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Abstract

We show that the simultaneous estimation of keypoint identities and poses is

more reliable than the two separate steps undertaken by previous approaches.

A simple linear classifier coupled with linear predictors trained during a

learning phase appears to be sufficient for this task. The retrieved poses are

subpixel accurate due to the linear predictors. We demonstrate the advantages

of our approach on real-time 3D object detection and tracking applications.

Thanks to the high accuracy, one single keypoint is often enough to precisely

estimate the object pose. As a result, we can deal in real-time with objects

that are significantly less textured than the ones required by state-of-the-art

methods.

1 Introduction

Retrieving the poses of keypoints in addition to matching them is an essential task in many

applications such as vision-based robot localization [2], object recognition [10] or image

retrieval [9] to constrain the problem at hand. It is usually done by decoupling the match-

ing process from the keypoint pose estimation: The standard approach first uses some ad

hoc affine region detectors and then relies on SIFT descriptors on the rectified regions to

match the points. Since this process is conditioned by the detector, it is not possible to

recover from incorrect detections. In our recent work [3], we proceeded the other way

around: We first retrieved the keypoint identities using Ferns-based classifiers [8], and

then we estimated their pose. While it improves the performances in terms of both speed

and reliability when a training phase is possible, it is still vulnerable to errors made in

one of the two steps. In this paper, we show that simultaneously matching the keypoints

and estimating their poses makes the problem simpler, and is therefore a more reliable

approach. As a result, a simple and fast linear classifier coupled with linear predictors is
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Figure 1: Overview of our approach. (a) Given a training image, we train a linear classifier

to recognize patches and predict their transformation. (b) The results are very accurate

and mostly exempt of outliers. Note we get the full perspective pose, and not only an affine

transformation. (c) Comparison of the percentages of patches correctly retrieved by our

previous approach and by the approach proposed in this paper. The new approach always

performs better. (d) Compared to affine region detectors-based method, our approach

is both more reliable and more accurate. On the images we superimpose the original

patches warped by the ground truth homography (yellow) with the result of Panter (blue).

(e) Even after zooming the errors of Panter are barely visible. (f) For comparison, we

show the results obtained with the MSER detector.

sufficient to handle the problem. Since there is time to train the system for a large class

of applications, we first build such a linear classifier and a set of linear predictors during

a training phase. The classifier generates hypothesis of both the keypoint identities and

the poses which the linear predictors refine. This enables us to retrieve the correct patch

identity and pose with some simple correlation measurements. As Fig. 1 shows, it out-

performs our previous approach, which has already been shown to be better than affine

region detectors-based approaches. In our problem, the classes are made of a keypoint

identity and a quantized pose. The linear classifier is able to provide a very small number

of predictions for a given patch. We select the correct one with a few correlation tests

taking into account the refined pose output of the linear predictors. The output consists of

reliable matches and accurate pose estimates. The poses are represented by full perspec-

tive transformations that are very useful for object detection applications: Such a pose

of a single keypoint is often enough to estimate the 3–D pose of the object the keypoint

belongs to. As a result, we can handle very poorly textured objects. In the remainder of

the paper, we first discuss related work on affine region detectors. Then, we describe our

method, and compare it against state-of-the-art ones. Finally, we present an application

of tracking-by-detection using our method.



2 Related Work

Affine region detectors are very attractive for many applications since they allow getting

rid of most of the image warpings due to perspective transformations. Many different

approaches have been proposed and [6] showed that the Hessian-Affine detector of Miko-

lajczyk and Schmid and the MSER detector of Matas et al. are the most reliable ones. In

the case of the Hessian-Affine detector, the retrieved affine transformation is based on the

image second moment matrix. It normalizes the region up to a rotation, which can then

be estimated based on the dominant gradient orientation of the corrected patch. This im-

plies using an ad hoc method, such as considering the peaks of the histogram of gradient

orientations over the patch as in SIFT [5]. However, applying this heuristics on a warped

patch tends to make it relatively unstable. In the case of the MSER detector, many differ-

ent approaches exploiting the region shape are also possible [7], and a common approach

is to compute the transformation from the region covariance matrix and solve for the re-

maining degree of freedom using local maximums of curvature and bitangents. After

normalization, SIFT descriptors are computed in order to match the regions. The method

we proposed in [3] performs the other way around: We first get the identity of the patch

and then a coarse pose using a method close to [8]. Then, we apply a dedicated linear pre-

dictor to the patch in order to retrieve a fine perspective transformation. As [3] showed,

this method performs better than previously proposed ones mainly because it can make

use of a training phase. However, we give in this paper a new approach that outperforms

this early method. We still use linear predictors to refine the poses because they perform

well at this task. The main contribution is to show that a combination of a simple linear

classifier coupled with linear predictors can simultaneously retrieve a keypoint identity

and pose, and that it outperforms previous methods.

3 Proposed Approach

Given an image patch, we want to match it against a database of possible patches defined

around keypoints in reference images, and accurately estimate its pose, represented by

a homography. A linear classifier gives us a set of hypotheses on the identity of the

corresponding patch and the pose. We then select the correct one by refining the pose

using linear predictors and comparing the rectified patch and the predicted ones with

normalized cross-correlation. The classification step requires the quantization of the pose

space, and because a careful quantization method significantly improves the result, we

also describe our quantization method here.

3.1 Linear Classification

The classification step applies a matrix A to a vector p that contains the intensities of the

patch we want to recognize:

A⊤p = y . (1)

The result y will give us a set of hypotheses. Each row ai, j of A corresponds to a pair

made of a patch of index i in the database, and a quantized homography of index j with

j = 1, ...,L where in practice L ≈ 1700. Matrix A is built so that the corresponding values

yi, j are large when it is very likely that patch p corresponds to the ith keypoint seen under
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Figure 2: Comparison of the classification results obtained with the two strategies to

estimate A, when the viewpoint angle increases. (a) shows the convergence rate for

the first strategy with 5, 10 and 15 patches. (b) shows the convergence rate for the

second strategy. The more patches one want to recover the more not considering the other

keypoints makes the linear classifier work significantly better.

the jth pose. When it is very unlikely, yi, j has a large absolute value but is negative. To be

robust to light changes, we normalize the patches by subtracting the mean and dividing

by the standard deviation. For each possible corresponding keypoint of index i, we create

a set of hypotheses Γi made of the pose indices j for which yi, j are the largest. In practice,

we retain 20 hypotheses for each possible patch. The next subsection explains how we

select the correct hypotheses. We now detail how we compute A. A is computed during

a learning phase using a training set generated from one or a few reference images of the

keypoints to recognize. This training set is made of patches represented as pi, j,k vectors,

where i is the index of the corresponding keypoint, j the index of the pose, and k the index

of the training patch. We tried two different strategies to compute A. As Fig. 2 shows, the

second one works significantly better. In the first strategy, each row a⊤i, j of A is estimated

as the best solution in the least-squares sense of the optimization problem:

∀i′, j′, k a⊤i, j . pi′, j′,k =

{
+1 if i = i′ and j = j′

−1 otherwise
. (2)

Here ai, j contains the parameters of an hyperplane supposed to separate positive examples

defined as the patches for a given keypoint i seen in a given pose j from negative examples

defined as all the other examples for the same keypoint under other poses and also for

the other keypoints. As Fig. 2(a) depicts, this problem seems too complex for a linear

classifier, and we tried a simpler version in the second strategy. In the second strategy, the

negative examples come only from the same keypoint, under different poses. ai, j is now

taken as the solution of the problem:

∀ j′, k a⊤i, j . pi, j′,k =

{
+1 if j = j′

−1 otherwise
. (3)

This approach works better because this problem is less constrained. The next step will

select the correct hypothesis anyway. Because there are much less positive examples than



negative ones, we give a weight w = N−1 to the positive examples equations, where N is

the number of possible poses, and a weight of 1 to the negative examples equations. The

row vector ai, j can therefore be computed as:

ai, j =
(

PWW⊤P⊤

)−1

PWW⊤y , (4)

where P is a matrix made of the patches column vectors pi′, j′,k, y is a row vector made

of +1 and -1 values computed as in Eq. (3), and W is a diagonal matrix containing the

equations weights. In practice, y and P are large and computing ai, j directly using Eq. (4)

can become heavy. We therefore decompose its computation into:

ai, j =
(
[P1 . . .PL][w2

1P1 . . .w2
LPL]⊤

)−1 (
[w2

1P1 . . .w2
LPL][y1 . . .yL]⊤

)

=
(
∑l w2

l PlP
⊤
l

)−1 (
∑l ylw

2
l Pl

)
.

(5)

Because the two terms of the products can be computed incrementally, this form can be

computed without the full training set present in the computer memory.

3.2 Best Hypothesis Selection

For a given input patch p, and for each keypoint in the database, the previous step gives

us a list Γ of possible pose indices. We select for each keypoint i the best pose j that max-

imizes the normalized cross-correlation between p and the mean of the training examples

of keypoint i under pose j. Since the patch intensities are already normalized, this can be

written as looking for:

∀i : argmax
j ∈ Γi

p⊤.pi, j , (6)

where pi, j is computed as:

pi, j =
1

K

K

∑
k=1

pi, j,k . (7)

Thus, for each keypoint i, we get the best quantized pose Ĥi.

3.3 Final Keypoint Selection and Pose Extraction

For each best hypothesis consisting of keypoint i and the best quantized homography

Ĥi, we use the hyperplane approximation of [4] to obtain an estimate of the corrective

homography parameters xi using the following equation:

xi = Bi

(
p(Ĥi)−p∗

i

)
, (8)

• where Bi is the matrix of our linear predictor that depends on the patch identity i;

• p(Ĥi) is a vector that contains the intensities of the original patch p warped by the

current estimate Ĥi of the transformation.

• p∗
i is a vector that contains the intensity values of the reference patch, which is the

image patch centered on the keypoint i in a reference image.
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Figure 3: Homography space sampling using almost regular polyhedrons. Left: The red

dots represent the vertices of an (almost) regular polyhedron generated by our recursive

decomposition and centered on a planar patch. The sampled directions of views are given

by vectors starting from one of the vertices and pointing toward the patch center. The

green arrow is an example of such a vector. Right: The initial icosahedron and the result

of the first triangle substitution.

Based on the algorithm proposed in [4], iteratively refining Ĥi allows us to obtain the

refined homography Ĥi,final. Finally, thanks to the high accuracy of the retrieved transfor-

mation, we can select the correct pair of keypoint i and pose Ĥi,final based on the normal-

ized cross-correlation between the reference patch p∗
i and the warped patch. The selection

is done by

argmax
i

p∗
i
⊤
·p(Ĥi,final) , (9)

Furthermore, we also use a threshold τNCC = 0.9 to remove wrong matches. Thus, each

patch p(Ĥi,final) that gives the maximum similarity score, which exceeds τNCC at the same

time, yields an accepted match.

3.4 Homography Space Quantization

We still have to explain how we quantize the homography space. This is done based on

the formula:

H = K

(
∆R+

δ t ·n⊤

d

)
K−1 , (10)

which is the expression of the homography H relating two views of a 3–D plane, where K

is the matrix of the camera internal parameters, [n⊤, d]⊤ the parameters of the plane in the

first view, and ∆R and δ t the camera displacement between the two views. For simplifica-

tion, we assume we have a frontal view of the reference patches. We first tried discretizing

the motion between the views by simply discretizing the rotation angles around the three

axes. However, for the linear predictors of Eq. (8) to work well, they must be initialized

as close as possible to the correct solution, and we provide another solution that improves

their convergence rates. As shown by the left image of Fig. 3, we found that the vertices of

(almost) regular polyhedrons provide a more regular sampling that is useful to discretize

the angle the second view in Eq. (10) makes with the patch plane. Unfortunately, there

exists only a few convex regular polyhedrons - the Platonic solids - with the icosahedron

the one with the largest number of vertices, 12. As the right image of Fig. 3 illustrates, we
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Figure 4: Comparison with Ferns [8] on two different data sets (a): the stop sign of Fig. 1

and (b): the ICCV logo of Fig. 5. In each graph, we plot the percentage of correctly

matched keypoints against the view angle. Panter is always performing better than Ferns.

obtain a finer sampling by recursively substituting each triangle into four almost equilat-

eral triangles. The vertices of the created polyhedron give us the two out-of-plane rotation

angles for the sampled pose, that is around the x- and y-axes of Fig. 3. We discretize the

in-plane rotation angle to cover the 360◦ range with 10◦ steps. We still have to sample the

scale changes. For that, we simply fix the translation and the plane equation but multiply

the homography matrix obtained with Eq. (10) by a scaling matrix to cover three different

scale levels 1/2, 1, 2.

4 Experimental Validation

In this section, we compare our method that we call Panter against Ferns, and our previous

method named Leopar. We don’t compare here against affine region detectors but Leopar

was shown to outperform them in [3] and our new method improves upon Leopar. We

also present an application to tracking-by-detection and discuss computation times.

4.1 Comparison with Ferns

In Fig. 4, we compare our method that we call Panter against Ferns [8] since they are also

based on a learning phase. The two graphs plot the percentage of correctly matched key-

points against the viewpoint angle with the object plane, for different databases. The two

methods were trained using the same data set. For the experimental results we randomly

generated 1000 test images for each viewpoint adding artificial noise and illumination

changes. Panter always outperforms the Ferns, particularly for large viewpoint angles.

4.2 Comparison with Leopar

Fig. 5 shows the convergence results on three different data sets of the Leopar method [3]

and Panter. Here again, Panter outperforms Leopar in particular for large viewpoint an-

gles. We compared the percentage of keypoints for which the refinement given by Eq. (8)



correctly converged, when using the complete method, and when initializing the pose ex-

traction and refinement with the correct keypoint position and identity. This is helpful

to show the contributions of Panter with respect to different aspects. On the one hand

side we show the improvements of Panter compared to Leopar considering the whole ap-

proach. On the other hand side we show only the improved ability of Panter to extract and

to refine the right pose given the correct classification of the keypoint identity and its exact

position. Improvements only due to the better pose extraction technique can be seen from

the gap between the ’rectification-only’ curves. Improvements due to the simultaneous

classification and the selection among several hypotheses can be seen between the curves

for the complete recovery of Panter and Leopar. The performances of Panter for the com-

plete method are almost as good as when the correct keypoint identity and position are

provided. Fig. 6 illustrates these comparison results. In practice, Panter always recovers

more keypoints in particular under drastic pose changes.

4.3 Application and Computation Times

In Fig. 7, we apply our method to object detection and pose estimation using a low-

quality camera. the method is robust and accurate even in presence of drastic perspective

changes, light changes, blur, occlusion, and deformations. We initialized the template

matching ESM algorithm [1] with the estimated pose for one of the keypoints to estimate

the stop sign pose. Our current implementation runs at about 10 frames per second using

7 keypoints in the database and 50 candidate keypoints in the input image, on a standard

notebook with an Intel Centrino Processor Core2Duo with 2.4GHz and 3GB RAM. Due

to its robustness, it is enough to detect the target object and to estimate its pose reliably.

5 Conclusion

We showed in this paper that the simultaneous estimation of keypoint identities and poses
is more reliable than the two separate steps undertaken consecutively and that simple
linear classifiers and linear predictors are able to solve this task. This results in a highly
robust method that is additionally fast, subpixel accurate due to its converging abilities.
We demonstrated our approach on simple tracking-by-detection applications and showed
in exhaustive experiments the improved performance compared to previous state-of-the-
art methods. Thanks to the simplicity of our new approach, many other applications
as robot localization, object recognition or image retrieval can benefit from its superior
performance.
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