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Abstract We propose a novel 3D tracking method that

supports several hundreds of pre-trained potential pla-
nar targets without losing real-time performance. This

goes well beyond the state-of-the-art, and to reach this
level of performances, two threads run in parallel: The
foreground thread tracks feature points from frame-to-
frame to ensure real-time performances, while a back-

ground thread aims at recognizing the visible targets

and estimating their poses. The latter relies on a coarse-

to-fine approach: Assuming that one target is visible at

a time, which is reasonable for digilog books applica-
tions, it first recognizes the visible target with an im-
age retrieval algorithm, then matches feature points be-
tween the target and the input image to estimate the

target pose. This background thread is more demand-

ing than the foreground one, and is therefore several

times slower. We therefore propose a simple but effec-

tive mechanism for the background thread to commu-
nicate its results to the foreground thread without lag.
Our implementation runs at more than 125 frames per

second, with 314 potential planar targets. Its applica-

bility is demonstrated with an Augmented Reality book

application.
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1 Introduction

Many recent Augmented Reality (AR) works have shown

that considering only planar objects as tracking tar-

gets is enough for many applications. In particular, AR

books [2, 17, 15] or digilog books [5, 13] are probably the

most representative and latest application of emerging

AR edutainment markets and assume the book pages

to be rigid and planar.

However, even with this simplification, there is still

no satisfying tracking method to handle books with

a large number of pages. Early magic books [2] used

ARToolkit markers, unfortunately, the markers distract

the users’ immersion and are fragile to occlusions. More

recently, several magic books based on natural features

were developed [17, 15], but they usually have high com-
putational costs. Moreover, fast methods such as [12]
require a lot of training time and memory and scales
very badly with the number of targets.

In this paper, we propose a new scalable marker-less

tracker. Target detection and feature tracking run in
parallel respectively in a background and a foreground
threads to achieve real-time performance and scalabil-

ity. The foreground thread tracks feature points from

frame-to-frame to ensure real-time performances, while

a background thread aims at recognizing the visible tar-

gets and estimating their poses. The latter relies on a

coarse-to-fine approach: Assuming that one target is

visible at a time, which is reasonable for digilog books

applications, it first uses a vocabulary tree-based image

retrieval algorithm [11] to recognize the visible target.

It then matches SIFT keypoints between the target and
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the input image using a kd-tree [9] to estimate the tar-

get pose. In addition, the extraction of SIFT keypoint is

done on the Graphic Processing Unit (GPU) for speed-

ing up.

The background thread is more demanding than the

foreground one, and is therefore several times slower.

This could be problematic if this is not taken care of

properly. For example, if the foreground thread had

to wait for the background thread, that would result
in drastic loss of performances. We therefore propose
a simple but effective mechanism for the background
thread to communicate its results to the foreground

thread without lag.

That allows our implementation to run at more than

125 frames per second, with 314 potential planar tar-
gets, and we demonstrate its applicability on Augmented

Reality magic book application.

In the remainder of the paper, we first address the
related work in detail in Section 2. We then describe

our method in Section 3. The experimental results are

discussed in Section 4, and our digilog book application

as an example system is presented in Section 5. Finally,

we conclude the paper and discuss about future work

in Section 6.

2 Related Work

Many vision-based trackers for AR applications have
been suggested in the literature, and can be divided
in two categories: marker-based and markerless meth-
ods. We review them below in terms of scalability and

real-time performance for developing practical AR ap-

plications.

2.1 Marker-Based Methods

ARToolKit [6] is one of the early stage trackers widely

used in AR applications. It relies on intensity thresh-
olding to detect the markers, and template matching to
recognize them. The results were relatively reliable in
practice, but the marker recognition procedure was lin-

ear in the number of markers, and therefore the perfor-

mances could drop when the application at hand used

many markers. ARToolKitPlus [19] and ARTag [3] for

example overcome this scalability issue by using a bar

code-like system to encode the marker index in its ap-

pearance. But the main drawback remains: The pres-

ence of markers on each target object reduces the users’

immersion.

2.2 Markerless Tracking Methods

Many markerless, or natural features-based methods

have been proposed, but it is now clear that feature

point recognition is the key to make applications robust

and autonomous in practice. Local descriptors such as

SIFT [9] or SURF [1] have been used but do not did not
show enough performance for real-time AR applications
due to their heavy computational costs. Randomized
Trees (RT) [8] and Ferns [12] were suggested to over-

come the low speed of the SIFT-like methods. However,

the codes provided by [8, 12] required a training time

of more than one minute per target. In addition, they

do not scale with the number of objects, as the memory

consumption is linear with the number of objects.

If the ability to recognize feature point is required,

it may cause jittering when used alone because the

features are not detected continuously over a camera

stream. As a result, a hybrid method, which combines

detection and frame-to-frame tracking, is probably re-

quired [14, 7, 20]. [20] proposed an efficient method that

controls the detection and the tracking tasks dynami-
cally to guarantee a real-time frame-rate. [7] used multi-
core programming with detection and tracking run on
two different cores.

However, to the best of our knowledge, all the ex-

isting methods were designed for supporting a single
target or less than 10 targets, while many applications,
such as AR museum guidance or AR magic books, re-
quire the capability to consider more targets. Our main

contribution is to show how to consider a large number
of potential targets without losing frame-rate.

3 Proposed Method

The overall procedure of the proposed tracker is shown

in Figure 1. As already mentioned in the introduction,

the tracker consists of two modules, a “recognition mod-

ule” and a “tracking module”. The detection module is

in charge of recognizing the visible targets and estimat-

ing its pose. It then sends this information to the track-

ing module, which tracks the recognized target from

frame to frame. For efficiency, the two modules run in

two separated threads.

3.1 Detection Module

The detection module is based on recent very efficient

techniques for image retrieval to recognize the target,

and another very efficient data structure for feature

point matching.
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3.1.1 Preprocessing

We first extract SIFT features in all the reference im-

ages of the targets. We then construct a vocabulary tree

to quantize these features, as described in [11]. This vo-

cabulary tree will allows us to very quickly recognize the

target present in a given input image. The second data

structure we build is a kd-tree—one tree per target—to

store the SIFT features extracted in the reference image

for the target.

3.1.2 Online Detection

For a given input image, we first extract SIFT features

from it and run the algorithm described in [11] for im-

age retrieval. The result is a list of reference images

of the targets, sorted by similarity with the input im-

age. This is very fast, even with a very large number

of targets. The SIFT descriptor is rectified for rotation

and scale, and invariant to perspective to some extent,

so the method can recognize the targets under large

transformations.

Instead of considering only the best response, we

keep the first two best candidates. We found in prac-

tice that helps to solve the ambiguous case where two

targets have many similar features.

To find the correct target, and its pose, we match

the SIFT features extracted in the input image against

those in the reference images of the two candidates us-

ing their associated kd-trees. We then use RANSAC to

robustly compute the homography between the input

image and each of the two reference images from these

matches. The target that gives the largest number of

inliers is kept as the correct one. Finally, the camera ro-

tation and translation can easily by computed from the

homography and the internal parameters of the camera.

The pseudo-code is given in Algorithm 1. Typically
the processing time in the critical section should be

shorter than any other modules to maximize the ad-

vantage of the multi-core programming. Thus, in the

Write function, we adjust boolean flags of the shared

variables or copy indexes instead of copying variables.

At the end, the time for object detection is the sum

of the time for the feature extraction, vocabulary tree
searching, kd-tree searching with two candidates, and
outlier rejection processes.

Algorithm 1 Pseudo-code for real-time detection
1: while (Tracker is running) and IS 6= NULL do

2: Sc = ExtractSIFTFeatures(IS);
// Extract SIFT features from the input image

3: (φ1, φ2) = FindCandidates(Sc);
// Find two candidates by image retrieval

4: φ∗ = CountMatch(φ1) > CountMatch(φ2) ? φ1 : φ2;
// Select the best one

5: (H, xr, Herr) = RejectOutlier(φ∗);

// Reject outliers by computing the homography H,
Inliers, and Error

6: if Herr < 4.0 then

7: Enter Critical Section // Access to the shared variables
8: Write (H, xr, IS);
9: Leave Critical Section

10: end if

11: end while

3.2 Tracking Module

Figure 3 illustrates the relations between the different

components of the tracking module and the detection

module. We detail them below.

3.2.1 Information from the Detection Module

When the detection module finished to recognize the

visible target and to compute its pose, this information
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can be used by the tracking module. Unfortunately, as

shown in Figure 3, the detection module is typically

slower than the tracking thread. As a result, the track-

ing module already processes an image captured after

the image processed by the detection module.

To compensate, we match the features extracted in
the two images. Because the motion between the two

images is typically not large, we can use a fast and sim-

ple procedure based on cross-correlation and bounded

search regions, as described in [16] for example. In prac-

tice we use 16 × 16 correlation windows.

3.2.2 Frame-to-Frame Matching

Once the target is recognize, we can continuously track

its feature points over consecutive frames. We use for

that a procedure similar to the one described in the

previous subsection. The only difference is that we can
afford here to use smaller correlation windows and thus
speeding up the computations as the images are typi-

cally closer.

3.2.3 Features Management

The searching process is not done for every incoming

frame. It is called only when new feature points are

available by examining whether they are in the tracking

queue or not. To avoid slowing down the applications,

at most 50 feature points are added to the tracking

queue at the same time.

A possible pitfall is to introduce points that are

difficult to match and could make the tracking fail.

Therefore, we rely on the Sum of the Squared Differ-

ences (SSD) between patches in the current and the

previous frames to control the quality at every frame.

The patch quality is divided into three groups: Good,

Neutral, and Bad based on SSD scores. If the feature

is bad, it will be replaced by a new one at the next

time step. If the feature is neutral, it is replaced only

if the newly added feature has a better quality. We fix

the maximum number of the tracked features to 300 for

real-time performance.

Table 1: Time measurement for preprocessing.

Stage Time (ms)

Extracting SIFT features 33.254

Building kd-tree 25.712

Building a vocabulary tree 32.842

4 Experimental Results

We evaluated the proposed method with various pla-

nar objects. We used a FleaMV camera, which provides

640 × 480 images at 60FPS. All experiments were per-

formed with Quad-core CPU 2.9 GHz and a nVidia

Geforce GTX 285 graphic card. We used OpenCV to

implement the proposed algorithm. We also used Sift-

GPU 1 and the implementation of vocabulary tree de-

scribed in [4].

Figure 4 shows the robustness of the system to vari-

ous challenging imaging conditions: Scale changes, tilt,

occlusions, and clutter. Thanks to the detection mod-

ule, the system can initialize and recover automatically

after fast motions, and thanks to the tracking module,

it can handle large tilt and occlusions.

As shown in Figure 6, we used 314 pages of an il-

lustrated calendar as target objects. The system scales

remarkably well, and there is no loss of frame rate per-

formances when increasing the number of potential tar-

gets.

We measured the time for preprocessing. Table 1

shows the measured time for each stage. The average

time for SIFT features extraction from one image took

33.254ms. The average time of building the kd-trees

for the 314 targets was 25.712ms. At the end, the total

number of feature points were 291,800. Each target has

the number of features from at least 564 and at most

2283. Finally, the time to build the vocabulary tree was
32.842ms. Thus, M × 25.712 + 32.842ms were required

for M targets in our experimental setup.

We measured the time for the online process as well,

which includes the detection and the tracking. For the
detection module, we compared four approaches. The

first method is a naive way to find out the target by

trying each of the 314 possibilities, sequentially. kd-

trees of objects were used for matching. The second

method is only using kd-tree for matching instead of
using a vocabulary tree. All features are used to build
one kd-tree in this case. The third method is to use
the randomized kd-tree (FLANN) proposed in [10]. The

fourth method is our proposed method. The same im-

age sequence was used for the experiments. Not surpris-

ingly, the first method did not work when the number

of objects was more than 10. In practice, the detection

1 http://www.cs.unc.edu/-ccwu/siftgpu/
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Fig. 4: Pose estimation results from different challenging conditions: Scale changes, tilt, occlusions, and clutter. For visualisation
purposes, the target is augmented with a virtual local coordinates system.

Fig. 5: Visualisation of the feature matches retrieved by our tracker.

could not follow the change of the scene. As a result,
the proposed method obtained the most inliers than
other methods as shown in Figure 7a. Our approach

had twice more inliers than the kd-tree only method.

The large number of the inliers helps the tracking sta-

ble. The detection time did not show large differences

among the three methods as shown in Figure 7b. How-

ever, the kd-tree and FLANN methods required a large
amount of memory to store their data structure, and
we had to reduce the number of the target objects from

314 to 200 in this experiment to make the comparison
possible.

In the tracking module, we measured time for the

searching, the tracking, and the computing pose. Ta-

ble 2 shows the average time for each module. As a
result, the application can run at more than 125FPS.

Figure 8 shows the measurement results of the real

sequence. We observe that the searching process is not

carried out at every frame. The reprojection error was

less than 2.0 pixels with no visible jitter.
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Fig. 6: Snapshots of an application with 314 potential targets: The system scales remarkably well, and there is no loss of frame rate
performances when increasing the number of potential targets.

Table 2: Time measurements for the tracking module.

On-line Process Time (ms)

Searching time (AVG.) 1.257

Frame-to-Frame matching 3.286

Computing / Decomposing Homography 0.982

Finally, we measured how the application is influ-

enced according to the size of the feature set. We mea-

sured the detection and the tracking times for different

numbers of targets, by randomly choosing the targets.

We successively considered 2, 100, 200, and 314 tar-
gets, with respectively 2’258, 100’409, 186’275 and 291’800

feature points for detection. The depth of the vocabu-

lary tree was adjusted from 3 to 6 according to the

number of feature points. The experiments were per-

formed over the same sequence.

Figure 9 shows the results. Once the detection was
done, the detection speed did not make the feature

tracking slower because the tracker can still rely on

feature points from the previous frame. The relocaliza-

tion was affected by the size of the feature set but only

marginally: The experiment with 314 targets missed

only 4 frames more than the one with 2 targets. The

difference on the detection time as shown in Figure 9c
did not make a significant differences for the applica-
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tion: We could track the target within 4 to 8ms in all

cases.

5 Digilog Book Application

In this section, we describe a digilog book application

based on our method.

A Digilog book is an Augmented Reality book sim-

ilar to magic books, but it is not limited to the visual

perception of the user but considers all human’s five

senses to provide additional information to the user [13].

Our digilog book consists of 10 pages. Each page in-

cludes pictures related to the book story. The impor-

tant consideration for designing our digilog book was

the correlation between virtual 3D models and figures

illustrated on a page. As shown in [15], the real pages

and the virtual objects should be harmonized for satis-

fying visual results. Thus, we designed the virtual con-

tents to seamlessly appear from the real pictures as

shown in Figure 10a. We made the proposed tracker

run as a building block in Virtools 2, which is a com-

mercial authoring tool for VR. It facilitates the author-
ing and the redistributions of the contents. Figure 10
shows the snapshots of the implemented digilog book.

The frame-rate was still higher than 25 FPS with heavy

contents (80MB).

6 Conclusions and Future Work

We presented a planar targets 6DOF tracker that han-

dles more than 300 objects without loss of tracking per-

formance. The proposed tracker used a multi-core pro-

gramming for exploiting highly distinctive SIFT fea-

2 http://www.3ds.com/products/3dvia/3dvia-virtools
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 10: Implemented digilog book (a)-(d) Moving virtual 3D content on the 4th page that produced from the commercial 3D tools
(e) real book cover, (f)-(p) snapshots of the augmented contents at each page.

tures for a real-time application. The efficient vocabu-

lary tree-based searching method was proposed to cover

a large data set. We expect that the proposed frame-

work can work with a thousand of targets with the help

of vocabulary tree data structure. The approach can be

easily extended to the multiple 3D objects tracking by

replacing computing a camera pose from homography

with a general one, such as PnP . It will be also pos-

sible to track multiple objects simultaneously with a

small modification. We also showed that the proposed

method was successfully used in an AR book applica-

tion. In the future, SIFT feature can be replaced with

light-weight one like [18] so that the tracker can work

on mobile phones.
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