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Abstract

We present a method for detecting 3D objects using

multi-modalities. While it is generic, we demonstrate it

on the combination of an image and a dense depth map

which give complementary object information. It works in

real-time, under heavy clutter, does not require a time con-

suming training stage, and can handle untextured objects.

It is based on an efficient representation of templates that

capture the different modalities, and we show in many ex-

periments on commodity hardware that our approach sig-

nificantly outperforms state-of-the-art methods on single

modalities.

1. Introduction

Real-time object learning and detection are important

and challenging tasks in Computer Vision. Among the ap-

plication fields that drive development in this area, robotics

especially has a strong need for computationally efficient

approaches, as autonomous systems continuously have to

adapt to a changing and unknown environment, and to learn

and recognize new objects.

For such time-critical applications, template matching

is an attractive solution because new objects can be easily

learned online, in contrast to statistical-learning techniques

that require many training samples [3, 7, 2, 8, 26]. Our ap-

proach is related to recent and efficient template matching

methods [12, 20] and more particularly to [11], which con-

sider only images and their gradients to detect objects. As

such, they work even when the object is not textured enough

to use feature point techniques and can directly provide a

coarse estimation of the object pose. However, similar to

previous template matching approaches [1, 14, 9, 21], they

suffer severe degradation of performance or even failure in

Figure 1. Our method can detect texture-less 3D objects in real-

time under different poses over heavily cluttered background using

an image and its depth map.

the presence of strong background clutter such as the one

displayed in Fig. 1. Adding other modalities such as depth

information then becomes an attractive solution.

We propose an efficient method that simultaneously

leverages the information of multiple acquisition modalities

to define a template, and thus robustly detects known ob-

jects in difficult environments. In our approach, data from

each modality is discretized into bins, and we make use of

the “linearized response maps” introduced in [11] to mini-

mize cache misses and allow for heavy parallelization. In

this paper, we focus on the combination of a color image

and a dense depth map. However, our approach is very

generic and could easily integrate other modalities as long

as they provide measurements aligned with the image that

can be quantized.

For image integration, we show how to extract gradients



from the color images which are more robust to the back-

ground than gradients computed on gray value images. For

depth integration, we propose a method that robustly com-

putes 3D surface normals from dense depth maps in real-

time, making sure to preserve depth discontinuities on oc-

cluding contours and to smooth out discretization noise of

the sensor.

In the remainder of the paper, we first discuss related

work before detailing our approach. We then present quan-

titative evaluations for challenging scenes that show that

our multimodal templates outperform state-of-the-art ap-

proaches.

2. Related Work

The problem of multi-view 3D object detection has been

widely studied in the literature. Two main categories can be

distinguished: those applied to intensity images and those

working on range data or depth images. Both image modal-

ities are rarely used simultaneously. The methods operating

on intensity images can be divided into two main categories:

learning-based methods, and template matching methods.

Learning Based Methods These typically require a large

amount of training data and a long offline training phase.

As with our template-based approach, they can detect ob-

jects under different poses. For example, in [26, 13], one or

several classifiers are trained to detect faces under various

views. More recent approaches for 3D object detection are

related to object class recognition. Stark et al. [23] rely on

3D CAD models and generate a training set by rendering

them from different viewpoints. Liebelt and Schmid [16]

combine a geometric shape and pose prior with natural im-

ages. While these approaches are able to generalize to the

object class they are not real-time capable and require ex-

pensive training. By contrast our method is very fast, learns

new objects in virtually no time and can recover the pose of

the particular object of interest.

Template Matching This technique has played an im-

portant role in tracking-by-detection applications for many

years. It is usually better adapted to low textured objects

than feature point approaches. Unfortunately, this increased

robustness often comes at the cost of an increased compu-

tational load that makes direct template matching inappro-

priate for real-time applications. This is especially true as

many templates must be used to cover the range of possible

viewpoints.

The methods from Gavrila and Philomin [9] and Hutten-

locher et al. [14] are based on Chamfer matching [1] and

the Haussdorf distance respectively. While somewhat faster

they are very sensitive to illumination changes, noise and

blur. For instance, if the image contrast is lowered, the num-

ber of extracted edge pixels progressively decreases which

has the same effect as increasing the amount of occlusion.

Other works do not rely on contour extraction, but directly

use the image gradients. For example, Steger [24] consid-

ers the sum of dot products between the template gradients

and the image gradients. This similarity measure typically

provides strong peaks at the expected positions, but unfortu-

nately also rapidly declining off-peak responses. Therefore

a fine sampling must be performed to achieve good detec-

tion rates, which quickly becomes very costly.

More efficient similarity measures have been proposed

recently in [12, 20]. The templates and the input images

are represented using local dominant gradient orientations,

which appear to yield a good trade-off between computa-

tion times and discriminative power. However, these two

approaches degrade significantly when the gradient orienta-

tions are disturbed by stronger gradients coming from back-

ground clutter. In practice, this often happens in the neigh-

borhood of the silhouette of an object, which is an impor-

tant cue for texture-less objects. [11] proposed another ap-

proach based on gradient spreading that is more robust, but

still not error-free. We show in this paper how considering

additional modalities significantly improves the recognition

performance.

Matching in Range Data This is another approach to ob-

ject detection, but using depth maps instead of intensity im-

ages. An extensive review can be found in [19]. ICP [28]

has been very popular for accurate registration but usually

requires a good initialization. Many 3D features have also

been proposed: spin-images [15], point pairs [4, 18] or

point-pair histograms [22, 25]. These methods are usually

expensive and assume that a full 3D CAD model of the ob-

ject of interest is available. By contrast, our approach does

not require a 3D model and runs in real-time.

Multimodal Detection This technique combines image

and depth data, and is mainly used for pedestrian detec-

tion [5, 6, 10, 27]. While being quite effective in real ap-

plications these approaches still require exhaustive training

which is inappropriate for online learning.

3. Proposed Approach

In this section, we show how we generalize the approach

of [11] to easily incorporate new quantized cues. As an

example we demonstrate how to integrate dense depth and

color image cues.

3.1. Similarity Measure

Given a set of aligned reference images {Om}m∈M of

the object from a set M of modalities we define a template

as T = ({Om}m∈M,P). P is a list of pairs (r,m) made

of the locations r of a discriminant feature in modality m.

Each template is created by extracting for each modality a

small set of its most discriminant features from the corre-

sponding reference image and by storing their locations. As
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Figure 2. A toy duck with different modalities. Left: Image gra-

dients are mainly found on the contour. The gradient location ri

is displayed in pink. Middle: Surface normals are found on the

body of the duck. The normal location rk is displayed in pink.

Right: our approach combines multiple cues which are comple-

mentary: gradients are usually found on the object contour while

surface normals are found on the object interior

shown in Fig. 2, the modalities we use in our experiments

come from a standard camera and a depth sensor aligned

with the camera.

Our similarity measure is a generalization of the measure

defined in [11] which is robust to small translations and de-

formations. It can be formalized as:

E({Im}m∈M, T , c) =
∑

(r,m)∈P

(

max
t∈R(c+r)

fm(Om(r), Im(t))

)

,

(1)

where R(c + r) =
[

c+ r − T
2 , c+ r + T

2

]

×
[

c+ r − T
2 , c+ r + T

2

]

defines the neighborhood of

size T centered on location c+ r in the input image Im and

the function fm(Om(r), Im(t)) computes the similarity

score for modality m between the reference image at

location r and the input image at location t. Thus, for each

feature we align the local neighborhood exactly to the asso-

ciated location whereas in DOT [12], BiGG [20], HoG [3]

or SIFT [17], the features are adjusted only to some regular

grid. [11] showed how to compute this measure efficiently

for a single modality, and we summarize below how we

adapt it to multiple modalities.

3.2. Efficient Computation

We first quantize the input data for each modality into

a small number of no values, which allows us to “spread”

the data around their locations to obtain a robust representa-

tion Jm for each modality. For efficiency, data spread to an

image location is encoded using a binary string [11]: This

can be performed very quickly by OR’ing shifted versions

of Jm, and the strings are used directly as indices of lookup

tables for fast precomputation of the similarity measure. We

use a lookup table τi,m for each modality and for each of the

no quantized values, computed offline as:

τi,m[Lm] = max
l∈Lm

|fm(i, l)| , (2)

where

• i is the index of the quantized value of modality m. To

keep the notations simple, we also use i to represent

the corresponding value;

• Lm is a list of values of a special modality m appear-

ing in a local neighborhood of a value i. In practice,

we use the integer value corresponding to the binary

representation of Lm as an index to the element in the

lookup table.

For each quantized value of one modality m with index i

we can now compute the response at each location c of the

response map Si,m as:

Si,m(c) = τi,m[Jm(c)] . (3)

Finally, the similarity measure of Eq. (1) can be evaluated

as:

E({Im}m∈M, T , c) =
∑

(r,m)∈P

SOm(r),m(c+ r) . (4)

Since the maps Si,m are shared between the templates,

matching several templates against the input image can be

done very fast once they are computed.

For computing E , a significant speed-up can additionally

be obtained by storing data in the response maps Si,m in the

same order as they are read. Since Eq.(1) allows to consider

only each T th pixel without loosing robustness, this lin-

ear storage enables heavy parallelization and avoids cache

misses that would slow down the computations. Computing

the similarity measure for a given template at each sampled

image location can then finally be done by adding the re-

structured Si,m with an appropriate offset computed from

the locations r in the templates.

3.3. Modality Extraction

We now turn to how we handle the different modalities

and demonstrate this on image and depth data.

3.3.1 Image Cue

We chose to consider image gradients because they proved

to be more discriminant than other forms of representa-

tions [17, 24] and are robust to illumination change and

noise. Additionally, image gradients are often the only reli-

able image cue when it comes to texture-less objects. Con-

sidering only the normalized gradients and not their mag-

nitudes makes the measure robust to contrast changes, and

taking the absolute value of the dot product between them

allows it to correctly handle object occluding boundaries: It

will not be affected if the object is over a dark background,

or a bright background.

To increase robustness, we compute the normalized gra-

dients on each color channel of our input image separately
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Figure 3. Upper Left: Quantizing the gradient orientations: the

pink orientation is closest to the second bin. Upper right: A toy

duck with a calibration pattern. Lower Left: The gradient image

computed on a gray value image. The object contour is hardly

visible. Lower right: Gradients computed with our approach.

Details of the object contours are clearly visible.

and for each image location use the normalized gradient of

the channel whose magnitude is largest. Given an RGB

color image I, we compute the normalized gradient map

IG(x) at location x with

IG(x) =
∂Ĉ

∂x
(5)

where

Ĉ(x) = argmax
C∈{R,G,B}

∥

∥

∥

∥

∂C

∂x

∥

∥

∥

∥

(6)

and R,G,B are the RGB channels of the corresponding

color image. Our similarity measure is then:

fG(OG(r), IG(t)) =
∣

∣OG(r)
⊤IG(t)

∣

∣ (7)

where OG(r) is the normalized gradient map of the refer-

ence image at location r and IG(t) the normalized gradient

map of the current image at location t respectively.

In order to quantize the gradient map we omit the gradi-

ent direction, consider only the gradient orientation and di-

vide the orientation space into n0 equal spacings as shown

in Fig. 3. To make the quantization robust to noise, we

assign to each location the gradient whose qantized ori-

entation occurs most often in a 3 × 3 neighborhood. We

also keep only the gradients whose norms are larger than

a small threshold. The whole unoptimized process takes

about 31ms on the CPU for a VGA image.

3.3.2 Depth Cue

Similar to the image cue, we decided to use quantized sur-

face normals computed on a dense depth field for our tem-

plate representation as shown in Fig. 4. They allow us to

represent both close and far objects while fine structures are

preserved.

In the following, we propose a method for the fast and

robust estimation of surface normals in a dense range image.

Around each pixel location x, we consider the first order

Taylor expansion of the depth function D(x):

D(x+ dx)−D(x) = dx⊤∇D + h.o.t. (8)

Within a patch defined around x, each pixel offset dx yields

an equation that constrains the value of ∇D, allowing to es-

timate an optimal gradient ∇̂D in a least-square sense. This

depth gradient corresponds to a 3D plane going through

three points X,X1 and X2:

X = ~v(x)D(x), (9)

X1 = ~v(x+ [1, 0]⊤)(D(x) + [1, 0]∇̂D), (10)

X2 = ~v(x+ [0, 1]⊤)(D(x) + [0, 1]∇̂D). (11)

where ~v(x) is the vector along the line of sight that goes

through pixel x and is computed from the internal parame-

ters of the depth sensor. The normal to the surface at the 3D

point that projects on x can be estimated as the normalized

cross-product of X1 −X and X2 −X .

However this would not be robust around occluding con-

tours, where the first order approximation of Eq. (8) no

longer holds. Inspired by bilateral filtering, we ignore the

contributions of pixels whose depth difference with the cen-

tral pixel is above a threshold. In practice, this approach

effectively smooths out quantization noise on the surface,

while still providing meaningful surface normal estimates

around strong depth discontinuities. Our similarity measure

is then defined as the dot product of the normalized surface

normals:

fD(OD(r), ID(t)) = OD(r)
⊤ID(t) (12)

where OD(r) is the normalized surface normal map of the

reference image at location r and ID(t) the normalized sur-

face normal map of the current image at location t.

Finally, as shown in Fig. 4, we measure the angles be-

tween the computed normal and a set of precomputed vec-

tors to quantize the normal directions into n0 bins. These

vectors are arranged in a right circular cone shape originat-

ing from the peak of the cone pointing towards the cam-

era. To make the quantization robust to noise, we assign to

each location the quantized value that occurs most often in

a 5 × 5 neighborhood. The whole process is very efficient

and needs only 14ms on the CPU and less than 1ms on the

GPU.

4. Experiments

We compared our approach, which we call LINE-MOD

(for “multimodal-LINE”), to several methods: LINE as in-

troduced in [11], which uses only the image intensities (re-

ferred to as LINE-2D here); a variant that we call LINE-3D
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Figure 4. Upper Left: Quantizing the surface normals: the pink

surface normal is closest to the precomputed surface normal v4.

It is therefore put into the same bin as v4. Upper right: A per-

son standing in an office room. Lower Left: The corresponding

depth image. Lower right: Surface normals computed with our

approach. Details are clearly visible and depth discontinuities are

well handled. We removed the background for visibility reasons.

and that uses only the depth map; DOT [12]; and HOG [3].

For HOG, we used our own optimized implementation and

replaced the Support Vector Machine mentioned in the orig-

inal work of HOG by a nearest neighbor search. In this way,

we can use it as a robust representation and quickly learn

new templates as with the other methods. The experiments

were performed on one processor of a standard notebook

with an Intel Centrino Processor Core2Duo with 2.4 GHz

and 3 GB of RAM. For obtaining the image and the depth

data we used the Primesense(tm) PSDK 5.0 device.

4.1. Robustness

We used six sequences made of 2000 real images each.

Each sequence presents illumination and large viewpoint

changes over heavy cluttered background. Ground truth is

obtained with a calibration pattern attached to each scene

that enables us to know the actual location of the object. The

templates were learned over homogeneous background.

We consider the object to be correctly detected if the lo-

cation given back is within a fixed radius of the ground truth

position. As depicted in the left column of Fig. 7, our new

approach always outperforms all the other ones and shows

only few false positives. We believe that this is due to the

complementarity of the object features that compensate for

the weaknesses of each other. The superiority of our new

approach becomes even more obvious in Table 1: If we set

the threshold for each approach to allow for 97% true pos-

itive rate and only evaluate the hypothesis with the largest

response, we obtain for our new approach a high detection

rate with a very small false positive rate. This is in contrast

to LINE-2D, where the true positive rate is often over 90%,

but the false positive rate is not negligible, which makes

expensive post-processing necessary. In our method, using

only the response with the largest value might be sufficient
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Figure 5. Combining multi-modalities results in a more discrimi-

native response function. Here we compare LINE-MOD against

LINE-2D on the shown image. We plot the response function of

both methods with respect to the true location of the monkey. One

can see that the response of our new method exhibits a single and

discriminative peak whereas LINE-2D has several peaks which are

of comparable height. This is one explanation why our new ap-

proach works better and produces fewer false positives.

in most cases.

One reason for this high robustness is the good separa-

bility of the multimodal approach as shown in the middle

of Fig. 7: one can see that a specific threshold—about 80

in our implementation—separates almost all true positives

well from almost all false positives. This has several ad-

vantages. First, we will detect almost all instances of the

object by setting the threshold to this specific value. Sec-

ond, we also know that almost every returned template with

a similarity score above this specific value is a true positive.

And third, the threshold is always around the same value

which supports the conclusion that it might also work well

for other objects. One hint why our multimodal approach

has such a good separability property is given in Fig. 5. One

can see that the response function has only one clear peak

around the true location of the object while LINE-2D shows

other peaks with almost the same height.

4.2. Speed

Learning new templates only requires extracting and

storing multimodal features, which is almost instantaneous.

Therefore, we concentrate on runtime performance. The

runtimes given in Fig. 6 show that the general LINE ap-

proach (with 126 features) is real-time and can parse a VGA

image with over 3000 templates at about 10 fps on the

CPU. DOT is initially faster than our approach but becomes

slower as the number of templates increases. This is be-

cause the runtime of LINE-MOD is only dependant on the

number of features and independent of the object/template

size whereas the runtime of DOT is not. Therefore, to han-

dle larger objects DOT has to use larger templates which

makes the approach slower once the number of templates

increases.

To detect an object under a full coverage of viewpoints

(360 degree tilt rotation, 90 degree inclination rotation and

in-plane rotations of ± 80 degrees, scale changes from 1.0

to 2.0), we usually need less than two thousands templates.
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Figure 6. Left: Our new approach runs in real-time and can parse a 640×480 image with over 3000 templates at about 10 fps. Middle: Our

new approach is linear with respect to occlusion. Right: Average recognition score for the six objects of Sec.4.1 with respect to occlusion.

4.3. Occlusion

We also tested the robustness of our approach with re-

spect to occlusion. We added synthetic noise and illumi-

nation changes to the images, incrementally occluded the

six different objects of Section 4.1 and measured the corre-

sponding response values. As expected, the similarity mea-

sure used by our method behaves linearly in the percent-

age of occlusion as reported in the middle of Fig. 6. This

is a desirable property since it allows detection of partly

occluded templates by setting the detection threshold with

respect to the tolerated percentage of occlusion. We also

experimented with real scenes where we first learned our

six objects in front of a homogeneous background and then

added heavy 2D and 3D background clutter. For recogni-

tion we incrementally occluded the objects. We define our

object as correctly recognized if the template with the high-

est response is found within a fixed radius of the ground

truth object location. The average recognition result is dis-

played on the left of Fig. 6: Even with over 30% occlusion

our method is still able to recognize objects.

5. Conclusion

We have presented a method to exploit different modal-

ities for real-time object detection. Our novel approach is

able to correctly detect 3D texture-less objects in real-time

under heavy background clutter, illumination changes and

noise with almost no false positives. We showed how to

efficiently preprocess image and depth data to robustly in-

tegrate both cues into our approach. Additionally, we have

shown that our approach outperforms state-of-the-art meth-

ods with respect to the combination of recognition rate and

speed, especially in heavily cluttered environments.
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Figure 7. Comparison of our approach (LINE-MOD) with LINE based on gradients [11] (LINE-2D), LINE based on normals (LINE-

3D), DOT [12] and HOG [3] on real 3D objects. Each row corresponds to a different sequence (made of over 2000 images each) on

heavy cluttered background: A toy monkey, a toy duck, a camera, a cup, a toy car, and a hole punch. The approaches were learned on a

homogeneous background. Left: Percentage of true positives plotted against the average percentage of false positives. Our multimodal

templates provide about the same recognition rates for all objects while the other approaches have a much larger variance depending on

the object type. Our approach outperforms the other approaches in most cases. Middle: The distribution of true and false positives plotted

against the threshold. They are well separable from each other. Right: One sample image of the corresponding sequence shown with the

object detected by our new approach.



Sequence MOD-LINE LINE-2D LINE-3D HOG DOT

Toy-Monkey (2164 images) 97.9%—0.3% 50.8%—49.1% 86.1%—13.8% 51.8%—48.2% 8.6%—91.4%

Camera (2173 images) 97.5%—0.3% 92.8%—6.7% 61.9%—38.1% 18.2%—81.8% 1.9%—98.0%

Toy-Car (2162 images) 97.7%—0.0% 96.9%—0.4% 95.6%—2.5% 44.1%—55.9% 34.0%—66.0%

Cup (2193 images) 96.8%—0.5% 92.8%—6.0% 88.3%—10.6% 81.1%—18.8% 64.1%—35.8%

Toy-Duck (2223 images) 97.9%—0.0% 91.7%—8.0% 89.0%—10.0% 87.6%—12.4% 78.2%—21.8%

Hole punch (2184 images) 97.0%—0.2% 96.4%—0.9% 70.0%—30.0% 92.6%—7.4% 87.7%—12.0%

Table 1. True and false positive rates for different thresholds on the similarity measure of different methods. In some cases no hypotheses

were given back so the sum of true and false positives can be lower than 100%. Our MOD-LINE approach obtains very high recognition

rates at the cost of almost no false positives, and outperforms all the other approaches. The corresponding best values are shown in bold

print.

Figure 8. Different texture-less 3D objects detected simultaneously in real-time by our MOD-LINE method under different poses on heavily

cluttered background with partial occlusion. See also the supplemental video on http://campar.in.tum.de/Main/StefanHinterstoisser

[21] C. F. Olson and D. P. Huttenlocher. Automatic Target Recog-

nition by Matching Oriented Edge Pixels. TIP, 1997.

[22] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature

histograms (FPFH) for 3D registration. In ICRA, 2009.

[23] M. Stark, M. Goesele, and B. Schiele. Back to the future:

Learning shape models from 3d cad data. In BMVC, 2010.

[24] C. Steger. Occlusion Clutter, and Illumination Invariant Ob-

ject Recognition. In ISPRS, 2002.

[25] F. Tombari, S. Salti, and L. D. Stefano. Unique signatures of

histograms for local surface description. In ECCV, 2010.

[26] P. Viola and M. Jones. Fast Multi-view Face Detection. In

CVPR, 2003.

[27] C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedes-

trian detection. In CVPR, 2009.

[28] Z. Zhang. Iterative point matching for registration of free-

form curves. IJCV, 1994.


