
Dominant Orientation Templates for Real-Time Detection of Texture-Less Objects

Stefan Hinterstoisser1, Vincent Lepetit2, Slobodan Ilic1, Pascal Fua2, Nassir Navab1

1Department of Computer Science, CAMP, Technische Universität München (TUM), Germany
2École Polytechnique Fédérale de Lausanne (EPFL), Computer Vision Laboratory, Switzerland

{hinterst,slobodan.ilic,navab}@in.tum.de, {vincent.lepetit,pascal.fua}@epfl.ch

Abstract

We present a method for real-time 3D object detection

that does not require a time consuming training stage, and

can handle untextured objects. At its core, is a novel tem-

plate representation that is designed to be robust to small

image transformations. This robustness based on dominant

gradient orientations lets us test only a small subset of all

possible pixel locations when parsing the image, and to rep-

resent a 3D object with a limited set of templates. We show

that together with a binary representation that makes eval-

uation very fast and a branch-and-bound approach to effi-

ciently scan the image, it can detect untextured objects in

complex situations and provide their 3D pose in real-time.

1. Introduction

Currently, the dominant approach to object recognition

is to use statistical learning to build a classifier offline, and

then to use it at run-time for the recognition [17]. This

works remarkably well but is not applicable for all scenar-

ios, for example, a system that has to continuously learn

new objects online. It is then difficult, or even impossible,

to update the classifier without losing efficiency.

To overcome this problem, we propose an approach

based on real-time template recognition. With such a tool

at hand, it is then trivial and virtually instantaneous to learn

new incoming objects by simply adding new templates to

the database while simultaneously maintaining reliable real-

time recognition.

However, we also wish to keep the advantages of statis-

tical methods, as they learn how to reject unpromising im-

age locations very quickly, which increases their real-time

performance considerably. They can also be very robust,

because they can generalize well from the training set. For

these reasons, we also designed our template representation

based on some fast to compute image statistics that provide

invariance to small translations and deformations, which in

turn allows us to quickly yet reliably search the image.

Figure 1. Overview. Our templates can detect non-textured objects

over cluttered background in real-time without relying on feature

point detection. Adding new objects is fast and easy, as it can be

done online without the need for an initial training set. Only a few

templates are required to cover all appearances of the objects.

As shown in Figure 1, in this paper we propose a tem-

plate representation that is invariant enough to make search

in the images very fast and generalizes well. As a result, we

can almost instantaneously learn new objects and recognize

them in real-time without requiring much time for training

or any feature point detection at runtime.

Our representation is related to the Histograms-of-

Gradients (HoG) based representation [1] that has proved to

generalize well. Instead of local histograms, it relies on lo-

cally dominant orientations, and is made explicitly invariant

to small translations. Our experiments show it is in practice

at least as discriminant as HoG, while being much faster.

Because it is explicitly made invariant to small translations,

we can skip many locations while parsing the images with-

out the risk of missing the targets. Moreover we developed

a bit-coding method inspired by [16] to evaluate an image

location for the presence of a template. It mostly uses sim-

ple bit-wise operations, and is therefore very fast on modern

CPUs. Our similarity measure also fulfills the requirements

for recent branch-and-bound exploration techniques [10],

1

speeding-up the search even more.

In the remainder of the paper we first discuss related

work before we explain our template representation and

how similarity can be evaluated very fast. We then show

quantitative experiments and real world applications of our

method.

2. Related Work

Template Matching is attractive for object detection be-

cause of its simplicity and its capability to handle different

types of objects. It neither needs a large training set nor a

time-consuming training stage, and can handle low-textured

objects, which are, for example, difficult to detect with fea-

ture points-based methods.

An early approach to Template Matching [13] and its

extension [3] include the use of the Chamfer distance be-

tween the template and the input image contours as a dis-

similarity measure. This distance can efficiently be com-

puted using the image Distance Transform (DT). It tends

to generate many false positives, but [13] shows that taking

the orientations into account drastically reduces the num-

ber of false positives. [9] is also based on the Distance

Transform, however, it is invariant to scale changes and ro-

bust enough against perspective distortions to do real-time

matching. Unfortunately, it is restricted to objects with

closed contours, which are not always available.

But the main weakness of all Distance Transform-based

methods is the need to extract contour points, using Canny

method for example, and this stage is relatively fragile. It

is sensitive to illumination changes, noise and blur. For in-

stance, if the image contrast is lowered, contours on the ob-

ject may not be detected and the detection will fail.

The method proposed in [15] tries to overcome these lim-

itations by considering the image gradients in contrast to

the image contours. It relies on the dot product as a sim-

ilarity measure between the template gradients and those

in the image. Unfortunately, this measure rapidly declines

with the distance to the object location, or when the ob-

ject appearance is even slightly distorted. As a result, the

similarity measure must be evaluated densely, and with

many templates to handle appearance variations, making

the method computationally costly. Using image pyramids

provides some speed improvements, however, fine but im-

portant structures tend to be lost if one does not carefully

sample the scale space.

Histogram of Gradients [1] is another very popular

method. It describes the local distributions of image gra-

dients as computed on a regular grid. It has proven to give

reliable results but tends to be slow due to the computational

complexity.

Recently, [2] proposed a learning-based method that rec-

ognizes objects via a Hough-style voting scheme with a

non-rigid shape matcher on the contour image. It relies on

statistical methods to learn the model from few images that

are only constraint with a bounding box around the object.

While giving very good classification results, the approach

is neither appropriate for object tracking in real-time due

to its expensive computation nor it is exact enough to re-

turn the correct pose of the object. Moreover, it holds all

the disadvantages of Distance Transform based methods as

mentioned previously.

Grabner and Bischof [4, 5] developed another learning

based approach that put more focus on online learning.

In [4, 5] it is shown how a classifier can be trained online in

real-time, with a training set generated automatically. How-

ever, [4] was demonstrated on textured objects, and [5] can-

not provide the object pose.

The method proposed in this paper has the strength of

the similarity measure of [15], the robustness of [1] and the

online learning capability of [4, 5]. In addition, by binariz-

ing the template representation and using a recent branch-

and-bound method of [10] our method becomes very fast,

making possible the detection of untextured 3D objects in

real-time.

3. Proposed Approach

In this section, we describe our Dominant Orientation

Templates, and how they can be built and used to parse im-

ages to quickly find objects. We will start by deriving our

similarity measure, emphasizing the contributions of each

aspect of it. We then show how to use a binary representa-

tion to compute the similarity using efficient bit-wise opera-

tions. We finally demonstrate how to use it within a branch-

and-bound exploration of the image.

3.1. Initial Similarity Measure

Our starting idea is to measure the similarity between

an input image I, and a reference image O of an object

centered on a location c in the image I by comparing the

orientations of their gradients.

We chose to consider image gradients because they

proved to be more discriminant than other forms of repre-

sentations [11, 15] and are robust to illumination change

and noise. For even more robustness to such changes,

we use their magnitudes only to retain the orientations of

the strongest gradients, without using their actual values

for matching. Also, to correctly handle object occluding

boundaries, we consider only the orientations of the gradi-

ents, by contrast with their directions (two vectors with a

180deg angle between them have the same orientation).. In

this way, the measure will not be affected if the object is

over a dark background, or a bright background. Moreover,

as in SIFT or HoG [1], we discretize the orientations to a

small number no of integer values.

Our initial energy function E1 counts how many orienta-

tions are similar between the image and the template cen-

tered on location c, and can be formalized as:

E1(I,O, c) =
∑

r

δ
(

ori(I, c + r) = ori(O, r)
)

, (1)

where

• δ(P) is a binary function that returns 1 if P is true, 0

otherwise;

• ori(O, r) is the discretized gradient orientation in the

reference image O at location r which parses the tem-

plate. Similarly, ori(I, c+r) is the discretized gradient

orientation at c shifted by r in the input image I.

3.2. Robustness to Small Deformations

To make our measure tolerant to small deformations, and

also to make it faster to compute, we will not consider all

possible locations, and will decompose the two images into

small squared regions R over a regular grid. For each

region, we will consider only the dominant orientations.

Such an approach is similar to the HMAX pooling mech-

anism [14]. Our similarity measure can now be modified

as:

E2(I,O, c) =
∑

R in O

δ
(

do(I, c + R) ∈ DO(O,R)
)

, (2)

where DO(O,R) returns the set of orientations of the

strongest gradients in region R of the object reference im-

age. In contrast, do(I, c + R) returns only one orienta-

tion, the orientation of the strongest gradient in the region

R shifted by c in the input image.

The reason why we chose each region in O to be repre-

sented by the strongest gradients is that the strongest gra-

dients are easy and fast to identify and very robust to noise

and illumination change. Moreover, to describe uniform re-

gions, we introduce the symbol ⊥ to indicate that no reliable

gradient information is available for the region. The DO(.)
function therefore returns either a set of discretized gradi-

ent orientations of the k strongest gradients in the range of

[0, no − 1] or {⊥}, and can be formally written as:

DO(O,R) =

{

S(O,R) if S(O,R) 6= ∅,
{⊥} otherwise

(3)

with

S(O,R) = {ori (O, l) : l ∈ maxmag
k
(R) ∧ mag(O, l) > τ}

(4)

where

• l is a pixel location in R,

• ori(O, l) is the gradient orientation at l in image O,

and mag(O, l) its magnitude,

..
.

...

...

Image

Region
 R

t

t

L(O,R
1,1

)

cy

cx

c

 c+R 1,2

 c+R 2,1

mismatched
orientation

dominant template
orientation

matched
orientation

Template

dominant image
orientation

Figure 2. Similarity measure E4. Our final energy measure E4

counts how many times a local dominant orientation for a region

R in the image belongs to the corresponding precomputed list of

orientations L(O,R) for the corresponding template region. Each

list is made of the local dominant orientations that are in the region

R when the object template is slightly translated.

• maxmag
k
(R) is the set of locations for the k strongest

gradients in R. In practice we take k = 7 but the

choice of k does not seem critical.

• τ is a threshold on the gradient magnitudes to decide

if the region is uniform or not.

The function do(I, c+R) is computed similarly in the input

image I. However, to be faster at runtime, in do(I, c +R),
k is restricted to 1, and therefore do(I, c + R) returns only

one single element.

3.3. Invariance to Small Translation

We will now explicitly make our similarity measure in-

variant to small motions. In this way, we will be able to

consider only a limited number of locations c when parsing

an image and save a significant amount of time without in-

creasing the chance of missing the target object. To do so,

we consider a measure that returns the maximal value of E2

when the object is slightly moved, which can be written as:

E3(I,O, c) = max
M∈M

E2(I,w(O, M), c)

= max
M∈M

∑

R in O

δ
(

do(I, c + R) ∈ DO(w(O, M),R)
)

,

(5)

where w(O, M) is the image O of the object warped using

a transformation M . In practice, we consider for M only

2D translations as it appears sufficient to handle other small

deformations, and M is the set of all (small) translations in

the range [−t; +t]2.

There is of course a limit for the range t. A large t will

result in high speed-up but also in a loss of discriminative

power of the function. In practice, we found that t = 7 for

640 × 480 images is a good trade-off.

3.4. Ignoring the Dependence between Regions

Our last step is to ignore the dependence between the

different regions R. This will simplify and significantly

speed-up the computation of the similarity. We therefore

approximate E3 as given in Eq.(5) by:

E4(I,O, c)

=
∑

R in O

max
M∈M

δ
(

do(I, c + R) ∈ DO(w(O, M),R)
)

.

(6)

The speed-up comes from the fact that, for each region R,

we can precompute a list L(O,R) of the dominant orienta-

tions in R when O is translated over M. As illustrated by

Figure 2, the measure E4 can thus be written as:

E4(I,O, c) =
∑

R in O

δ
(

do(I, c + R) ∈ L(O,R)
)

, (7)

and L(O,R) can formally be written as:

L(O,R)
= {o : ∃M ∈ M such that o ∈ DO(w(O, M),R)} .

(8)

The collection of lists over all regions R in O forms the

final object template.

3.5. Using Bitwise Operations

Inspired by [16], and as shown in Figure 3, we efficiently

compute the energy function E4 using a binary representa-

tion of the lists L(O,R) and of the dominant orientations

do(I, c+R). This allows us to compute E4 with only a few

bitwise operations.

By setting no, the number of discretized orientations, to

7 we can represent a list L(O,R) or a dominant orientation

do(I, c + R) with one byte i.e. a 8-bit integer. Each of the

7 first bits corresponds to an orientation while the last bit

stands for ⊥.

More exactly, to each list L(O,R) corresponds a byte L

whose ith bit with 0 ≤ i ≤ 6 is set to 1 iff i ∈ L(O,R),
and whose 7th bit is set to 1 iff ⊥ ∈ L(O,R). A byte D

can be constructed similarly to represent a dominant orien-

tation do(I, c + R). Note that only one bit of D is set to 1.

Now the term δ
(

do(I, c + R) ∈ L(O,R)
)

in Eq.(7) can

be evaluated very quickly. We have:

δ
(

do(I, c + R) ∈ L(O,R)
)

= 1 iff L ⊗ D 6= 0 , (9)

where ⊗ is the bitwise AND operation.

3.6. Using SSE Instructions

The computation of E4 as formulated in Section 3.5 can

be further speeded up using SSE operations. In addition to

L(O,R) :

do(I,c+R) :

10011001 01000110 11100001 00100100

10000000 00010000 01000000 00000100

10000000 00000000 01000000 00000100

lookup table [...1011...]

AND

 != 0

...

o
ri
1

o
ri
7

...

o
ri
1

o
ri
7

...

o
ri
1

o
ri
7

...

o
ri
1

o
ri
7

byte
n

byte
n+1

byte
n+2

byte
n+3

byte
i

Figure 3. Computing the similarity E4 using bitwise operations and

a lookup table that counts how many terms δ() as in Eq.(9) are

equal to 1.

int energy_function4(__m128i lhs, __m128i rhs)

{

__m128i a = _mm_and_si128(lhs,rhs);

__m128i b = _mm_cmpeq_epi8(a);

return lookuptable[_mm_movemask_epi8(b)];

}

Listing 1. C++ Energy function for 16 regions with 3 SSE

instructions and one look-up in a 16-bit-table. Since in SSE there

is no comparison on non-equality for unsigned 8-bit integers we

have—in contrast to Figure 3—to compare the AND’ed result to

zero and count the ”0” instead.

bitwise operations, which are already very fast, SSE tech-

nology allows to perform the same operation on 16 bytes in

parallel. Thus, by using the function given in Listing 1, the

similarity score for 16 regions can be computed with only

3 SSE operations and one lookup-table with 16-bits entries.

Thus, if n denotes the number of regions R, we only have

to use 3
⌈

n

16

⌉

SEE instructions,
⌈

n

16

⌉

uses of a lookup table

with 16-bits entries and additional
⌈

n

16

⌉

− 1 ”+” operations

if the number of regions n is larger than 16. Assuming that

each operation has the same computational cost we need

5
⌈

n

16

⌉

− 1 operations for n regions which results in only

≈ 0.3 operations per region.

This method is extremely cache friendly because only

successive chunks of 128 bits are processed at a time which

holds the number of cache misses low. This is very im-

portant because SSE technology is very sensitive to optimal

cache alignment. This is probably why, although our energy

function is slightly more computationally expensive in the-

ory than [16], we found that our formulation performed 1.5
times faster in practice.

Another advantage of our algorithm, however, is that it is

very flexible with respect to varying template sizes without

loosing the capability of using the computational capacities

very efficiently. In our method, the optimal processor load

is reached by multiples of 16 in contrast to [16] that needs

20 30 40 50 60
0

20

40

60

80

100

viewpoint change [deg]

m
at

ch
in

g
sc

or
e

[%
]

DOT
HoG Templates
Leopar
Panter
Gepard
Harris Affine
Hessian Affine
MSER
IBR
EBR

20 30 40 50 60
0

20

40

60

80

100

viewpoint change [deg]

m
at

ch
in

g
sc

or
e

[%
]

DOT
HoG Templates
Leopar
Panter
Gepard
Harris Affine
Hessian Affine
MSER
IBR
EBR

20 30 40 50 60
60

65

70

75

80

85

90

95

100

viewpoint change [deg]

av
er

ag
e

ov
er

la
pp

in
g

[%
]

DOT
HoG Templates
Leopar
Panter
Gepard
Harris Affine
Hessian Affine
MSER
IBR
EBR

(a) (b) (c)

Figure 4. Methods comparisons on the Graffiti and Wall Oxford datasets. (a-b): Matching scores for Graffiti and Wall sets when increasing

the viewpoint angle. Our method is referred as “DOT”, and reaches a 100% score on both sets for every angle. These results are discussed

in Section 4.1. (c) shows the overlaps between the retrieved and expected regions as an accuracy measure for Graffiti. These results are

discussed in Section 4.2.

0 500 1000 1500
10

−2

10
−1

10
0

10
1

number of templates

ru
nt

im
e

[s
ec

on
ds

]

DOT clustering
DOT binary tree
DOT without clustering
DOT−Tay without clustering
HoG Templates

0 20 40 60 80 100
0

20

40

60

80

100

visibility [%]

si
m

ila
ri

ty
 s

co
re

 [%
]

20
30

40
50

60

 7
11

14
21

0

50

100

region size [pixels]x[pixels]viewpoint change [deg]

m
at

ch
in

g
sc

or
e

[%
]

(a) (b) (c)

Figure 5. (a) Comparison of different methods and cluster schemes with respect to speed. Our method with our cluster scheme performs

superior over all other methods and cluster schemes as discussed in Section 4.3. (b) In Section 4.4 we discuss the linear behavior of our

method with respect to occlusion. (c) t = 7 is a good trade-off between speed and robustness (Section 4.5).

multiples of 128 in a possible dynamic SSE implementa-

tion. The probability of wasting computational power is

therefore much lower using our approach.

3.7. Clustering for Efficient Branch and Bound

We can further improve the scalability of our method by

exploiting the similarity between different templates repre-

senting different objects under different views. The general

idea is to build clusters of similar templates—each of them

being represented by what we will refer to as a cluster tem-

plate. A cluster template is computed as a bitwise OR op-

eration applied to all the templates belonging to the same

cluster. It provides tight upper bounds and can be used in

a branch and bound constrained search as in [10]. By first

computing the similarity measure E4 between the image and

the cluster templates at run-time, we can reject all the tem-

plates that belong to a cluster template not similar enough

to the current image.

We use a bottom-up clustering method: To build a clus-

ter, we start from a template picked randomly among the

templates that do not yet belong to a cluster. We then look

for the template the most similar to it according to the Ham-

ming distance, and not picked yet. We proceed this way

using the Hamming distance between the current cluster

template and the remaining templates, until the cluster has

a given number of templates assigned. We then continue

building clusters until every template is assigned to a clus-

ter.

For our approach, this clustering scheme allows faster

runtime than the binary tree clustering suggested in [16], as

will be shown in Section 4.3.

4. Experimental Results

In the experiments, we compared our approach called

DOT (for Dominant Orientation Templates) to Affine Re-

gion Detectors [12] (Harris-Affine, Hessian-Affine, MSER,

IBR, EBR), to patch rectification methods [8, 7, 6] (Leopar,

Panter, Gepard) and to the Histograms-of-Gradients (HoG)

template matching approach [1].

For HoG, we used our own SSE optimized implemen-

tation. In order to detect the correct template from a large

template database we replaced the Support Vector Machine

mentioned in the original work of HoG by a nearest neigh-

bor search since we want to avoid a training phase and to

look for a robust representation instead.

We did the performance evaluation on the Oxford Graf-

fiti and on the Oxford Wall image set [12]. Since no video

sequence is available, we synthesized a training set by scal-

ing and rotating the first image of the dataset for changes

in viewpoint angle up to 75 degrees and by adding random

noise and affine illumination change.

4.1. Robustness

The matching scores of the different methods is shown

in Figure 4(a) for the Graffiti dataset, and in Figure 4(b)

for the Wall dataset. As defined in [12], this score is the

ratio between the number of correct matches and the smaller

number of regions detected in one of the two images.

For the affine regions, we first extract the regions us-

ing different region detectors and match them using SIFT.

Two of them are said to be correctly matched if the over-

lap error of the normalized regions is smaller than 40%.

In our case, the regions are defined as the patches warped

by the retrieved transformation. For a fair comparison, we

used the same numbers and appearances of templates for

the DOT and HoG approaches. We also turned off the fi-

nal check on the correlation for all patch rectification ap-

proaches (Leopar, Panter, Gepard) since there is no equiva-

lent for the affine regions.

DOT and HoG clearly outperform the other approaches

by delivering optimal matching results of 100% on the Graf-

fiti image set. For the Wall image set, DOT performs opti-

mal again with a matching rate of 100% while HoG per-

forms worse for larger viewpoint changes.

These very good performances can be explained by the

fact that DOT and HoG scan the whole image while the

affine regions approach is dependent on the quality of the re-

gion extraction. As it will be shown in Section 4.3, even if it

parses the whole image, our approach is fast enough to com-

pete with affine region and patch rectification approaches in

terms of computation times.

4.2. Detection Accuracy

As it was done in [7], in Figure 4(c), we compare the

average overlap between the ground truth quadrangles and

their corresponding warped versions obtained with DOT,

HoG, the patch rectification methods and with the affine re-

gions detectors. We did the experiments for overlap and

accuracy on both image sets but due to the similarity of the

results and the lack of space we only show the results on

the Graffiti image set. Since the Affine Region Detectors

deliver elliptic regions we fit quadrangles around these el-

lipses by aligning them to the main gradient orientation as

it was done in [7].

The average overlap is very close to 100% for DOT and

HoG, about 10% better than MSER and about 20% better

than the other affine region detectors.

4.3. Speed

Although performing similar in terms of robustness and

accuracy, DOT clearly outperforms HoG in terms of speed

by several magnitudes. In order to compare both ap-

proaches, we trained them on the same locations and ap-

pearances on a 640 × 480 image with |R| = 121. The

experiment was done on a standard notebook with an Intel

Centrino Processor Core2Duo with 2.4GHz and 3GB RAM

where unoptimized training of one template took 1.8ms and

the clustering of about 1600 templates 0.76s. As one can

see in Figure 5(a), when using about 1600 templates our

approach is about 310 times faster at runtime than our SSE

optimized HoG implementation. The reason for this is both

the robustness to small deformations that allows DOT to

skip most of the pixel locations and the binary representa-

tion of our templates that enables a fast similarity evalua-

tion.

We also compared our similarity measure to a SSE op-

timized version of Taylor’s version [16]. Our approach is

constantly about 1.5 times faster than Taylor’s. We believe

it is due to the cache friendly formulation of E4 where we

successively use sequential chunks of 128 bits at a time

while [16] has to jump back and forth within 1024 bits (in

case |R| = 121) for successively OR’ing pairs of 128 bit

vectors and accumulating the result (for a closer explana-

tion of Taylor’s similarity measure please refer to [16]) in a

SSE register.

We also did experiments with respect to the different

clustering schemes. We compared the approach where no

clustering is used to the binary tree of [16] and our cluster-

ing described in Section 3.7. Surprisingly, our clustering is

twice as fast as the binary tree clustering at runtime. Al-

though the matching should behave in O(log(N)) time, our

implementation of the binary tree clustering behaves lin-

early up to about 1600 templates as it was also observed

by [16]. As the authors of [16] claim, the reason for this

might be that there are not enough overlapping templates to

fully exploit the potential of their tree structure.

4.4. Occlusion

Occlusion is a very important aspect in template match-

ing. To test our approach towards occlusion we selected 100

templates on the first image of the Oxford Graffiti image

set, added small image deformation, noise and illumination

changes and incrementally occluded the template in 2.5%
steps from 0% to 100%. The results are displayed in Fig-

ure 5(b). As expected the similarity of our method behaves

linearly to the percentage of occlusion. This is a desirable

property since it allows to detect partly occluded templates

by setting the detection threshold with respect to the toler-

ated percentage of occlusion.

20 30 40 50 60
0

20

40

60

80

100

viewpoint change [deg]

m
at

ch
in

g
sc

or
e

[%
]

DOT
HoG Templates

Figure 6. Failure Case. When the object does not exhibit strong

gradients, like the blurry image on the left, our method performs

worse than HoG.

4.5. Region Size

The size of the region R is another important parame-

ter. The larger the region R gets the faster the approach

becomes at runtime. However, at the same time as the size

of the region increases the discriminative power of the ap-

proach decreases since the number of gradients to be con-

sidered rises. Therefore, it is necessary to choose the size of

the region R carefully to find a compromise between speed

and robustness. In the following experiment on the Graffiti

image set we tested the behavior of DOT with respect to the

matching score and the size of the region R. The result is

shown in Figure 5(c). As the matching score is still 100%

for regions of 7 × 7 pixels, one can see that the robustness

decreases with increasing region size. Although dependent

on the texture and on the density of strong gradients within

one region R, we empirically found on many different ob-

jects that a region size of 7 × 7 gives very good results.

4.6. Failure Cases

Figure 6 shows the limitation of our method: To obtain

such optimal results as in Figure 4, the templates have to

exhibit strong gradients. In case of too smooth or blurry

template images, HoG tends to perform better.

4.7. Applications

Due to the robustness and the real-time capability of our

approach, DOT is suited for many different applications in-

cluding untextured object detection as shown in Figure 8,

and planar patches detection as shown in Figure 9. Al-

though neither a final refinement nor any final verification,

by contrast with [7] for example, was applied to the found

3D objects, the results are very accurate, robust and sta-

ble. Creating the templates for new objects is easy and il-

lustrated by Figure 7.

5. Conclusion

We introduce a new binary template representation

based on locally dominant gradient orientations that is

invariant to small image deformations. It can very reliably

detect untextured 3D objects using relatively few templates

from many different viewpoints in real-time. We have

shown that our approach performs superior to state-of-the-

art methods with respect to the combination of recognition

rate and speed. Moreover, the template creation is fast and

easy, does not require a training set, only a few exemplars,

and can be done interactively.

Acknowledgment: This project was funded by the

BMBF project AVILUSplus (01IM08002).

References

[1] N. Dalal and B. Triggs. Histograms of Oriented Gradients
for Human Detection. In CVPR, 2005.

[2] V. Ferrari, F. Jurie, and C. Schmid. From images to shape
models for object detection. IJCV, 2009.

[3] D. Gavrila and V. Philomin. Real-time object detection for
“smart” vehicles. In ICCV, 1999.

[4] M. Grabner, H. Grabner, and H. Bischof. Tracking via Dis-
criminative Online Learning of Local Features. In CVPR,
2007.

[5] M. Grabner, C. Leistner, and H. Bischof. Semi-supervised
on-line boosting for robust tracking. In ECCV, 2008.

[6] S. Hinterstoisser, S. Benhimane, V. Lepetit, P. Fua, and
N. Navab. Simultaneous recognition and homography ex-
traction of local patches with a simple linear classifier. In
BMVC, 2008.

[7] S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and
V. Lepetit. Online learning of patch perspective rectification
for efficient object detection. In CVPR, 2008.

[8] S. Hinterstoisser, O. Kutter, N. Navab, P. Fua, and V. Lepetit.
Real-time learning of accurate patch rectification. In CVPR,
2009.

[9] S. Holzer, S. Hinterstoisser, S. Ilic, and N. Navab. Distance
transform templates for object detection and pose estimation.
In CVPR, 2009.

[10] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond
Sliding Windows: Object Localization by Efficient Subwin-
dow Search. In CVPR, June 2008.

[11] D. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. IJCV, 20(2):91–110, 2004.

[12] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A com-
parison of affine region detectors. IJCV, 2005.

[13] C. F. Olson and D. P. Huttenlocher. Automatic target recog-
nition by matching oriented edge pixels. IP, 6, 1997.

[14] T. Serre and M. Riesenhuber. Realistic modeling of simple
and complex cell tuning in the hmax model, and implications
for invariant object recognition in cortex. TR, MIT, 2004.

[15] C. Steger. Occlusion Clutter, and Illumination Invariant Ob-
ject Recognition. In IAPRS, 2002.

[16] S. Taylor and T. Drummond. Multiple target localisation at
over 100 fps. In BMVC, 2009.

[17] P. Viola and M. Jones. Robust real-time object detection.
IJCV, 2001.

Figure 7. Templates creation. To easily define the templates for a new object, we use DOT to detect a known object—the ICCV logo in

this case—next to the object to learn in order to estimate the camera pose and to define an area in which the object to learn is located. A

template for the new object is created from the first image, and we start detecting the object while moving the camera. When the detection

score becomes too low, a new template is created in order to cover the different object appearances when the viewpoint changes.

Figure 8. Detection of different objects at about 12 fps over a cluttered background. The detections are shown by superimpos-

ing the thresholded gradient magnitudes from the object image over the input images. The corresponding video is available on

http://campar.in.tum.de/Main/StefanHinterstoisser.

Figure 9. Patch 3D orientation estimation. Like Gepard [8], DOT can detect planar patches and provide an estimate of their orientations.

DOT is however much more reliable as it does not rely on feature point detection, but parses the image instead. The corresponding video

is available on http://campar.in.tum.de/Main/StefanHinterstoisser.

