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Abstract

In this paper, we present a new 3D tracking approach for self-localization in urban

environments. In particular, we build on existing tracking approaches (i.e., visual odom-

etry tracking and SLAM), additionally using the information provided by 2.5D maps of

the environment. Since this combination is not straightforward, we adopt ideas from se-

mantic segmentation to find a better alignment between the pose estimated by the tracker

and the 2.5D model. Specifically, we show that introducing edges as semantic classes

is highly beneficial for our task. In this way, we can reduce tracker inaccuracies and

prevent drifting, thus increasing the tracker’s stability. We evaluate our approach for two

different challenging scenarios, also showing that it is generally applicable in different

application domains and that we are not limited to a specific tracking method.

1 Introduction

Accurate geo-localization of images is crucial for applications such as outdoor Augmented

Reality (AR), autonomous driving, mobile robotics and navigation. Since GPS and compass

information are often not precise enough, especially in urban environments, there has been

a considerable scientific interest in computer vision methods that register and track mobile

devices within a global reference frame.

It is possible to rely on pre-registered images from the surroundings to obtain an accurate

3D location and orientation [23, 24]. However, such methods quickly become impractical, as

many images need to be captured and registered in advance. Moreover, such pre-registered

image collections typically capture only one specific appearance of the recorded scene, and

matching them under different illumination or season conditions is still difficult.

In this paper, we aim for a scalable and efficient method. Instead of relying on pre-

registered images, we prefer to use 2.5D maps, more exactly maps of the buildings’ outlines

and their approximate heights. Using 2.5D maps for localization is not new [2, 21, 26]; they

are attractive as they are broadly available 1. However, their nature is of course very different
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from images, especially because they are not textured, and this makes them difficult to use.

In addition, we would like to exploit temporal information and embed this approach into a

tracking framework.

Thus, the main contribution of the paper is a novel 3D tracking method, where the abso-

lute information provided by a semantic segmentation of the input image is used in order to

compensate for typical tracking inaccuracies such as drift. Moreover, regarding the semantic

segmentation, we show that considering rather abstract classes such as the buildings’ edges

is particularly important for the task at hand. In addition, to exploit the information given

by 2.5D maps, and as illustrated in Fig. 1, we align a 3D rendering created from these 2.5D

maps with a semantic segmentation of the input images. This can be done by maximizing the

image likelihood over the pose, based on the rendering from the pose and the semantic seg-

mentation. Thus, as a second contribution, we introduce an efficient method to compute this

likelihood. We use the angles about the vertical axis provided by accelerometers to rectify

the input image such that the columns of the image correspond to vertical lines in 3D. Con-

trary to the other measures, these angles are very reliable. We can thus simply finely sample

the pose space around an initial prediction to obtain a very good pose estimate efficiently.

In the remainder of this paper, we first discuss related work in Sec. 2. We then present our

3D tracking approach exploiting 2.5D maps and semantic segmentation in Sec. 3. Next, the

thus obtained results on two challenging scenarios, compared to valid baselines, are shown

in Sec. 4. Finally, we summarize and conclude the work in Sec. 5.

Figure 1: We propose an efficient method to geo-localize video sequences by aligning a

simple 2.5D map (left) with the semantic segmentation of the frames (middle). The aligned

model is overlaid over the frames (right).

2 Related Work

A core requirement for outdoor AR systems, autonomous driving or mobile robotics is an

accurate, robust and large-scale camera registration in a global reference frame. Early works

tried to tackle the problem by using GPS and compass sensor information [9]. Since this

is often not accurate enough, image-based localization techniques have been developed in

order to improve the computed camera pose estimate.

Such approaches usually take as input one or more camera images and optionally prior

information from device sensors. Using this information, the 3D position or full 6 degrees

of freedom (DoF) pose of the input image can be computed by matching 2D image points to

pre-registered 3D scene points stored in a database obtained from pre-captured scene images.

For example, [24] performs image-based localization based on a database that contains 20km

of urban street-side imagery. [23] tackles the problem by an active correspondence search,
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combining both search directions when matching points, i.e., 2D-to-3D and 3D-to-2D, which

results in improved accuracy and performance.

Despite using advanced matching strategies, though, a core problem of these approaches

remains their limited scalability, since many images need to be captured in advance for each

new scene in order to create the databases. Furthermore, these databases present just snap-

shots of the corresponding locations. Thus, feature point matching under changing condi-

tions due to illumination, season or construction work is very challenging if not impossible

at all. In order to avoid the tedious creation and maintenance of scene databases, [31] and

[27] use existing image collections such as GoogleStreetView. However, these collections

are rather sparsely sampled and not available for many regions and countries, which severely

limits their applicability to image-based localization for outdoor scenarios.

Another line of research avoids creating scene databases altogether by leveraging widely

available, untextured 2D cadastral maps annotated with per-building height information,

which we refer to as 2.5D maps or elevation models, generated for example from LIDAR

data. In particular, [18] establishes line correspondences between the input image and a

2.5D map of the scene. However, due to insufficient accuracy regarding the image orien-

tation, additional user interaction is required. Similarly, [21] searches for 3D-2D line and

point correspondences between an image and a 2.5D map. Therefore, an already registered,

second image is required as starting point for the method, which means that the first image

of a sequence has to be manually annotated.

Other works ease the problem by using panoramic images, since the additional infor-

mation contained in wide field of view images facilitates localization [1]. For instance, [8]

proposes a building façade orientation descriptor to register panoramic images with 2D maps.

However, since mobile devices typically have a rather narrow field of view, a descriptor such

as the one proposed by [8] is not discriminative enough in such situations. [5] first detects

vertical building outlines and façade normals in panoramic images, yielding 2D fragments,

and then matches the obtained fragments with a 2D map. [6] matches a descriptor computed

from vertical building outlines in perspective images with a 2D map. As a drawback, it

requires some manual input to make detection of vertical edges and vanishing points easier.

More recently, SLAM-based systems have been proposed for use in outdoor localization

tasks. For example, [29] and [19] globally align the local SLAM map from a stereo image

pair, which, however, requires the user to walk several meters in practice in order to span

the necessary baseline. In contrast, [2] leverages untextured 2.5D models and shows that it

is possible to instantly initialize and globally register a local SLAM map without having the

user perform any specific motions for initialization. However, the method relies on finding

the corners of buildings in the input image by extracting vertical line segments, which is a

rather vulnerable approach. In contrast, we build upon recent advances in semantic segmen-

tation in order to identify the buildings’ edges much more reliably.

In general, using segmentation in tracking is not a new idea (e.g., [10, 20]), however,

only specific objects are typically considered. In contrast, our method, which is trained on

independent data, can handle even unseen buildings. Moreover, we provide a very efficient

method to evaluate the cost function, allowing us to finely sample the pose space and avoid

local minima, which are another pitfall for 3D tracking. [26] exploits segmentation in order

to optimize the camera pose over a continuous 6D cost space. However, the method relies

on relatively detailed models and panoramas and considers only the façades as a segment

class, while we show that edges are important, especially when the field of view is narrow.

[3] also uses semantic labeling, but considers landscape images. Moreover, the method only

estimates the orientation of an image with respect to the model, but not its 3D position.
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Building upon the success of deep learning for classification, [13] trains a CNN to di-

rectly regress the 6 DoF camera pose from a single input image. In particular, transfer learn-

ing from large scale classification to the re-localization task is leveraged. However, for each

new scene, the network has to be re-trained, thus, severely limiting the practical applicability

of this approach.

3 Efficient 3D Tracking based on Semantic Segmentation

«««< HEAD In this section, we present our 3D tracking method based on semantic seg-

mentation. Since scalability and efficiency are crucial for mobile outdoor applications, our

system does not rely on cumbersome pre-registered image collections, but instead leverages

easily obtainable 2.5D city models and recent advances in semantic image segmentation. In

particular, given an input image, we first compute its semantic representation using a CNN

and a pose prior using a 3D tracker. Next, pose hypotheses are sampled around the prior,

and for each hypothesis, we compute a 3D rendering of the city model. The core idea now

is to find the pose that optimally aligns the rendering with the segmentation in order to cor-

rect inaccuracies caused by the tracker. Fig. 2 shows an overview of the approach. In the

following, we describe the individual steps in more detail.

======= Since scalability and efficiency are crucial for mobile outdoor applications,

our 3D tracking system does not rely on cumbersome, pre-registered image collections. In-

stead, we build on existing 3D tracking approaches and exploit easily obtainable 2.5D city

maps and recent advances in semantic segmentation in order to correct errors induced by the

tracker such as drift.

In particular, the input frame is first forwarded to the 3D tracker (see Sec. 3.1) and to

a CNN-based segmentation stage (see Sec. 3.2), giving us a rough estimate of the camera

pose and a semantic segmentation of the image. This information is then used in the pose

refinement stage (see Sec. 3.3), where we first sample pose hypotheses around the estimated

pose prior and then compute a 3D rendering of the city model for each hypothesis. The

core idea now is to find the pose hypothesis that optimally aligns the rendering with the

segmentation, finally yielding a more accurate estimate of the camera pose than the prior

provided by the tracker. Fig. 2 shows an overview of the approach. In the following, we

describe the individual steps in more detail.

»»»> ecc870c1336aa4441adc43fef63e1c59b08cfc07
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Figure 2: Correcting a 3D tracker by optimally aligning a 3D rendering of a city model

estimated from a 2.5D map with a semantic segmentation of the input image.
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3.1 3D Tracking

Due to the flexibility of our method, the actually used tracker is not crucial and we can

use any approach that performs relative 3D tracking between consecutive frames. This, in

addition, allows us also to apply different tracking methods for different application domains.

In this work, we use two different trackers with different properties, a SLAM-based approach

and a visual odometry algorithm. While the terms SLAM and visual odometry are sometimes

used synonymously in the literature, we consider the main difference in the reconstruction

of structure in the former, and the absence of explicit structure recovery in the latter.

The first tracker is a keyframe-based SLAM approach similar to PTAM [14]. Keyframe-

based SLAM approaches have been widely used in the past in the domain of handheld camera

motion. Although directly applicable on camera phones [15], as a drawback, they require

side-ways motion and usually fail for forward motion scenarios. After covering a reasonable

camera baseline between the initial keyframes, the camera pose is continuously estimated

and 3D structure is recovered using fast-corners and image descriptors.

The second tracker is a lightweight visual odometry algorithm based on the work of

[28]. The relative motion between consecutive keyframes is recovered by first estimating the

optical flow using Lucas-Kanade [17], followed by epipolar geometry estimation through

linearized Groebner solvers. These solvers have shown to give good performance in domains

with restricted camera motion, such as forward vehicular motion, however, at the cost of

being less accurate at turns due to the inherent numerical approximations.

After relative motion estimation, for both tracking approaches, the initial pose estimates

are forwarded to the pose refinement stage, which corrects the drift of the trackers based on

the 2.5D map and the semantic segmentation.

3.2 Semantic Segmentation

Recently, several deep learning based semantic segmentation methods [4, 16, 22] have been

proposed, allowing for classifying large number of classes. In our case, however, we aim

at segmenting only classes that are relevant to our problem, i.e., classes that correspond to

elements of the 2.5D map: the façades, their vertical and horizontal edges and background

(roofs, ground, sky or vegetation). In particular, we use a stage-wise training procedure,

where we start with a coarse network (we use FCN-32s [16]) initialized from VGG-16 [25],

fine-tune it on our data, and then use the thus generated model to initialize the weights of a

more fine-grained network (FCN-16s). This process is repeated in order to compute the final

segmentation network having an 8 pixels prediction stride (FCN-8s).

Once trained, the output of the segmentation stage for a given RGB image I is a set

of probability maps having the same resolution as I, one for each of our four classes, i.e.,

façade (f), vertical edge (ve), horizontal edge (he) and background (bg):

S(I) = {Pf,Pve,Phe,Pbg} . (1)

As shown in Fig. 3, other items are typically classified as the classes of the elements they

occlude. For example, pedestrians and cars will be ignored and classified as part of the façade

and as part of the background. This happens because they are also ignored in our training

images, and the segmentation method is powerful enough to classify them at run-time as

belonging to the class of the elements they occlude. This is the desired behavior, as scene

elements such as pedestrians or cars are not directly relevant in our approach.

Citation
Citation
{Klein and Murray} 2007

Citation
Citation
{Klein and Murray} 2009

Citation
Citation
{Ventura, Arth, and Lepetit} 2014{}

Citation
Citation
{Lucas and Kanade} 1981

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2015

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

Citation
Citation
{Simonyan and Zisserman} 2014



6 HIRZER, ARTH, ROTH, LEPETIT: 3D TRACKING WITH SEMANTIC SEGMENTATION

Figure 3: Input frames (top) and their semantic segmentations (bottom). The semantic seg-

mentation is robust to occlusions by cars, pedestrians and vegetation, as can be particularly

seen from the lower horizontal edges.

Standard training sets for semantic segmentation usually do not contain the edges of

façades, while these are crucial for our approach. Hence, in order to create ground truth

data with relatively little effort, we recorded short video sequences in an urban environment.

We manually aligned the first frame of each sequence with a 2.5D model and then applied

a model- and keypoint-based 3D tracking system. With this approach, we were able to

label the façades and their edges very efficiently. More precisely, we recorded 82 video

sequences of average length of about 10 seconds. In this way, we obtained a training set

of 10,846 images, which we augmented by horizontally mirroring each image, yielding a

training set of 21,692 samples in total.

3.3 Pose Refinement

The input to our pose refinement stage are a coarse pose prior, a segmentation of the in-

put frame and a 2.5D model. The core idea now is to sample pose hypotheses around the

prior and to find the pose which best aligns a rendering of the model with the semantic seg-

mentation. How well a rendering from pose p fits to the segmentation is evaluated via the

log-likelihood

L(p) = ∑
x

logPc(p,x)(x) (2)

estimated over all image locations x = (u,v). Here, c(p,x) is the class at location x when

rendering the model under pose p; Pc(x) is the probability for class c at location x given by

the corresponding probability map predicted by the semantic segmentation stage in Eq. (1).

We show now that under reasonable assumptions, the sum in Eq. (2) can be computed

very efficiently. We first observe that the angles between the camera and the gravity vector

are usually estimated very accurately by the sensors, in contrast to other measures that can

be very noisy. This allows us not only to reduce the pose search space, but also to rectify

the input image such that the columns of the image correspond to vertical lines in 3D [12].

Since the same also applies for the 3D renderings, we can compute the sum over the image

in Eq. (2) column by column. Let us thus rewrite L(p) as

L(p) = ∑u ∑v logPc(p,(u,v))(u,v)

= ∑u ℓ(u,p) ,
(3)

where u and v denote the indices of the column and the row of an image location, respectively.
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To efficiently compute the sum ℓ(u,p), analogously to integral images [7, 30], we apply

the concept of ‘integral columns’. Let us define such integral columns for the probability

map of class c as

IPc(u,v) =
v−1

∑
j=0

logPc(u, j) , (4)

which can be computed efficiently similarly to integral images:
{

IPc(u,0) = 0

IPc(u,v) = IPc(u,v−1)+ logPc(u,v) .
(5)

Note that IPc only depends on the segmentation and needs only to be computed once and

independently of the number of evaluated pose samples. For instance, considering a typical

image column u, such as illustrated in Fig. 3 consisting of the labels background, horizontal

edge, façade, horizontal edge and background, ℓ(u,p) can easily be computed by

ℓ(u,p) = IPbg(u,vbh +1)− IPbg(u,0) +
IPhe(u,vh f +1)− IPhe(u,vbh) +
IPf(u,v f h +1)− IPf(u,vh f ) +
IPhe(u,vhb +1)− IPhe(u,v f h) +
IPbg(u,V )− IPbg(u,vhb) ,

(6)

where V is the number of rows of the segmentation, and the pose p is represented by the

transition rows v∗ between individual classes:

• vbh: the row of transition between the background (sky) and the top horizontal edge

• vh f : the row of transition between the top horizontal edge and the façade

• v f h: the row of transition between the façade and the bottom horizontal edge

• vhb: the row of transition between the bottom horizontal edge and the background

(ground plane)

Note that for some columns, not all v∗ are present, and that there can be another type of

transition including the vertical edge class. In these cases, the sum above has to be adapted,

which, however, is straightforward.

4 Experiments

In this section, we first illustrate the advantages of considering the edges of the buildings in

the context of our tracking problem. Then, we demonstrate our approach for two different

scenarios also building on two different tracking approaches. In this way, we cannot only

show the benefits of the proposed approach, but also its generality.

4.1 Importance of Edges

Vertical and horizontal edges are usually not considered in standard semantic segmentation

problems, however, they are very useful for our 3D tracking problem. As Fig. 4 shows, if the

buildings are in a configuration that forms a discriminative shape in the image, segmenting

only the façades can be sufficient. Even with these discriminative configurations, though,

tracking can still fail. On the other hand, if the buildings are aligned in a row for example,

the registration is not constrained enough without the edges, and tracking is not possible.
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(a) (b) (c) (d)

Figure 4: Façade only segmentations (a, c) and registration with our method overlaid over

the input frame (b, d). The pair (a, b) shows a configuration where segmenting the façades

alone is sufficient for successful tracking, while for the pair (c, d), additional constraints

from the edges would be required.

4.2 Motion Estimation Using SLAM for Handheld Cameras

First, we demonstrate our method on several challenging sequences from a handheld camera

using SLAM. These sequences were not used for training the semantic segmentation, and,

furthermore, have also been captured during a different season than the training sequences.

For each frame, we use 245 pose samples around the prior provided by the SLAM tracker,

taken within a square of ±3m on the ground plane, and in a range of [−6°;+6°] for the orien-

tation around the model’s up-vector. Since the movement along the z-axis and the orientation

around the other two rotation axes seem less affected by tracking errors and drift, we do not

generate samples for these parameters. We compared our method against the unmodified

camera trajectory of the SLAM system described in Sec. 3.1. As Fig. 5 shows, the SLAM-

based tracking system is prone to drift, while we can register the sequences successfully,

thanks to the “anchors” provided by the semantic segmentation.

In contrast to previous methods, we do not rely on pre-registered images. This makes

our method not only more convenient, but also more robust: We are much less affected by

illumination variations, occlusions or other changes in the scene. In particular, Sequence #5

was recorded from the same scene under different illumination conditions, once on a cloudy

day, and once with bright sunlight casting shadows on the façades. Since the segmentation

is robust enough to cope with such variations, our method is not affected and still able to

successfully track the sequences. Table 1 shows some quantitative results in terms of rotation

error around the model’s up-vector and position error on the ground plane.

Sequence #1 Sequence #3 Sequence #5

Frame 250 350 450 550 650 200 400 600 800 1000 210 310 410 510 610

Seg rot. error [°] 0.9 0.6 4.3 1.4 0.6 0.9 1.4 1.6 0.6 1.3 0.3 3.7 2.0 2.9 3.1

SLAM rot. error [°] 3.9 3.6 4.3 4.4 5.4 2.1 4.6 4.4 3.6 1.7 3.3 6.7 8.0 8.9 9.1

Seg pos. error [m] 1.0 0.8 2.4 1.2 1.5 1.0 1.0 2.2 1.4 1.3 0.2 2.7 1.9 3.4 2.3

SLAM pos. error [m] 1.4 1.5 1.3 1.2 1.3 0.5 2.6 1.1 1.5 2.2 2.3 1.3 1.9 0.9 2.2

Table 1: Rotation and position errors for our method (Seg) and SLAM-based track-

ing (SLAM) on three sequences.

4.3 Vehicle Trajectory Estimation Using Visual Odometry

To show the generality of our approach, we run a second experiment, where we combine our

pose estimation method with the visual odometry tracker described in Sec. 3.1 for a camera

rig mounted on the roof of a car. The poses are sampled along the trajectory estimated by
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Sequence #1, frames #43, #103, #163, #203, #343 and #723.

Sequence #3, frames #223, #483, #663, #823, #923 and #1123.

Sequence #5, frames #43, #83, #183, #243, #363 and #623.

Figure 5: 3D tracking on challenging sequences. Semantic segmentation of the input frame

(top row), registration with a SLAM-based tracker overlaid over the input frame (middle

row), and registration with our method overlaid over the input frame (bottom row).

the tracker using the same settings as described above, and corrected from the best sampling

result.

The results are depicted in Fig. 6, where we show the trajectory obtained by our approach

(solid red line) along with the trajectory of the visual odometry tracker (dotted blue line) on

a part of Sequence #18 from the KITTI dataset [11]2. While the trajectory of the visual

odometry tracker deviates from the real motion path over time, our method removes most of

the errors and aligns the trajectory very well.

We want to note explicitly that the segmentation was not tuned to this vehicular motion

domain and that the combination of 2.5D model data from OpenStreetMap and the images

from KITTI is very challenging for several reasons. First, the images are highly over- or

2Although the KITTI sequences were recorded with a stereo rig, we used the images from the left camera only.
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underexposed, especially at the image areas of the façades. Second, the model is highly

inaccurate at corners and in narrow streets, which becomes clearly observable during ren-

dering. Third, the height of the buildings is unknown, so is the actual building altitude. In

particular, following the data source, all buildings are located on a single ground plane, forc-

ing the tracker to stay on the ground plane even if the real motion trajectory is slightly uphill

or downhill (i.e., ±2m on the trajectory shown in Fig. 6).

Figure 6: Trajectory estimated via visual odometry (dotted blue line) and the corrected

trajectory using our segmentation-based tracking (solid red line) (left). Illustrative examples

from KITTI Sequence #18 showing highly over- or underexposed façade areas (right).

5 Conclusion

In this paper, we presented a 3D tracking method which additionally takes into account

environmental information in terms of 2.5D maps. The key idea is to estimate a coarse pose

using the tracker and to refine this pose later on using the environmental information. For that

purpose, a 3D model is rendered from the 2.5D maps, which is then optimally aligned using

a semantic segmentation of the corresponding input image. In this way, we get a robust and

accurate estimation for the pose and do not need pre-registered reference images, which are

cumbersome to obtain. We demonstrated that our approach is very general, as we applied

it for two different scenarios also using two different tracking approaches. In particular,

introducing additional semantic classes (i.e., vertical and horizontal edges) has proven to be

very beneficial, where the currently fast progress in semantic segmentation would allow for

further improvements in the future.
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