
KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION 1

Hashmod: A Hashing Method for Scalable

3D Object Detection

Wadim Kehl1

kehl@in.tum.de

Federico Tombari12

federico.tombari@unibo.it

Nassir Navab1

navab.cs.tum.edu

Slobodan Ilic3

slobodan.ilic@siemens.com

Vincent Lepetit4

lepetit@icg.tugraz.at

1 Computer-Aided Medical Procedures,

TU Munich, Germany

2 Computer Vision Lab (DISI),

University of Bologna, Italy

3 Siemens AG

Research & Technology Center

Munich, Germany

4 Institute for Computer Graphics and

Vision,

TU Graz, Austria

Abstract

We present a scalable method for detecting objects and estimating their 3D poses

in RGB-D data. To this end, we rely on an efficient representation of object views and

employ hashing techniques to match these views against the input frame in a scalable

way. While a similar approach already exists for 2D detection, we show how to extend

it to estimate the 3D pose of the detected objects. In particular, we explore different

hashing strategies and identify the one which is more suitable to our problem. We show

empirically that the complexity of our method is sublinear with the number of objects

and we enable detection and pose estimation of many 3D objects with high accuracy

while outperforming the state-of-the-art in terms of runtime.

1 Introduction

Scalable 3D object detection and pose estimation remains a hard problem to this day. The

recent advent of low-cost RGB-D sensors boosted the research activity on object instance

detection and 3D pose estimation even further, allowing state-of-the-art methods to robustly

detect multiple objects and estimate their 3D poses even under high levels of occlusion.

However, while image recognition and 2D object recognition methods can now scale to

billions of images or millions of objects [10, 19, 26, 27], 3D object detection techniques are

still typically limited to ten or so objects.

Some attempts to make 3D object detection scalable are based on local descriptions

of 2D or 3D keypoints, since such descriptors can be matched in a sublinear manner via

fast indexing schemes [24]. However, computing such descriptors is expensive [1, 38], and

more importantly, they tend to perform poorly on objects without discriminative geometric

or textural features. [4, 5, 34] also rely on recognition of densely sampled patches but are

likely to work only when depth data is available. [20] uses a tree for object recognition, but

c© 2015. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

2 KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION

Figure 1: Left: One frame of the ACCV12 dataset [17] augmented with our detections.

Right: Average performance of our approach with a given amount of objects in the database.

We clearly scale sublinearly and outperform the state-of-the-art [31] with more than 8 ob-

jects, enabling detection of many 3D objects at interactive runtimes.

still scales linearly in the number of objects, categories, and poses. Other approaches rely

on part-based models [29, 30, 33], which are designed for category recognition rather than

instance recognition, and little concern is given to the complexity, which is typically linear

in the number of objects.

Our approach to 3D object detection is based on 2D view-specific templates which cover

the appearance of the objects over multiple viewpoints [2, 14, 17, 18, 25]. Since viewpoints

include the whole object appearance rather than just parts of it, they can generally handle

objects with poor visual features, however they have not been shown to scale well with the

number of images so far. [35].

We are strongly influenced by [10] which showed impressive results in terms of 2D ob-

ject detection by replacing convolutions of templates with constant-time hash table probes,

parsing input images with 100,000 templates in about twenty seconds with respectable preci-

sion rates. We apply hash functions [12] to image descriptors computed over bounding boxes

centered at each image location of the scene, so to match them efficiently against a large de-

scriptor database of model views. In our work, we rely on the LineMOD descriptor [17],

since it has been shown to work well for 3D object detection, although other descriptors

such as HOG [8] could be certainly used as well.

Our contribution is to present an efficient way of hashing such a descriptor: to this end,

we explore different learning strategies to identify the one that is most suited to our problem.

As shown in Figure 1, we outperform the state-of-the-art template matching method DTT-

3D [31] by intelligently hashing our descriptors, achieving sublinear scalability.

2 Related work

3D object detection has a long history. Early works were based on edges [16, 22], then

keypoint-based methods were shown to work reliably when distinctive features are avail-

able [26, 28, 36, 37] and robust schemes for correspondence filtering and verification are

used [1, 6, 15]. Furthermore, they are also scalable since they can be reduced to searching

nearest neighbors efficiently in their feature spaces [19, 24]. However, if such features are

missing, which is actually the case for many daily objects, this approach becomes unreliable.

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION 3

Figure 2: Left: As in [17], we compute LineMOD descriptors for synthetically rendered

views sampled on hemispheres of several radii. Right: One such synthetic view of the ‘lamp’

object overlaid with the fixed grid for matching and the color-coded quantized orientations

of image gradients and 3D normals used to compute the descriptor.

Template-based approaches then became popular. LineMOD [17] achieved robust 3D

object detection and pose estimation by efficiently matching templated views with quantized

object contours and normal orientations. In [31] the authors further optimize the matching

via cascades and fine-tuned templates to achieve a notable run-time increase by a factor of

10. Nonetheless, these works still suffer from their linear time complexity. [14, 23, 32] show

how to build discriminative models based on these representations using SVM or boosting

applied to training data. While [23, 32] do not consider the pose estimation problem, [14]

focuses on this problem only with a discriminatively trained mixture of HOG templates.

Exemplars were also recently used for 3D object detection and pose estimation in [2], but

the proposed approach still does not scale.

[5, 34] use forest-based voting schemes on local patches to detect and estimate 3D poses.

While the former regresses object coordinates and conducts a subsequent energy-based pose

estimation, the latter bases its voting on a scale-invariant LineMOD-inspired patch represen-

tation and returns location and pose simultaneously. [4] also uses Random Forests to infer

object and pose, but via a sliding window through a depth volume. These methods remain

slow, and it is not clear how they scale in performance with the number of objects.

Over the last years, hashing-based techniques became quite popular for large-scale image

classification since they allow for immediate indexing into huge datasets. Apart from many

works that focused on improving hashing of real-valued features into more compact binary

codes [13, 21], there has been ongoing research on applying hashing in a sliding window

scenario for 2D object detection: [10] applies hashing on HOG descriptors computed from

Deformable Part Models to scale to 100,000 2D object classes. [3] presents a scalable object

category detector by representing HOG sparsely with a set of patches which can be retrieved

immediately.

Hashing has also been used for 3D object detection: [9] hashes paths over edgelets in

color images and allows for real-time 3D object detection, however the output remains in

terms of 2D locations only. [7] applies uniform quantization to edge-based descriptors to

immediately look up approximate nearest neighbors. Here we instead prefer hashing tech-

niques in conjunction with a learning scheme since it tends to provide better accuracy by

taking the actual data variety into account.

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

4 KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION

Figure 3: Visualization of the hashing pipeline with one hash function h and a key length of

b = 6. At each sliding window’s position we extract a LineMOD descriptor x and sample

certain orientations at specific positions to form a short binary string h(x). This serves as an

index into the pre-filled hash table to retrieve candidate views for further matching. Both the

sample positions and orientations for h are learned.

3 Hashing for Object Recognition and 3D Pose Estimation

Given a database of M objects, we synthetically create N views for each object from poses

regularly sampled on a hemisphere of a given radius, as shown in Figure 2. From this, we

compute a set D of d-dimensional binary descriptors:

D = {x1,1, ...,xM,N} , (1)

where xi, j ∈B
d is the descriptor for the i-th object seen under the j-th pose. As already men-

tioned, we use LineMOD in practice to compute these descriptors. The LineMOD descriptor

is a vector of integers between 0 and 16 and for each pixel it is either set to 0 when there is

no significant image gradient or depth data present or otherwise set to a value to represent

a quantized orientation of either an image gradient (1-8) or 3D normal (9-16). We concate-

nate the binary representation of these integer values to obtain the binary strings xi, j. In the

remainder of this work we will use the terms views, templates, and descriptors as synonyms.

Figure 3 gives an overview of our pipeline. As usually done in template-based ap-

proaches, we parse the image with a sliding window looking for the objects of interest.

We extract at each image location the corresponding descriptor x. If the distance between

x and its nearest neighbor xi, j in D is small enough, it is very likely that the image loca-

tion contains object i under pose j. As discussed in the introduction, we want to perform

this (approximate) nearest neighbor search by hashing the descriptors. Therefore, we ex-

plore different strategies for building the hashing functions. This is done in the offline stage

described below.

Also note that we tackle the issue of object scale and views of different 2D sizes by

dividing the views up into clusters Ds ⊂ D of similar scale s. This leads to s differently-

sized sliding windows during testing which extract differently-sized descriptors on which to

perform the hashing. Moreover, to increase detection rates, we assign a pre-defined number

of hash functions per window such that they relate to random but overlapping subsets of

Ds. During testing, we evaluate all sliding windows with their associated hashing functions,

union their retrieved views and conduct subsequent matching. Lastly, we determined a good

compromise for the key lengths by setting for each scale s the key length bs := ⌊log2(|Ds|)⌋.

KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION 5

3.1 Selecting the Hashing Keys

During our offline stage, we learn several hashing functions h [12]. As shown in Figure 3, the

purpose of each function is to immediately index into a subset, often called a “bucket”, of D
when applied to a descriptor x ∈ B

d during testing. These buckets are filled with descriptors

from D with the same hash value so that we can restrict our search for the nearest neighbor

of x to the bucket retrieved via the hashing function instead of going through the complete

set D. It is very likely, but not guaranteed, that the nearest neighbor is in at least one of the

buckets returned by the hashing functions.

In practice, a careful selection of the hashing functions is important for good perfor-

mance. Since the descriptors x are already binary strings, we design our hashing functions

h(x) to return a short binary string made of b bits directly extracted from x. This is a very

efficient way of hashing and we will refer to these short strings as hash keys.

There is a typical trade-off between accuracy and speed: we want to retrieve only a hand-

ful of descriptors at each image location and the number of retrieved elements is governed by

the hash key length and the distribution of the descriptors among the buckets. Since we use

b bits for the hash table, we span a table with 2b buckets. If a key is too short, the number of

buckets is too small and we store overproportionally many descriptors per bucket, increasing

subsequent matching time after retrieval. If the key is too large, we might be more prone

to noise in the bitstrings which may lead to wrong buckets, rendering false negatives more

probable during testing. We thus want to select these b bits in a way such that we maximize

the odds of finding the nearest neighbors of the input descriptors in the buckets while keeping

the total amount of retrieved views to a minimum.

An exhaustive evaluation of all the possible bit selections to build the hash keys is clearly

intractable. We experimented with the following variants:

Randomness-based selection (RBS) Given a set of descriptors, we select the b bits ran-

domly among all possible d bits. As we will see later on, this selection strategy yields

bad results since some bits are more discriminant than others in our template representa-

tion. Nonetheless, it provides us with a weak baseline we can compare to and it outlines the

importance of a more sophisticated approach towards hash learning.

Probability-based selection (PBS) For this strategy, we focus on the bits for which the

probabilities of being 0 and 1 are close to 0.5 with a given set of descriptors. We therefore

rank each bit B according to its entropy E = p(B = 0) ln p(B = 0)+ p(B = 1) ln p(B = 1)
and take the best b. This strategy provides a high accuracy since it focuses on the most

discriminant bits. However, later evaluation will reveal that this strategy results in a high

variance in the number of elements per bucket, rendering PBS inefficient in terms of runtime.

Tree-based selection (TBS) This strategy is inspired by greedy tree growing for Random-

ized Forests. Starting with a set of descriptors at the root, we determine the bit that splits this

set into two subsets with sizes as equal as possible, and use it as the first bit of the key. For

the second bit, we decide for the one that splits those two subsets further into four equally-

sized subsets and so forth. We stop if b bits have been selected or one subset becomes empty.

This procedure alone yields a balanced tree with leafs of similar numbers of elements. Each

hash key can be regarded as a path down the tree and each leaf represents a bucket. Note that

such a balanced repartition ensures retrieval and matching at a constant speed. Formally, the

Citation
Citation
{}

6 KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION

Figure 4: The TBV strategy encourages descriptors for similar views to fall into different

buckets. This increases the chances to find a close descriptor when parsing the buckets.

j-th bit B of the key is selected by solving:

argmin
B

∑
i

∣

∣

∣
|SB

L (Ni)|− |SB
R (Ni)|

∣

∣

∣
, (2)

where Ni ⊂ D is the set of descriptors contained by the i-th node at level j, and SB
{L,R}(Ni)

are the two subsets of Ni that go into the left and right child induced by splitting with B.

Tree-based selection with view scattering (TBV) We now further adapt the TBS strategy

to our problem: as illustrated in Figure 4, to improve detection rates we favor similar views

of the same object to go into different branches. The idea behind this strategy is to reduce

misdetections due to noise or clutter in the descriptor. If an extracted hash has a polluted bit

and thus points to a wrong bucket, we might not retrieve the best view but still could recover

from a similar view that we stored in the bucket the polluted hash points to. This strategy

improves the robustness of the TBS retrieval, resulting in a consistently higher recall. We

optimize the previous criterion with an additional term:

argmin
B

1

|Ni|
∑

i

∣

∣

∣
|SB

L (Ni)|− |SB
R (Ni)|

∣

∣

∣
+

1

|Ni|2

(

P(SB
L (Ni))+P(SB

R (Ni))
)

, (3)

where the second term penalizes close views falling into the same side of the split. We define

the penalty function P(·) as:

P(N) := ∑
x∈N

∑
y∈N

I(x,y) ·

{

1, if cos−1(|〈qx,qy〉|)< τ

0, otherwise ,
(4)

where I(x,y) indicates if descriptors x and y encode views of the same object and qx,qy

are the quaternions associated with the rotational part of the descriptors’ poses. We set the

proximity threshold τ = 0.3 empirically according to our viewpoint sampling.

3.2 Remarks on the Implementation

For selecting the hash keys, we rely on the descriptors after ‘bit spreading’ of LineMOD [17],

which makes the descriptors robust to small translations and deformations in a neighborhood

of T pixels. It increases the spatial overlap of quantized features and allows for a better

descriptor separability. For matching itself we used the unspreaded templates.

Citation
Citation
{}

KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION 7

Furthermore, after one bit has been selected, we disallowed all bits closer than T to

be selected for the same LineMOD value. This forces the bit selection to take different

values and positions into account, as we sometimes observed an accumulation of selected

bits encoding the same orientation in one area which could lead to bad recognition rates.

For efficiency, we conduct the matching analogously to [31] on a fixed grid. As opposed

to [17], we do not use a robust cosine-based similarity score but count the bits after ANDing

the descriptors and dividing by the number of grid points falling on the view foreground.

4 Evaluation

We ran our method on the LineMOD ACCV12 dataset [17] consisting of 15 objects and

followed the exact same protocol to create an equidistant viewpoint sampling. Furthermore,

scale and in-plane rotations were sampled accordingly to cover a pre-defined 6D pose space,

resulting in exactly N = 3115 views per object.

We followed [17] and spread the quantized values in a small neighborhood of T = 8

pixels which makes the representation robust and allows to check only every T -th image

position. Furthermore, we use the same post-processing: after retrieval/matching, we sort the

candidates according to their score and run a rough color check to discard obvious outliers.

We conduct a fast voxel-based ICP [11] and reject candidates if the average euclidean error

is too large. Finally, the first n = 10 survivors are projected onto the scene to run a finer ICP

together with a depth check to decide for the best match. We use the same evaluation criteria

with a distance factor of km = 0.1 to decide for a hit or miss.

The computational cost during testing is modest: the whole system runs on a single

CPU-core—apart from the post-processing where the depth check projections use OpenGL

calls—, uses no pyramid scheme and the hash tables take up less than 1 MB.

Different learning strategies. We learned the hashing for each sequence/objects configu-

ration by grouping the object of interest together with a random subset of the remaining ones.

An exception is the case for 15 objects where we built the hash tables once and used them for

all tests. A summary of our evaluation is given in Figure 5. Note that we conducted our ex-

periments with a varying amount of hash tables per window/scale for each strategy but only

plot the most insightful to not clutter the graphs and save space. The behavior was similar

across the whole dataset and we thus present results for all strategies only on two sequences

and then restrict ourselves to the best strategy thereafter for a more detailed analysis.

The RBS strategy was clearly the weakest one. This is because RBS managed a poor

separation of descriptors: since the key bits were chosen randomly, most descriptors were

assigned a hash value of pure zeros and were put into the first bucket while the rest of the

hash table was nearly empty. This resulted during testing in either hitting an arbitrary bucket

with no elements or the 0-bucket with a high amount of retrieved views, approximating an

exhaustive search at that image location which increased matching time. It only started to

detect accurately with multiple tables per window at the expense of very high runtimes.

Not surprisingly, PBS nearly always managed to correctly detect the object—limited

only by our matching threshold—while achieving similar runtimes as RBS with 3 tables

per window. An inspection of the hashes revealed that PBS led to multiple large buckets

where descriptors concentrated and if one of those buckets was hit, it was very likely that

it contained the correct view. Nonetheless, PBS does not take advantage of all available

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

Citation
Citation
{}

8 KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION

Figure 5: Examples of accuracies and runtimes for different strategies and a varying database

size. Left column: for the ‘ape’ sequence. Right column: for the ‘lamp’ sequence. The

number in the legend for each strategy denotes the amount of hash keys per window.

buckets as some of them remain empty and therefore still exhibits a linear runtime growth.

Using more tables for RBS was just slightly increasing runtime and accuracy.

For both TBV and TBS the most interesting observation is their sublinear growth in

runtime. Enforcing the tables to be filled equally results in an obvious drop in the amount

of retrieved views. Nonetheless, both strategies yield already good accuracies with one table

per window and TBV was able to outperform TBS usually with around 2% in accuracy since

otherwise missed views could be retrieved and ICP-refined to the same correct pose from a

similar view in another bucket.

Comparison to related methods. Since TBV supplies us with a sublinear runtime growth

and acceptably high accuracies, we settle for this strategy and show more detailed results

in Table 1. We are able to consistently detect at around 95%− 96% accuracy on average

which is slightly worse than LineMOD and DTT-3D. However, we are always faster than

LineMOD and overtake DTT-3D at around 8 objects where our constant-time hashing over-

head becomes negligible and the methods’ time complexities dominate. This is important

to stress since real scalability comes from a sublinear growth. Additionally, we show more

clearly the scalability of our approach when increasing the amount of descriptors: since the

dataset consists of only 15 objects, yielding 46,725 descriptors, we created further 46,725

descriptors by drawing each bit from its estimated distribution, thus enlarging our database

artificially to 30 objects. Figure 1 shows a graph of our runtimes in comparison to DTT-3D.

KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION 9

Seq / Objs 1 3 5 10 15

ape 96.1% / 73ms 95.1% / 127ms 96.8% / 134ms 94.1% / 164ms 95.6% / 180ms

bvise 92.8% / 83ms 95.4% / 117ms 91.2% / 128ms 92.3% / 181ms 91.2% / 192ms

bowl 99.3% / 84ms 98.8% / 114ms 98.6% / 123ms 98.1% / 156ms 98.6% / 184ms

cam 97.8% / 75ms 96.9% / 111ms 95.3% / 129ms 94.8% / 162ms 95.2% / 174ms

can 92.8% / 81ms 91.6% / 112ms 93.7% / 119ms 93.9% / 158ms 91.8% / 171ms

cat 98.9% / 99ms 97.2% / 117ms 97.4% / 138ms 95.8% / 164ms 96.1% / 188ms

cup 96.2% / 65ms 96.0% / 100ms 95.3% / 117ms 94.5% / 144ms 98.6% / 194ms

driller 98.2% / 106ms 97.8% / 135ms 98.1% / 162ms 97.6% / 171ms 95.1% / 190ms

duck 94.1% / 74ms 90.8% / 122ms 90.7% / 124ms 91.5% / 161ms 92.9% / 179ms

eggbox 99.9% / 68ms 99.9% / 103ms 99.9% / 115ms 99.9% / 151ms 99.9% / 174ms

glue 96.8% / 100ms 96.2% / 131ms 94.4% / 154ms 95.3% / 166ms 95.4% / 175ms

hpuncher 95.7% / 97ms 95.3% / 118ms 95.8% / 142ms 95.2% / 162ms 95.9% / 183ms

iron 96.5% / 101ms 94.8% / 122ms 95.0% / 141ms 95.5% / 167ms 94.3% / 203ms

lamp 98.4% / 93ms 95.4% / 114ms 95.3% / 137ms 96.1% / 172ms 94.9% / 179ms

phone 93.3% / 90ms 94.6% / 126ms 94.5% / 133ms 91.7% / 167ms 91.3% / 198ms

TBV Average 96.5% / 83ms 95.7% / 117ms 95.5% / 131ms 94.9% / 162ms 95.1% / 184ms

DTT-3D [31] 97.2% / 55ms 97.2% / 81ms 97.2% / 107ms 97.2% / 173ms 97.2% / 239ms

LineMOD [17] 96.6% / 119ms 96.6% / 273ms 96.6% / 427ms 96.6% / 812ms 96.6% / 1197ms

Table 1: Accuracy and runtime per frame for our whole pipeline with the TBV strategy, DTT-

3D and LineMOD for the whole dataset with a varying number of trained and loaded objects.

With only a few objects, DTT-3D is faster than our approach. However, its complexity

increases linearly with the database size, allowing us to overtake when the number of objects

becomes higher. Note that the dataset only provides groundtruth for one object per frame.

Figure 6: Left: Accuracy versus runtime on the ‘driller’-sequence with TBV hash keys

and LineMOD with a set of decreasing matching thresholds. Both methods achieve higher

accuracies with a lower threshold although we only retrieve a fraction of views, making our

runtime increase marginal. Right: Matching ratios for an increasing number of objects using

TBV hash keys. The obvious decreasing trend allows us to scale with the number of objects.

For the latter, we extrapolated the values given the authors’ timings. The gap in runtime

shows our superiority when dealing with many objects and views.

Citation
Citation
{}

Citation
Citation
{}

10 KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION

Sublinear retrieval and matching. After retrieval, we conduct template matching to-

gether with an object-dependent threshold. Although this parameter is of importance to

balance runtime versus accuracy, we are less prone to ill settings in comparison to LineMOD

since at each position we only retrieve a tiny subset of candidates, as shown in Figure 6 (left).

Obviously, the small set of retrieved views most often contains the correct one, leading to

good accuracies while keeping the runtime low. Furthermore, the ratio of total conducted

matchings on an image of size W ×H,

#retrieved templates /
#templates in database ·W ·H

T ·T
(5)

stays small as shown in Figure 6 (right) and explains our improvement in comparison to an

exhaustive search: while increasing the object database size, the ratio grows smaller. It is

this trend of decay that allows us to scale sublinearly with the number of objects/views.

5 Conclusion and Acknowledgment

We presented a novel method for 3D object detection and pose estimation which employs

hashing for efficient and truly scalable view-based matching against RGB-D frames. We

showed that we outperform the state-of-the-art in terms of speed while being able to achieve

comparable accuracies on a challenging dataset. It would be interesting to invest further

effort into alternative hash learning schemes, different feature representations and extend the

experiments to other challenging multi-object datasets. The authors would also like to thank

Toyota Motor Corporation for supporting and funding the work.

References

[1] A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L. Di Stefano, and M. Vincze. Multi-

modal Cue Integration through Hypotheses Verification for RGB-D Object Recognition

and 6DOF Pose Estimation. In ICRA, 2013.

[2] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic. Seeing 3D Chairs : Exemplar

Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models. In CVPR, 2014.

[3] Y. Aytar and A. Zisserman. Immediate, Scalable Object Category Detection. In CVPR,

2014.

[4] U. Bonde, V. Badrinarayanan, and R. Cipolla. Robust Instance Recognition in Presence

of Occlusion and Clutter. In ECCV, 2014.

[5] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother. Learning

6D Object Pose Estimation Using 3D Object Coordinates. In ECCV, 2014.

[6] A. G. Buch, Y. Yang, N. Krüger, and H. G. Petersen. In Search of Inliers : 3D Corre-

spondence by Local and Global Voting. In CVPR, 2014.

[7] H. Cai, T. Werner, and J. Matas. Fast Detection of Multiple Textureless 3D Objects. In

ICVS, 2013.

KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION 11

[8] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In

CVPR, 2005.

[9] D. Damen and P. Bunnun. Real-Time Learning and Detection of 3D Texture-Less

Objects: A Scalable Approach. In BMVC, 2012.

[10] T. Dean, M. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik. Fast,

Accurate Detection of 100,000 Object Classes on a Single Machine. In CVPR, 2013.

[11] A. Fitzgibbon. Robust Registration of 2D and 3D Point Sets. In BMVC, 2001.

[12] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hash-

ing. In VLDB, 1999.

[13] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative Quantization: A Pro-

crustean Approach to Learning Binary Codes for Large-Scale Image Retrieval. PAMI,

2013.

[14] C. Gu and X. Ren. Discriminative Mixture-Of-Templates for Viewpoint Classification.

In ECCV, 2010.

[15] Q. Hao, R. Cai, Z. Li, L. Zhang, Y. Pang, F. Wu, and Y. Rui. Efficient 2D-To-3D

Correspondence Filtering for Scalable 3D Object Recognition. CVPR, 2013.

[16] C. Harris. Tracking with Rigid Objects. MIT Press, 1992.

[17] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradsky, K. Konolige, and N. Navab.

Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in

Heavily Cluttered Scenes. In ACCV, 2012.

[18] D. Hoiem and S. Savarese. Representations and Techniques for 3D Object Recognition

and Scene Interpretation. Morgan & Claypool Publishers, 2011.

[19] H. Jégou, M. Douze, and C. Schmid. Product Quantization for Nearest Neighbor

Search. PAMI, 33(1), 2011.

[20] K. Lai, L. Bo, X. Ren, and D. Fox. A Scalable Tree-Based Approach for Joint Object

and Pose Cecognition. In AAAI, 2011.

[21] G. Lin, C. Shen, Q. Shi, A. V. D. Hengel, and D. Suter. Fast Supervised Hashing with

Decision Trees for High-Dimensional Data. In CVPR, 2014.

[22] D. G. Lowe. Fitting Parameterized Three-Dimensional Models to Images. PAMI,

13(5):441–450, June 1991.

[23] T. Malisiewicz, A. Gupta, and A. Efros. Ensemble of Exemplar-SVMs for Object

Detection and Beyond. In ICCV, 2011.

[24] M. Muja and D. Lowe. Scalable Nearest Neighbour Methods for High Dimensional

Data. PAMI, 2014.

[25] S. Nayar, S. Nene, and H. Murase. Real-Time 100 Object Recognition System. In

ICRA, 1996.

12 KEHL ET AL.: HASHMOD: SCALABLE 3D OBJECT DETECTION

[26] D. Nistér and H. Stewénius. Scalable Recognition with a Vocabulary Tree. In CVPR,

2006.

[27] M. Norouzi, A. Punjani, and D. J. Fleet. Fast Exact Search in Hamming Space with

Multi-Index Hashing. PAMI, 36(6):1107–1119, 2014.

[28] K. Pauwels, L. Rubio, J. Diaz, and E. Ros. Real-Time Model-Based Rigid Object Pose

Estimation and Tracking Combining Dense and Sparse Visual Cues. In CVPR, 2013.

[29] N. Payet and S. Todorovic. From Contours to 3D Object Detection and Pose Estimation.

In ICCV, 2011.

[30] B. Pepik, P. Gehler, M. Stark, and B. Schiele. 3D2PM-3D Deformable Part Models. In

ECCV, 2012.

[31] R. Rios-Cabrera and T. Tuytelaars. Discriminatively Trained Templates for 3D Object

Detection: A Real Time Scalable Approach. In ICCV, 2013.

[32] R. Rios-Cabrera and T. Tuytelaars. Boosting Masked Dominant Orientation Templates

for Efficient Object Detection. CVIU, 120:103–116, 2014.

[33] S. Savarese and L. Fei-Fei. 3D Generic Object Categorization, Localization and Pose

Estimation. In ICCV, 2007.

[34] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim. Latent-Class Hough Forests for

3D Object Detection and Pose Estimation. In ECCV, 2014.

[35] F. Tombari, A. Franchi, and L. D. Stefano. BOLD Features to Detect Texture-Less

Objects. In ICCV, 2013.

[36] F. Tombari, S. Salti, and L. Di Stefano. Unique Signatures of Histograms for Local

Surface Description. In ECCV, 2010.

[37] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg. Pose Track-

ing from Natural Features on Mobile Phones. In ISMAR, September 2008.

[38] Z. Xie, A. Singh, J. Uang, K. S. Narayan, and P. Abbeel. Multimodal Blending for

High-Accuracy Instance Recognition. In IROS, 2013.

