objects. They also provide 2D joint annotations

of pairs of non-occluded and occluded hands, by removing

the object from the grasp of the subject, while maintaining

their hand in the same pose. [17] proposes two datasets, a

hand+object segmentation dataset, and a hand+object pose

estimation dataset. However, for both datasets, the back-

ground pixels have been set to zero, and the training im-

ages only consist of a hand interacting with a tennis ball.

They provide hand pose annotations and object positions,

by manually labelling the joints and using a generative

method to refine the joint positions. [22] generate a large

scale dataset with full body pose and hand pose annotations

in a multi-view setup. They use a generative approach to fit

the body and hand models to 3D keypoints and point cloud.

However, their dataset focuses on total body pose annota-

tion and not hand+object interactions exclusively and does

not provide object pose annotations.

[54] proposed an RGB-D dataset of a hand manipulat-

ing a cube, which contains manual ground truth for both

fingertip positions and 3D poses of the cube. [43] collected

a dataset where they measure motion and force under dif-

ferent object-grasp configurations using sensors, but do not

provide 3D poses. In contrast to these previous works, [15]

provides a dataset of hand and object interactions with 3D

annotations for both hand joints and object pose. They used

a motion capture system made of magnetic sensors attached

to the user’s hand and to the object in order to obtain hand

3D pose annotations in RGB-D video sequences. However,



Dataset
No. of

Frames

3D Object

Pose

Marker-

less

Real

Images
Labels

No. of

Objects

No. of

Subjects

PAN [22] 675K - + + automatic - 70

GAN [32] 300K - + - synthetic - -

FPHA [15] 100K + (23K frames) - + automatic 26 (4 models) 6

ObMan [19] 150K + + - synthetic 2.7K 20

Freihand [76] 37K - + + hybrid 27 35

HO-3D (ours) 78K + + + automatic 10 10

Table 1: Comparison of hand+object datasets.

this changes the appearance of the hand in the color images

as the sensors and the tape attaching them are visible.

Very recently, [19] introduced ObMan, a large dataset

of images of hands grasping objects. The images in Ob-

Man dataset are synthetic and the grasps are generated us-

ing an algorithm from robotics. Even more recently, [76]

proposed a multi-view RGB dataset, FreiHAND, which in-

cludes hand-object interactions. However, the annotations

are limited to the 3D poses and shapes of the hand. Fur-

ther, [76] uses a human-in-the-loop method to obtain anno-

tations from multiple RGB cameras in a green-screen back-

ground environment. Our method, on the other hand is fully

automatic, capable of working even on a single RGBD-

camera setup and does not make any assumption on the

background. The objects in our dataset are also larger than

those in FreiHAND, thus resulting in a more challenging

scenario as the occlusions are larger. The annotation accu-

racy of our method is comparable to [76] as described in

Section 6.1.

As illustrated in Fig. 1 and Table 1, our HO-3D dataset

is the first markerless dataset providing both 3D hand joints

and 3D object pose annotations for real images, while the

hand and the object are heavily occluded by each other.

3. 3D Annotation Method

We describe below our method for annotating a sequence

T “
 

tpItc,Dt
cquNC

c“1

(NF

i“1
of NC ˆ NF of RGB-D frames,

captured by NC cameras. The sequence captures a hand

interacting with an object. Each RGB-D frame is made of a

color image Itc and a depth map Dt
c.

We define the 3D hand and object poses in Section 3.1,

and our general cost function in Section 3.2. We initialize

the poses automatically and optimize the cost function in

multiple stages as described in Sections 4.1 and 4.2.

3.1. 3D Hand and Object Poses

We aim to estimate the 3D poses P “ tppth, pt
oquNF

t“1
for

both the hand and the object in all the images of the se-

quence. We adopt the MANO hand model [51] and use

the objects from the YCB-Video dataset [70] as their corre-

sponding 3D models are available and of good quality. The

MANO hand pose pt
h P R

51 consists of 45 DoF (3 DoF

for each of the 15 finger joints) plus 6 DoF for rotation and

translation of the wrist joint. The 15 joints together with the

wrist joint form a kinematic tree with the wrist joint node

as the first parent node. In addition to the pose parameters

pth, the hand model has shape parameters β P R
10 that are

fixed for a given person and we follow a method similar

to [58] to estimate these parameters. More details about the

shape parameter estimation are provided in the supplemen-

tary material. The object pose pto P SEp3q consists of 6 DoF

for global rotation and translation.

3.2. Cost Function

We formulate the hand+object pose estimation as an en-

ergy minimization problem:

P̂ “ argmin
P

NF
ÿ

t“1

`

EDppt
h, pt

oq ` ECppth, pt
oq
˘

, (1)

where ED and EC represent the energy from data terms and

constraints, respectively. We define ED as,

EDppt
h, ptoq “

NC
ř

c“1

´

αEmaskpItc, pt
h, pt

oq ` βEdptpDt
c, pt

h, ptoq`

γEj2DpItc, pt
hq
¯

` δE3DptDt
cuc“1..NC

, pth, ptoq ,

(2)

where Emaskp¨q is a silhouette discrepancy term, Edptp¨q a

depth residual term, Ej2Dp¨q a 2D error in hand joint loca-

tions, and E3Dp¨q a 3D distance term. This last term is not

absolutely necessary, however, we observed that it signifi-

cantly speeds up convergence. α, β, γ, δ are weights.

The constraints energy EC is defined as,

ECppth, ptoq “ ǫEjointppthq ` ζEphyppth, ptoq `

ηEtcppth, pt
o, pt´1

h , pt´1

o , pt´2

h , pt´2

o q , (3)

where Ejointp¨q denotes a prior on the hand pose to pre-

vent unnatural poses, Ephyp¨q is a physical plausibility term

ensuring the hand and the object do not interpenetrate,

and Etcp¨q is a temporal consistency term. The terms are

weighted by parameters ǫ, ζ and η.

We detail each of the terms in ED and EC below. For

simplicity, we omit the frame index t from our above nota-

tion except when necessary.

Silhouette discrepancy term Emask. The Emaskp¨q term

compares the silhouettes of the hand and the object mod-

els rendered with the current estimated poses and their seg-

mentation masks. We obtain a segmentation ScpIq of the

hand and the object in the color image I of camera c using

DeepLabv3 [10] trained on images created by synthetically

over-laying and under-laying images of hands on YCB ob-

jects. More details about this step are given in the supple-

mentary material. The hand and object models are rendered

on the camera plane using a differentiable renderer [20],

which enables computing the derivatives of Emask with re-

spect to the pose parameters. The silhouette of the hand and

object rendered on camera c is denoted by RScpph, poq and

the silhouette discrepancy is defined as,

EmaskpIc, ph, poq “ ‖RScpph, poq ´ SpIcq‖2 . (4)



Depth residual term Edpt. The depth residual term is

similar to the segmentation discrepancy term:

EdptpDc, ph, poq “ Tukeyp‖RDcpph, poq ´ Dc‖q , (5)

where RDcpph, poq is the depth rendering of the hand and

the object under their current estimated poses ph and po. The

Tukey function is a robust estimator that is similar to the ℓ2
loss close to 0, and constant after a threshold. It is useful to

be robust to small deviations in the scale and shape of the

hand and object models and also noise in the captured depth

maps. Edpt is differentiable as we employ a differentiable

renderer [20] for rendering the depth maps.

2D Joint error term Ej2D. The 2D joint error term is

defined as,

Ej2DpIc, phq “
21
ÿ

i“1

hris
∥

∥

∥
projcpJph

risq ´ Kcris
∥

∥

∥

2

, (6)

where Jph
ris denotes the ith 3D hand joint location under

pose ph, the projcp¨q operator projects it onto camera c,

Kcris is its predicted 2D location, and hris its confidence.

The 21 hand joints in Ej2Dp¨q consist of 15 finger joints, 5

finger tips, and the wrist joint.

In practice, we take the Kcris as the locations of the max-

imum values of heatmaps, and the hris as the maximum

values themselves. To predict these heatmaps, we trained

a CNN based on the architecture of [68]. Training data

come from an initial dataset [18] we created using a semi-

automatic method. This dataset is made of 15,000 frames

from 15 sequences in a single camera setup. We manually

initialized the grasp pose and object pose for the first frame

of each sequence. The manipulators were asked to maintain

their grasp poses as rigid as possible to make the registration

easier. We then ran the optimization stages for the single

camera case described in Section 4.2. After optimization,

we augmented the resulting dataset by scaling and rotating

the images, and adding images from the Panoptic Studio

dataset [69], which contain 3D annotations for hands.

3D error term E3D. This term is not absolutely neces-

sary as the depth information from all the cameras is already

exploited by Edpt, however it accelerates the convergence by

guiding the optimization towards the minimum even from

far away. We build a point cloud P by merging the depth

maps from the RGB-D cameras after transforming them to

a common reference frame. More details on the point cloud

reconstruction can be found in the supplementary material.

We segment P into an object point cloud Po and a hand

point cloud Ph using the segmentation mask ScpIq in each

camera image. At each iteration of the optimization, for

each point Porjs of the object point cloud, we look for the

closest vertex Vorj˚s on the object mesh, and for each point

Phrks of the hand point cloud, we look for the closest vertex

Vhrk˚s on the hand mesh. E3DpP, ph, poq is then defined as,

ÿ

j

∥

∥Porjs ´ Vorj˚s
∥

∥

2
`
ÿ

k

∥

∥Phrks ´ Vhrk˚s
∥

∥

2
. (7)

Joint angle constraint Ejoint. This term imposes restric-

tions on the 15 joints of the hand to ensure the resulting pose

is natural. The three-dimensional rotation of a joint is pa-

rameterized using the axis-angle representation in MANO

model, resulting in 45 joint angle parameters. A common

solution when using MANO model is to optimize in the

PCA space of 3D joint angles with an ℓ2 regularizer [4, 76]

for pose coefficients. However, we observed in practice that

optimizing Eq. 1 in PCA space had less expressibility: some

of the complex grasp poses in our dataset could not be accu-

rately expressed in the PCA space, which was constructed

with relatively simpler grasp poses and free-hand gestures.

Instead, we optimize on joint angles directly and derive our

own limits for each of the 45 joint parameters (please refer

to supplementary material for these limits). As in [74], the

joint angle constraint term Ejointppthq is given by,

45
ÿ

i“1

maxpai ´ aris, 0q ` maxparis ´ ai, 0q , (8)

where aris denotes the ith joint angle parameter for pose ph,

and ai and ai correspond to its lower and upper limits.

Physical plausibility term Ephy. During optimization,

the hand model might penetrate the object model, which is

physically not possible. To avoid this, we add a repulsion

term that pushes the object and the hand apart if they in-

terpenetrate each other. For each hand vertex Vhrms, the

amount of penetration Γrms is taken as,

Γrms “ maxp´no

`

Vorm˚s
˘T `

Vhrms ´ Vorm˚s
˘

, 0q ,
(9)

where Vorm˚s is the vertex on object closest to hand vertex

Vhrms, and the nop¨q operator provides the normal vector

for a vertex. In words, the amount of penetration is esti-

mated by projecting the vector joining a hand vertex and

its nearest object vertex onto the normal vector at the ob-

ject vertex location. The physical plausibility term is then

defined as,

Ephyppth, ptoq “
ÿ

m

exp
`

w Γrms
˘

. (10)

We use w “ 5 in practice, and only a subsampled set of

vertices of the hand to compute Ephy efficiently.

Temporal consistency term Etc. The previous terms are

all applied to each frame independently. The temporal con-

sistency term Etc allows us to constrain together the poses



Grasp Pose Estimation Object Pose Estimation Multi-Frame Joint Hand-Object Pose 
Refinement

B
a
tc

h

 i

In
it

ia
li

za
ti

o
n

 
E

q
. 
(1

1
,1

2
)

Segmentation

RGB

Depth

Frame t
1

Frame t
2

Frame t
3

Frame t
4

Frame t Frame t+1 Frame t+2 Frame t+3

Single Camera Setup

Multi-Camera Setup

Eq. (13) Eq. (2), Eq. (1)

Camera 1 Camera 2 Camera 3 Camera 4

Single-Frame Hand-Object Pose 
Estimation

Frame t

Frame t+1

Frame t+2

Frame t+3

Multi-Frame Joint Hand-Object 
Pose Refinement

B
a
tc

h
 i

Eq. (1)Eq. (2,3)

Frame t+1

Frame t+2
Frame t+3

Frame t

Figure 2: The different stages of the multi-camera and single camera setups. See Section 4 for more details.

for all the frames. We apply a 0-th and 1-st order motion

model on both the hand and object poses:

Etcppth, pto, pt´1

h , pt´1
o , pt´2

h , pt´2
o q “

‖∆t
h‖

2 ` ‖∆t
o‖

2 ` ‖∆t
h ´ ∆t´1

h ‖2 ` ‖∆t
o ´ ∆t´1

o ‖2 ,

where ∆t
h “ pth ´pt´1

h and ∆t
o “ pto ´pt´1

o . Since we opti-

mize a sum of these terms over the sequence, this effectively

constrains all the poses together.

4. Optimization

Optimizing Eq. (1) is a challenging task, as it is a highly

non-convex problem with many parameters to estimate. We

therefore perform the optimization in multiple stages as

shown in Fig. 2. These stages are different for multi-camera

and single camera scenarios, and we detail them below.

4.1. Multi­Camera Setup

Initialization. In the multi-camera setup, we obtain a first

estimate p̃0

h for the hand pose in the first frame pt “ 0q as,

p̃0h “ argmin
ph

NC
ÿ

c“1

Ej2DpI0c , phq ` νEjointpphq . (11)

We use the Dogleg optimizer [12] to perform this optimiza-

tion. A first estimate p̃0o for the object pose in this frame

is obtained using [47] trained by synthetically over-laying

hands on YCB objects as explained in Section 3.2.

Single-frame joint pose optimization. We then obtain

estimates p̃th and p̃t
o for all the other frames (t “ 1..NF )

by tracking. We minimize
`

EDppth, ptoq ` ECppt
h, ptoq

˘

w.r.t.

pth and pto, using p̃t´1

h and p̃t´1

o for initialization.

Multi-frame joint pose optimization. We finally per-

form a full optimization of Eq. (1) w.r.t. pt
h and pto for

t “ 0..NF over all the frames simultaneously using es-

timates p̃th and p̃to for initialization. Due to memory con-

straints, we optimize Eq. (1) in batches instead of consider-

ing all the frames in sequence. We use a batch size of 20

frames with α “ 20, β “ 20, γ “ 5 ˆ 10´5, δ “ 50,

ǫ “ 100, ζ “ 50, and η “ 100, and the Adam optimizer

with learning rate of 0.01 for 100 iterations.

4.2. Single­Camera Setup

Initialization. In the single camera setup, as we assume

that the grasp pose varies marginally across the sequence,

we initially make the assumption that it remains constant

throughout the sequence. In order to account for the minor

changes which occur in practice, we relax this assumption

in the latter stages of the optimization. We thus obtain initial

estimates p̃th for the hand poses as,

tp̃thut “ arg min
tpt

h
ut

ÿ

t

Ej2DpIt, pthq ` νEjointppthq , (12)

where the joint angle parameters are constrained to be the

same over all the frames, and only the rotation and transla-

tion parameters for the wrist joint can be different. In prac-

tice, we perform this optimization only over a random sub-

set Ω of the frames to save time. We set ν “ 50, size of Ω to

20 and use the Dogleg optimizer [12]. First estimates p̃to for

the object poses in Ω are obtained as for the multi-camera

setup.

From the p̃t
h and the p̃t

o, we can compute the grasp pose

in the object coordinate system p̃t
h:o, which is assumed to be

constant at this stage. The initial estimate of the constant

grasp pose p̃h:o is taken as the average of tp̃th:outPΩ.

Grasp pose estimation. We obtain a better estimate of the

grasp pose p̂h:o and object poses p̂
t
o under fixed grasp pose



assumption as,

p̂h:o, tp̂
t
outPΩ “ argminph:o,tpto utPΩ

ř

tPΩ EDpfpto
pph:oq, ptoq`

ζEphypfpto
pph:oq, ptoq ` ǫEjointpph:oq,

(13)

wrt ph:o and pto over the frames in Ω, using p̃h:o and p̃to for

initialization. fpto
p¨q converts the grasp pose to the hand

pose in the world coordinate system given object pose pto.

This optimization accounts for the mutual occlusions be-

tween hand and object.

Object pose estimation. Having a good estimate p̂h:o for

the grasp pose, we obtain object pose estimates p̂
t
o for all the

frames by minimizing ED

`

fpto
pp̂h:oq, pt

o

˘

wrt pt
o over each

frame independently. We use p̂
t´1

o to initialize the optimiza-

tion over pt
o at frame t, except for p̂

0

o where p̃0o is used. Note

that the hand pose is not optimized in this stage.

Multi-frame joint hand+object pose refinement. In this

final stage, we allow variations in the grasp pose across

frames and introduce temporal constraints. We thus opti-

mize Eq. (1) w.r.t. tppt
h, ptoquNF

t“1
over all the frames simulta-

neously, using pose parameters p̂
t
o, p̂

t
h “ fp̂to

pp̂h:oq estimated

in the previous stages as initialization for pto and pt
h.

5. Monocular RGB based 3D Hand Pose

For establishing a baseline on our proposed dataset for

single RGB image based hand pose prediction, we use

a CNN architecture based on a Convolutional Pose Ma-

chine (CPM) [68] to predict the 2D hand joint locations

tkiui“1..21. In addition, we also predict the root-relative

hand joint directions tdiui“1..20, by adding an additional

stage at the end of the CPM and replacing the last layer with

a fully connected layer. More details on the architecture are

provided in the supplementary material. The 3D joint lo-

cations and shape parameters of the hand are then obtained

by fitting a MANO model to these predictions. The loss

function for this fitting procedure is:

21
ÿ

i“1

}k̂i ´ ki}
2 ` ρ

20
ÿ

i“1

`

1 ´ d̂i ¨ di
˘

` σEjointpphq ` τ}β}2 ,

(14)

where d̂i “
phri`1s´phr1s

}phri`1s´phr1s} , k̂i “ proj
`

Jph
ris
˘

and Ejoint is

defined in Eq. (8). We use ρ “ 10, σ “ 5, and τ “ 1.

6. Benchmarking HO-3D

In this section, we evaluate both our annotation method

and our baseline for hand pose prediction from a single

color image in hand+object interaction scenarios. We used

our 3D pose annotation method to annotate 68 sequences,

totalling 77,558 frames of 10 different users manipulating

one among 10 different objects from the YCB dataset. The

image sizes are 640ˆ480 pixels for both the color and depth

cameras, and we used 5 synchronized cameras in our multi-

camera setup. The cameras were synchronized with an ac-

curacy of 5ms.

6.1. Evaluation of the Annotation Method

For validating the accuracy of our annotation method,

we manually annotated the 3D locations of the 3D joints in

randomly selected frames of a sequence, by relying on the

consolidated point cloud from the 5 cameras. We then com-

pared these locations to the ones predicted with our method

(explained in Section 4.1) using the multi-camera setup.

As shown in the last column of Table 2, our method

achieves an average joint error accuracy of lower than 8mm

on average, with an Area Under the Curve metric (AUC) of

0.79. This metric is comparable with the results reported for

the recent FreiHAND dataset [76] (AUC=0.791). Note that

the occlusions in our dataset are higher due to larger objects

and that we do not use green screens.

To analyze the influence of the different terms in Eq. (1),

we run the optimization of Eq. (1) by enabling only a sub-

set of these terms, and report the results in Table 2. While

Esilh and Edpt terms alone cannot provide good pose esti-

mates, together they provide better estimates as it leads to

a loss function with less local minima. The E3D term pro-

vides a minor improvement in estimates but speeds up the

convergence. Though the physical plausibility term Ephy

does not help in improving the pose estimates, it results in

more natural grasps. The last two columns show the effect

of multi-frame based joint optimization compared to single-

frame based optimization when all the terms are considered.

The multi-frame multi-camera based optimization over all

the terms improves the accuracy by about 15%.

The accuracy of the single camera based annotation

method is calculated by considering the annotations from

the multi-camera method as ground truth for a given se-

quence. More specifically, for a sequence of 1000 frames,

we compute the average difference between hand+object

mesh vertices obtained from single and multi-camera se-

tups. Further, we calculate the accuracy after each stage of

the single-camera setup. The results are given in Table 3.

The estimated poses with these two methods are consistent

with each other with an average mesh error of 0.77cm and

0.45cm for hand and object, respectively. The final refine-

ment stage yields a 15% improvement in accuracy.

6.2. Evaluation of Hand Pose Prediction Method

We trained our single frame hand pose prediction method

explained in Section 5 on 66,034 frames from our HO-3D

dataset. We evaluated it on a test set of 13 sequences cap-

tured from different viewpoints and totaling 11,524 frames.

The test set sequences also contain subjects and objects not



Terms Initialization
Single-frame Optimization Multi-frame

Opt. (Eq. 1)Esilh Edpt Esilh ` Edpt Esilh ` Edpt ` E3D Esilh ` Edpt ` E3D ` Ephy Esilh ` Edpt ` E3D ` Ephy ` Etc

mean (std) 4.20 (˘3.32) 1.17 (˘1.12) 2.22 (˘1.22) 1.04 (˘0.43) 0.98 (˘0.40) 0.99 (˘0.40) 0.92 (˘0.34) 0.77 (˘0.29)

Table 2: Evaluation of the accuracy for the multi-camera setup. We report the average hand-joint errors (in cm) for different

combinations of the terms in Eq. (1). The final error is comparable to the recent FreiHAND dataset [76].

Stages Init. Grasp Pose Est. Object Pose Est. Refinement

Hand 5.40 3.60 0.91 0.77

Object 4.02 4.02 0.52 0.45

Table 3: Evaluation of the accuracy for the single-camera

setup. The accuracy (average mesh error in cm) is measured

at each stage of optimization by comparing with the anno-

tations from multi-camera setup. The results show that the

annotation quality of our single camera method is similar to

that of the multi-camera setup.

Method Mesh ErrorÓ F@5mmÒ F@15mmÒ Joint ErrorÓ

Joints2D 1.14 0.49 0.93 3.14

Joints2D + Dir. Vec. 1.06 0.51 0.94 3.04

[19] 1.10 0.46 0.93 3.18

Table 4: Evaluation of different methods for single frame

hand pose prediction. The Mesh Error (in cm) and F-

score are obtained after aligning the predicted meshes with

ground truth meshes. The Mean joint error (in cm) is ob-

tained after aligning the position of the root joint and over-

all scale with the ground truth. Hand pose prediction using

joint direction predictions along with 2D joint predictions

provides better accuracy than directly predicting the MANO

parameters as in [19].

present in the training set.

We report three different metrics from previous works:

Mean joint position error after aligning the position of the

root joint and global scale with ground truth [75]; Mesh

error measuring the average Euclidean distance between

predicted and ground truth mesh vertices [76]; and the F -

score [76], defined as the harmonic mean between recall

and precision between two meshes given a distance thresh-

old. The mesh error and F-score are obtained after aligning

the predicted meshes using Procrustes alignment with the

ground truth meshes and hence does not measure the ac-

curacy of wrist joint rotation. The mean joint error on the

other hand considers wrist joint location as the 3D points

are not rotated before evaluation.

To understand the effect of joint direction predictions on

the overall accuracy, we evaluate the results of the MANO

fitting by dropping the second term in Eq. (14). We also

compare our results with the hand branch of [19], a very

recent work that predicts the MANO pose and shape pa-

rameters directly from a single RGB image, retrained on

our dataset. As shown in Table 4, predicting joint direc-

tions along with 2D joint locations significantly improves

the hand pose estimation accuracy. It can also be inferred

that predicting 2D hand joint locations and fitting MANO

Figure 3: Qualitative results of our single color image hand

pose estimation method. It can recover hand poses even

when the hand is heavily occluded by objects and in clut-

tered scenes. The last row shows it can handle unseen ob-

jects.

model to them is more accurate than direct MANO param-

eter predictions as in [19]. Qualitative results are shown in

Fig. 3. The last row shows that our method robustly predicts

hand poses even when interacting with unknown objects.

7. Conclusion

We introduced a fully automatic method to annotate im-

ages of a hand manipulating an object with their 3D poses,

even under large occlusions, by exploiting temporal con-

sistency. We also introduced the first markerless dataset of

color images for benchmarking 3D hand+object pose esti-

mation. To demonstrate the usefulness of our dataset, we

proposed a method for predicting the 3D pose of the hand

from a single color image. Another future application is the

joint estimation of hand+object poses from a single RGB

frame.

The lack of high quality segmentations (we had to use

a synthetic dataset as explained in Section 3) of the hand

sometimes affects accuracy. Improving these segmentations

and/or introducing a attraction term and physics constraints

as in [54, 63] would further improve our annotations.
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S.1. Hand Pose Estimation from Single Color

Image

Fig. 4 shows the architecture of our hand pose estimator

from a single frame. Given an image of the hand centered

in the image window, we first extract features using the con-

volutional layers of VGG [53], and then similar to [9] using

a multi-stage CNN, we predict heatmaps for the 2D hand

joint locations and finally joint direction vectors with re-

spect to wrist joint. The hand detection can be done using

segmentation as described in Section S.6.

S.2. Hand Pose Estimation for Hand Interac-

tion with Unseen Objects

Knowing the objects in advance can help to improve the

performances of the estimated 3D hand pose while hand

interacts with objects, however, in practice, the hand can

manipulate any arbitrary objects. We have tested our hand

pose estimator trained on our annotations, and tested on se-

quences where a hand is manipulating objects not present in

the annotated images. As shown in Fig. 8, our pose estima-

tor performs well on these sequences.

S.3. Hand Shape Estimation

The MANO hand shape parameters β P R
10 were esti-

mated for each human manipulator in our HO-3D dataset.

The shape parameters are estimated from a sequence Φ of

hand only poses using a method similar to [58] in two steps.

More exactly, the pose of hand pth in the sequence is first

estimated for each frame t using a mean pose βmean as

p̂th “ argminph
EHpph, βmeanq, where,

EHpph, βmeanq “EDpph, βmeanq ` ǫEjointpphq` (15)

ηEtcpph, p
t´1

h , pt´2

h q.

EDpph, βmeanq represents the data term defined in Eq. 2 of

the paper where hand is rendered with pose parameters ph

Joint Index Middle Pinky Ring Thumb

MCP

(0.00, 0.45)

(-0.15, 0.20)

(0.10, 1.80)

(0.00, 0.00)

(-0.15, 0.15)

(0.10, 2.00)

(-1.50, -0.20)

(-0.15, 0.60)

(-0.10, 1.60)

(-0.50, -0.40)

(-0.25, 0.10)

(0.10, 1.80)

(0.00, 2.00)

(-0.83, 0.66)

(0.00, 0.50)

PIP

(-0.30, 0.20)

(0.00, 0.00)

(0.00, 0.20)

(-0.50, -0.20)

(0.00, 0.00)

(0.00, 2.00)

(0.00, 0.00)

(-0.50, 0.60)

(0.00, 2.00)

(-0.40, -0.20)

(0.00, 0.00)

(0.00, 2.00)

(-0.15, 1.60)

(0.00, 0.00)

(0.00, 0.50)

DIP

(0.00, 0.00)

(0.00, 0.00)

(0.00, 1.25)

(0.00, 0.00)

(0.00, 0.00)

(0.00, 1.25)

(0.00, 0.00)

(0.00, 0.00)

(0.00, 1.25)

(0.00, 0.00)

(0.00, 0.00)

(0.00, 1.25)

(0.00, 0.00)

(-0.50, 0.00)

(-1.57, 1.08)

Table 5: Empirically derived minimum and maximum val-

ues for the joint angle parameters used in our implementa-

tion.

and shape parameters βmean. Ejoint and Etc are explained

in Section 3.2 of the paper. At each frame, the pose param-

eters are initialized with pt´1

h . The personalized hand shape

parameters are then obtained as,

β˚ “ argminβ

ÿ

tPΦ

min
pt

h

EHppth, βq, (16)

where the pose parameters are initialized with the values

obtain in the first step (p̂th).

S.4. Joint Angle Constraints

The maximum and minimum limits on the joint angle pa-

rameters used in Eq. (8) of the paper are provided in Table 5.

S.5. Point Cloud from Multiple Cameras

The E3D term in Section 3.2 of the paper uses the com-

bined point cloud P from all the RGB-D cameras. Let

Pc denote the point cloud corresponding to camera c and

Mc1,c2 denote the relative pose between two cameras c1 and

c2. The consolidated point cloud P is then obtained as,

P “ rP0, Mc1,c0 ¨P1, Mc2,c0 ¨P2, ..., McN ,c0 ¨PN s , (17)

where r¨, ¨s represents concatenation of point clouds.
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Figure 4: Architecture of our hand pose estimator from a single color image. Given an input image of hand centered in the

image, we extract the features using the convolutional layers of VGG [53] (Conv1 1 to Conv4 4). Similarly to [9], we then

predict heatmaps for the joint locations in multi-stages. The architecture for the different stages are all the same. C denotes

a convolutional layer with the number of filters and the filter size inscribed; FC, a fully-connected layer with the number of

neurons; P and AP denote max-pooling and average pooling with their sizes, respectively.

Figure 5: Synthetic training images used for training the

hand-object segmentation network.

Figure 6: Example of hand and object segmentation ob-

tained with DeepLabV3. Left: input image; Right: hand

(green) and object (purple) segmentation.

S.6. Hand-Object Segmentation Network

The segmentation maps for the hand and object are ob-

tained from a DeepLabV3 [10] network trained on synthetic

images of hand and objects. The synthetic images are ob-

tained by over-laying and under-laying images of hands on

images of objects at random locations and scales. We use

the object masks provided by [1]. The segmented hands

were obtained using an RGB-D camera by applying simple

depth thresholding. We also use additional synthetic hand

images from the RHD dataset [75]. A few example images

from the training data are shown in Fig. 5. We use 100K

training images with augmentations. Fig. 6 shows segmen-

tation of hand and object using the trained DeepLabV3 net-

work.

S.7. Automatic Initialization

Figure 7: Accuracy of keypoint prediction, described

in Section 3.2 of the paper when trained with PAN [22]

dataset alone and PAN + our annotations. The accuracy

is measured in percentage of correct 2D keypoints given a

threshold. Only 15,000 images from our HO-3D dataset are

used in training. Due to the presence of object occlusions,

a network trained on hands-only dataset is less accurate in

predicting keypoints when compared with a network trained

with hand+object data.

As explained in Section 4.1 of the paper, a keypoint pre-

diction network based on convolutional pose machine [68]

is used to obtain initialization for hand poses. Such a

network is trained with our initial hand+object dataset

of 15,000 images together with images from hand-only

PAN [22] dataset. Fig. 7 compares the accuracy of network

in predicting keypoints in hand-object interaction scenar-

ios when trained with hands-only dataset and hands+object

dataset. Our initial HO-3D dataset helps in obtaining a more

accurate network for predicting keypoints and hence results

in better initialization.



S.8. Dataset Details

We annotated 77,558 frames of 68 sequences hand-

object interaction of 10 persons with different hand shape.

On average there are 1200 frames per sequences. 16 se-

quences are captured and annotated in a single camera, and

52 sequences for the multi-camera setup.

Hand+Object. The participants are asked to perform ac-

tions with objects. The grasp poses vary between frames

in a sequence in the multi-camera setup and remain almost

rigid in the single camera setup.

Participants. The participants are between 20 and 40

years old, 7 of them are males and 3 are females. In total,

10 hand shapes are considered for the annotations.

Objects. We aimed to choose 10 different objects from

the YCB dataset [70] that are used in daily life. As shown

in Fig. 11, we have a wide variety of sizes such as large

objects (e.g. Bleach) that cause large hand occlusion, or

the objects that make grasping and manipulation difficult

(e.g. Scissors), while these are not the case in the existing

hand+object datasets.

Multi-Camera Setup. We use 5 calibrated RGB-D cam-

eras, in our multi-camera setup. The cameras are located

at different angles and locations. Our cameras are syn-

chronized with a precision of about 5 ms. The scenes are

cluttered with objects, and the backgrounds vary between

scenes.

Figs. 9 and 10 show some examples of the 3D annotated

frames for both hand and object from our proposed dataset,

HO-3D.
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Figure 9: Some examples of the 3D annotated frames for both hand and object from our proposed dataset, HO-3D.
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Figure 10: Some examples of the 3D annotated frames for both hand and object from our proposed dataset, HO-3D.
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