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Abstract— Robotic systems that can create and use visual
maps in realtime have obvious advantages in many applications,
from automatic driving to mobile manipulation in the home. In
this paper we describe a mapping system based on retaining
views of the environment that are collected as the robot moves.
Connections among the views are formed by consistent geometric
matching of their features. The key problem we solve is how
to efficiently find and match a new view to the set of views
already collected. Our approach uses a vocabulary tree to propose
candidate views, and a new compact feature descriptor that
makes view matching very fast — essentially, the robot continually
re-recognizes where it is. We present experiments showing the
utility of the approach on video data, including map building
in large environments, map building without localization, and
re-localization when lost.

I. INTRODUCTION

Fast, precise, robust visual mapping is a desirable goal
for many robotic systems, from transportation to in-home
navigation and manipulation. Vision systems, with their large
and detailed data streams, should be ideal for recovering 3D
structure and guiding tasks such as manipulation of everyday
objects, navigating in cluttered environments, and tracking
and reacting to people. But the large amount of data, and
its associated perspective geometry, also create challenging
problems in organizing the data in an efficient and useful
manner.

One useful idea for maintaining the spatial structure of
visual data is to organize it into a set of representative views,
along with spatial constraints among the views, which is called
a skeleton. Figure 1 gives an example of a skeleton constructed
in a small indoor environment. Relations between the views
are calculated by matching common features; the overall map
is generated by nonlinear optimization of the system [1, 17,
33]. For efficient operation, the critical question is how to
match a newly-acquired view to a large database of existing
views. The matching system should be robust to changes in
viewpoint, lighting, moving objects, and other distractors, and
it must be fast enough to run online during image acquisition.

In this paper we present a system that solves the view-
matching problem effectively, and can run in small, almost
constant time over large view databases. The matching system
is feature-based: hundreds of features from the current view
are matched against features in a candidate skeleton view. Two
views are considered to be matched when a sufficient number
of their matched features pass a strict geometric consistency
check used by structure-from-motion (SfM) analysis [14]. To

1: Map reconstructed from view matching in an indoor envi-
ronment, with no sequence information. On the left, the graph
of view links, where each link encodes the relative position
of its two views. On the right, the graph after optimization.
Our system is able to integrate a new image against a large
map database, with no a priori information about its position,
in under 100 ms.

limit the number of skeleton views that must be considered,
we employ a vocabulary tree [26] to suggest candidate views
for matching. The vocabulary tree response is not perfect,
and there will be many false positives in the candidate views,
which must all undergo feature matching to the current view;
this is the biggest computational bottleneck for online process-
ing. The main contributions of this paper are

o The development and deployment of a new feature de-
scriptor, based on random tree signatures [5], that is
robust to view variation, yet extremely fast to compute
and match. As an example, matching 512 features to
512 features takes about 6 ms, less than GPU-enhanced
algorithms for other robust descriptors such as SURF [2].

o The integration of a visual vocabulary tree into a complete
solution for online place recognition. We call this ability
re-recognition: the robot recognizes its position relative
to the stored view map on every cycle, without any
a priori knowledge of its position (unlike localization,
which requires a position hypothesis).

« A rigorous analysis of the false positive rejection ability
of two-view geometry.

« The construction of a realtime system for robust, accurate
visual map making over large and small spaces.

In the experiments section, we highlight some of the advan-
tages of a view-based system. The view matching technique,



because of geometric consistency, is robust to object motion,
nearly blank walls, and self-similar textures. View maps also
scale well: maps with hundreds of views can be constructed
and used in real time. Loop closure over large distances is pos-
sible; here we show a map with a 400 m trajectory. The same
view matching method automatically relocalizes the camera
within the existing view graph, recovering from occlusion,
motion blur, etc. Finally, view matching with large numbers of
points is inherently accurate, showing sub-centimeter precision
over a desktop workspace.

Our solution uses stereo cameras for input images. The
development of the feature descriptors and place recognition
is also valid for monocular cameras, with the exception that
the geometric check is slightly stronger for stereo. However,
the skeleton system so far has been developed just for the full
6DOF pose information generated by stereo matching, and
although it should be possible to weaken this assumption, we
have not yet done so.

II. RELATED WORK

Visual map-making, or VSLAM, has received a lot of recent
attention, starting with Davison’s online monoSLAM [9, 10],
and now including many variations [29, 32]. These systems
all consider sets of 3D points as landmarks, and attempt to
maintain a consistent EKF over them. The main limitation
here is the filter size, which is only tractable in small (room-
size) environments. An exception is [29], which uses a submap
technique, although realtime performance has not yet been
demonstrated.

In a similar vein, the recent Parallel Tracking and Mapping
(PTAM) system [18, 19] also uses 3D landmarks, but employs
standard SfM bundle adjustment to build a map from many
views. Many more points can be handled in the tracking
phase, leading to accurate and robust performance under many
conditions. Still, it is limited to small environments by the
number of points and by bundle adjustment. It is also subject to
tracking failures on self-similar textures (e.g., bushes), object
motion, and scene changes (e.g., removal of an object).

The skeleton system deployed here comes directly from the
work in [1, 21]. Other robotics work that employs similar
ideas about constructing view-based constraints is in [33, 34].
These systems also keep a constraint network of relative pose
information between frames, based on stereo visual odometry,
and solve it using nonlinear least square methods. To solve
the skeleton optimization problem, we use the technique of
Grisetti et al. [12], which is an efficient implementation of
stochastic gradient descent (SGD). Other relaxation methods
for nonlinear constraint systems include [11, 27].

For fast lookup of similar places, we rely on the hierarchical
vocabulary trees proposed by Nistér and Stewénius [26];
other methods include approximate nearest neighbor [30] and
various methods for improving the response or efficiency of
the tree [8, 15, 16]. In particular, Cummins and Newman
[8] show how to use visual features for navigation and loop
closure over very large trajectories. Our method differs from
theirs in using a strong geometric check to do recognition on

single views, rather than extended sequences. Callmer et al.
[4] propose a loop closure procedure that uses a vocabulary
tree in a manner similar to ours, along with a weak geometric
check to weed out some false positives.

There is an interesting convergence between our work and
recent photo stitching in the vision community [31]. They
employ a similar skeletonization technique to limit the extent
of bundle adjustment calculations, but run in batch mode, with
no attempt at realtime behavior. Klopschitz et al. [20] use a
vocabulary tree to identify possible matches in video stream,
and then followed by a dynamic programming technique to
verify a sequence of view matches. They are similar to our
work in emphasizing online operation.

The ability to match keypoints across frames seen from
potentially very different viewpoints is a key ingredient of
establishing relationships between these frames. This requires
keypoint descriptors that, such as SIFT [24] and GLOH [25],
are robust to viewpoint changes. Faster SIFT-like descriptors
such as SURF [2] achieve 3 to 7-fold speed-ups by exploiting
the properties of integral images. However, it has recently been
shown that even shorter run-times can be obtained without
loss in discriminative power by reformulating the matching
problem as a classification problem [23, 28]. This approach is
not suitable for real-time SLAM applications, since it requires
online training of new keypoints [35].

In recent work [5], we observed that if the classifier is
trained offline on a randomly-chosen set of keypoints, all other
keypoints can be characterized in terms of the response they
induce in the classifier, their signatures. In this paper, we build
on this technique by developing a more compact version of
signatures that is extremely efficient and hence suitable for
online view matching.

III. FRAMESLAM BACKGROUND

The view map system, which derives from FrameSLAM [1,
21], is most simply explained as a set of nonlinear constraints
among camera views, represented as nodes and edges (see
Figure 5 for a sample graph). Constraints are input to the
graph from two processes, visual odometry (VO) and place
recognition (PR). Both rely on geometric matching of views to
find relative pose relationships; they differ only in their search
method. VO continuously matches the current frame of the
video stream against the last keyframe, until a given distance
has transpired or the match becomes too weak. This produces
a stream of keyframes at a spaced distance, which become the
backbone of the constraint graph, or skelefon. PR functions
opportunistically, trying to find any other views that match
the current keyframe. This is much more difficult, especially
in systems with large loops. Finally, an optimization process
finds the best placement of the nodes in the skeleton.

For two views ¢; and c¢; with a known relative pose, the
constraint between them is

Az;j = ¢; © ¢j, with covariance A~ (1)

where © is the inverse motion composition operator — in other
words, ¢;’s position in ¢;’s frame. The covariance expresses



the strength of the constraint, and arises from the geometric
matching step that generates the constraint, explained below.

Given a constraint graph, the optimal position of the
nodes is a nonlinear optimization problem of minimizing
Zij Az;';AAzij; a standard solution is to use preconditioned
conjugate gradient [1, 13]. For realtime operation, it is more
convenient to run an incremental relaxation step, and the recent
work of Grisetti et al. [12] on SGD provides an efficient
method of this kind, called Toro, which we use for the
experiments.

A. Geometric View Matching

Constraints arise from geometric matching between two
stereo camera views. The process can be summarized by the
following steps:

1) Match features in the left image of one view with

features in the left image of the other view.

2) (RANSAC steps) From the set of matches, pick three
candidates, and generate a relative motion hypothesis
between the views. Stereo information is essential here
for giving the 3D coordinates of the points.

3) Project the 3D points from one view onto the other
based on the motion hypothesis, and count the number
of inliers.

4) Repeat 2 and 3, keeping the hypothesis with the best
number of inliers.

5) Polish the result by doing nonlinear estimation of the
relative pose from all the inliers.

The last step iteratively solves a linear equation of the form
JTJéx = —J Az, )

where Az is the error in the projected points, dz is a change
in the relative pose of the cameras, and J is the Jacobian of z
with respect to . The inverse covariance derives from .J T.J,
which approximates the curvature at the solution point. As a
practical matter, Toro accepts only diagonal covariances, so
instead of using J ' J, we scale a simple diagonal covariance
based on the inlier response.

In cases where there are too few inliers, the match is
rejected; this issue is explored in detail in Section IV-C. The
important result is that geometric matching provides an almost
foolproof method for rejecting bad view matches.

B. Re-detection and Re-recognition

Our overriding concern is to make the whole system robust.
In outdoor rough terrain, geometric view matching for VO has
proven to be extremely stable even under very large image
motion [22], because points are re-detected and matched over
large areas of the image for each frame. Here we use the
FAST detector and SAD matching of small patches around
each keypoint as the matching step. In a 400 m circuit of
our labs, with almost blank walls, moving people, and blurred
images on fast turns, there was not a single VO frame match
failure (see Figure 5 for sample frames). The PTAM methods
of [18], which employ hundreds of points per frame, can also
have good performance, with pyramid techniques to determine

large motions. However, they are prone to fail when there is
significant object motion, since they do not explore the space
of geometrically consistent data associations

The focus of this paper is on fast, effective PR. The
next section discusses an effective candidate view proposal
method, and the geometric consistency check that eliminate
false positives. The end result is an extremely fast and reliable
PR method that takes on the order of 100 ms to find, match and
orient multiple corresponding views over large view datasets.
This method relies on no prior information about the current
camera view relative to other views, and it does not need
to maintain complicated covariance relations among views. It
greatly simplifies the task of constructing the skeleton system,
and allows it to operate over large spaces.

IV. MATCHING VIEWS

In this section we describe our approach to achieving
efficient view matching over thousands of frames. We start
with a new keypoint descriptor that is fast both to compute and
to match. Next we develop a filtering technique for matching
a new image against a dataset of reference images (1x NV
matching), using a vocabulary tree to suggest candidate views
from large datasets. Finally, we develop statistics to verify the
rejection capability of the geometric consistency check. In all
cases, we use FAST keypoint detectors because they are, well,
fast.

A. Compact Randomized Tree Signatures

In Section II we introduced a keypoint descriptor that can
be computed fast enough to be useful to demanding real-
time problems such as SLAM [5]. The descriptor relies on
the fact that if we train a Randomized Tree (RT) classifier
to recognize a number of keypoints extracted from an image
database, all other keypoints can be characterized in terms of
their response to these classification trees. Remarkably, a fairly
limited number of base keypoints—3500 in our experiments—is
sufficient. However, a limitation of this approach is that storing
a pre-trained Randomized Tree takes a considerable amount of
memory. Here we show that the signatures can be compacted
into much denser and smaller vectors, as depicted by Figure 2,
resulting in both a large decrease in storage requirement and
substantially faster matching.

In [5], signatures are computed as follows. A set of B base
keypoints are extracted from a representative image and the RT
classifier is trained to recognize them under changes in scale,
perspective, and lighting [23]. It consists of a set of N binary
RTs T;, where the binary test at a node is a simple comparison
of two random points in a patch p around the keypoint. At
each leaf of a tree T}, there is a vector of responses for all
base keypoints, computed from the training set. Let t;(p) be
the vector found by dropping the patch p through the tree T;
to a leaf node. The total response vector of p is taken to be

N
r(p) = Zti(p) : 3)



The response can be normalized to generate a probability of
the patch p belonging to any member of the base set. Note
that for p belonging to some keypoint that is similar to a base
keypoint b, we expect r(p) to have high values at b’s position
in the vector.

For any new keypoint £ not in the base set, the response
r(p) will have high values at locations corresponding to base
keypoints that are similar to k, and low values elsewhere.
Thresholding the components of r(p) therefore results in a
sparse vector that we take to be our signature. In practice, we
obtain good results using N = 50 binary randomized trees of
depth 10 and B = 500 base points. [5] compared the matching
performance of sparse RTs with that of SIFT and found these
comparable.

While sparse signatures are fairly efficient to generate and
match, it is possible to make them even more so. First, the
expensive operation in signature creation is the summation
of the t;, which requires 50 * 500 = 25,000 floating-point
operations per signature. Second, the matching of sparse
vectors is slower than desired, because it involves conditional
tests. To address these issues, we compress the t; responses
into smaller vectors, and produce a dense signature. There are
several ways to perform the compression, and the tradeoffs
involved will be reported in an upcoming paper [6]. Here,
we use a simple PCA scheme to extract a dense 176-element
vector t) that replaces the 500-element t; on each leaf node.
As a further reduction, we found that each element of both
t; and the corresponding signature r'(p) = 3 t;(p) could be
represented by a single byte, rather than a floating-point num-
ber, and that signatures could be compared more quickly using
sum of absolute differences. In tests on standard viewpoint
matching sets, performance of the dense signatures degrades
by about 10 percent relative to the original sparse ones.

As expected, compression to dense, small vectors greatly
improves the timing of both descriptor creation and matching.
In Table I, dense RTs are compared to the original sparse
RTs, and also to the most efficient robust descriptor, U-SURF
[2]. SURF matching is done on the smaller length 64 vectors;
match times are from [7], creation times are from [2], and do
not include keypoint detection. Overall, dense RTs are many
times faster, and for matching even beat GPU implementations
of U-SURF. Approximate Nearest Neighbor techniques [3]
can be used to speed up the process, at some decrease in
matching performance; but the overhead in applying them is
not worthwhile given the matching speed.

Descriptor Creation | NxN Matching
(512 kpts) (512x512 kpts)
Sparse RTs (CPU) 31.3 ms 27.7 ms
Dense RTs (CPU) 7.9 ms 6.3 ms
U-SURF64 (CPU) 150 ms 120 ms
73 ms (ANN)
U-SURF64 (GPU) 6.8 ms

I: Timings for descriptor creation and matching.
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2: Iustration of the signature creation process for an arbitrary,

new keypoint k. For simplicity we show trees of depth 3; the
typical value our implementation uses is 10. (a) The patch
p; around k is dropped through all trees 7;, 1 < i < N,
yielding the vectors t;. (b) All t; are summed up yielding r(p),
cf Equation 3. (c) In the upper row of vectors, the r(p) are
thresholded yielding a sparse signal. This step does not occur
in the lower row of vectors as they represent some compressed
representation t; of the corresponding t; that simply need to
be summed.

B. Place Recognition

The 1x N image matching problem has received recent
attention in the vision community [16, 26, 30]. We have
implemented a place recognition scheme based on the vo-
cabulary trees of Nistér and Stewénius [26] which has good
performance for both inserting and retrieving images based on
the compact RT descriptors.

The vocabulary tree is a hierarchical structure that simulta-
neously defines both the visual words and a search procedure
for finding the closest word to any given keypoint. The
tree is constructed offline by hierarchical k-means clustering
on a large training set of keypoint descriptors. The set of
training descriptors is clustered into k centers. Each center then
becomes a new branch of the tree, and the subset of training
descriptors closest to it are clustered again. The process repeats
until the desired number of levels is reached. In our case,
we use about 1M training keypoints from 500 images, with
k = 10, and create a tree of depth 5, resulting in 100K visual
words. Nistér and Stewénius have shown that performance
improves with the number of words, up to very large (>1M)
vocabularies.

The vocabulary tree is populated with the reference images
by dropping each of their keypoint descriptors to a leaf and
recording the image in a list, or inverted file, at the leaf. To
query the tree, the keypoint descriptors of the query image
are similarly dropped to leaf nodes, and potentially similar
reference images retrieved from the union of the inverted files.
In either case, the vocabulary tree describes the image as a
vector of word frequencies determined by the paths taken
by the descriptors through the tree. Each reference image is
scored for relevance to the query image by computing the
distance between their frequency vectors. The score is entropy-
weighted to discount very common words using the Term



Frequency Inverse Document Frequency (TF-IDF) approach
described in [26, 30].

Various extensions to the bag-of-words approach exem-
plified by the vocabulary tree are possible. Cummins and
Newman [8] use pairwise feature statistics to address the
perceptual aliasing problem, especially notable in man-made
environments containing repeated structure. Jegou et al. [15]
incorporate Hamming embedding and weak geometric consis-
tency constraints into the inverted file to improve performance.
We do not use such techniques in this work, relying instead
on the strength of the geometric consistency check. Finally,
Jegou et al. [16] note that even using inverted files, query time
is linear in the number of reference images; they propose a
two-level inverted file scheme to improve the complexity. We
simply note that for our scale of application (in the thousands
of images), the number of reference images we must score is
effectively a small constant.

To test the effectiveness of the vocabulary tree as a prefilter,
we constructed a test set of some 180 keyframes over a 20m
trajectory, and determined ground truth matches by performing
geometric matching across all 180x 180 possibilities. We in-
serted these keyframes, along with another 553 non-matching
distractor keyframes, into the vocabulary tree. Querying the
vocabulary tree with each of the 180 test keyframes in turn,
we obtained their similarity scores against all the reference
images. The sensitivity of the vocabulary tree matching is
shown by the ROC curve (Figure 3, top) obtained by varying
a threshold on the similarity score.

Since we can only afford to put a limited number of can-
didates through the geometric consistency check, the critical
performance criterion is whether the correct matches appear
among the most likely candidates. Varying N, we counted the
percentage of the ground truth matches appearing in the top-
N results from the vocabulary tree. For robustness, we want
to be very likely to successfully relocalize from the current
keyframe, so we also count the percentage of test keyframes
with at least one or at least two ground truth matches in the
top-N results (Figure 3, bottom).

In our experiments, we take as match candidates the top
N = 15 responses from place recognition. We expect to find at
least one good match for 97% of the keyframes and two good
matches for 90% of the keyframes. For any given keyframe,
we expect around 50% of the correct matches to appear in the
top 15 results.

C. Geometric Consistency Check

We can predict the ability of the geometric consistency
check (Section III-A) to reject false matches by making a
few assumptions about the statistics of matched points, and
estimating the probability that two unrelated views I and I3
will share at least M matches. Based on perspective geometry,
any point match will be an inlier if the projection in /; lies on
the epipolar line of the point in [y. In our case, with 640x480
images, an inlier radius of 3 pixels, the probability of being
an inlier is:

Atrack/Aimage = (6 % 640) /(640  480) = .0125  (4)

Vocabulary tree match score prefilter
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3: Top: ROC curve for the vocabulary tree prefilter on the
test dataset. Bottom: “Average” curve shows percentage of the
correct matches among the top N results from the vocabulary
tree (blue); other curves are the percentage of views with at
least 1 or 2 matches in the top V.

This is for monocular images; for stereo images, the two
image disparity checks (assuming disparity search of 128
pixels) yield a further factor of (6/128)*(6/128). In the more
common case with dominant planes, one of the image disparity
checks can be ignored, and the factor is just (6/128). If the
matches are random and independent (i.e., no common objects
between images), then counting arguments can be applied.
The distribution of inliers over IV trials with probability p of
being an inlier is B, v, the binomial distribution. We take the
maximum inliers over K RANSAC trials, so the probability of
having less than z inliers is (1 — B, n())®. The probability
of exactly « inliers over all trials is

(1= Bpn(@)® = (1= Bpn(z— 1) )
Figure 4 shows the theoretic probabilities for the planar stereo
case, based on Equation 5. The graph peaks sharply at 2 inliers
(out of 250 matches), showing the rejection ability of the
geometric check. Actual values were computed for the indoor
dataset, using 200 images with Harris keypoints from each of
two disjoint sets. The actual values are less peaked and average
just under 3 inliers — the real world has structure that violates
the random match assumption. The key part is the tail: there
are no actual matches with greater than 10 inliers.



250 matched features per image, 100 RANSAC trials
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4: The probability of getting x inliers from a random unrelated
view match, based on 250 keypoint matches per image and 100
RANSAC steps, with a keypoint match probability of 0.00059.

V. EXPERIMENTS

As explained in Section III, the view-based system consists
of a robust VO detector that estimates incremental poses of a
stereo video stream, and a view integrator that finds and adds
non-sequential links to the skeleton graph, and optimizes the
graph. We carried out a series of tests on video data captured at
30 Hz from a stereo camera at 640x480, with a 9 cm baseline
and a 90 degree FOV. Rectification is done on the stereo head;
VO consumes 11/33 ms per video frame, leaving 22/33 ms for
view integration, 2/3 of the available time. As in PTAM [18],
view integration can be run in parallel with VO, so on a dual-
core machine view matching and optimization could consume
a whole processor. Given its efficiency, we publish results here
for a single processor only. In all experiments, we restrict the
number of features per image to ~300, and use 100 RANSAC
iterations for geometric matching.

The goal of the system is to integrate as many views
as possible, while giving priority to VO in processing the
video stream. The view integration cycle takes the latest
keyframe produced by VO, runs the vocabulary tree prefilter
to determine likely match candidates, performs geometric
consistency checking against the candidates, and then runs
Toro to optimize the skeleton. With the exception of Toro, all
of these components take constant time (the vocabulary tree
prefilter is essentially constant up to very large numbers of
views). Since Toro can run incrementally, we limit the amount
of time it takes by stopping iterations when the error delta is
small, or the number of iterations exceeds a threshold. In cases
where the error is growing, we then limit the addition of new
keyframes to the skeleton graph, until the error comes down.

Skeleton graph density is controlled by view integration.
When it has finished matching and optimizing its current skele-
ton node, it checks if the most recent keyframe is far enough
in angle or distance (typically 10 degrees or 0.5 m) from the
previous keyframe. One can imagine many other schemes for
skeleton construction that try to balance the density of the

graph, but this simple one worked quite well. Typically the
graph contains about 1/2 of the keyframes produced by VO.
In the case of lingering in the same area for long periods of
time, it would be necessary to stop adding new views to the
graph, which otherwise would grow without limit. We have
not explored these strategies yet.

A. Large Office Loop

The first experiment is a large office loop of about 400m
in length. The trajectory was done by joysticking a robot
at around lm/sec. Figure 5 shows some images: there is
substantial blurring during fast turns, sections with almost
blank walls, cluttered repetitive texture, and moving people.
There are a total of 12K images in the trajectory, with 1540
keyframes, 628 graph nodes, and 1275 edges. Most of the
edges are added from neighboring nodes along the same
temporal path, but a good portion come from loop closures
and parallel trajectories (Figure 5, bottom right).

View matching has clearly captured the major structural
aspects of the trajectory, relative to open-loop VO. It closed
the large loop from the beginning of the trajectory to the end,
as well as two smaller loops in between. We also measured
the planarity of the trajectory, which is a good measure of the
accuracy of the technique: for the view-based system, RMS
error was 22 cm; for open-loop VO, it was 50 cm.

Note that the vocabulary tree prefilter makes no distinction
between reference views that are temporally near or far from
the current view: all reference views are treated as places
to be recognized. By exploiting the power of geometric
consistency, there is no need to compute complex covariance
gating information for data association, as is typically done
for EKF-based systems [9, 10, 29, 32].

The time spent in view integration is broken down by
category in Figure 6. Averages for for adding to and searching
the vocabulary tree are 25 ms, and for the geometry check,
65 ms. Toro does almost no work at the beginning of the
trajectory, then grows to over 1000 ms by the end. The big
jump comes when the large loop is closed, which creates a
long optimization loop in Toro. At this point, optimization
starts to limit the number of new keyframes coming in to the
graph, and the distance between nodes stretches to about 1m.
On other parts of the trajectory, view integration can run at
full speed.

B. TrajectorySynth

To showcase the capability of view integration, we per-
formed a reconstruction experiment without any temporal
information provided by video sequencing or VO, relying just
on view integration. We take a small portion of the office loop,
extract 180 keyframes, and push them into the vocabulary
tree. We then choose one keyframe as the seed, and use view
integration to add all valid view matches to the view skeleton.
The seed is marked as used, and one of the keyframes added
to the skeleton is chosen as the next seed. The process repeats
until all keyframes are marked as used.



5: Top: representative scenes from the large office loop, showing matched features in green. Note blurring, people, cluttered
texture, nearly blank walls. Bottom: resultant skeleton graph (in blue) of 628 nodes and 1275 edges, overlaid on a laser map
of the building. For comparison the VO trajectory without view match correction is shown in red. On the right is a closeup
showing the matched views on a small loop. The optimizer has been turned off to show the links more clearly.

1200

Hm Optimization
Geometric check
W Place recognition

1000f

800

600

Time (ms)

4001

200

300 400
Node index

6: Timing for view integration per view during the office loop
trajectory. Toro dominates the latter part of the run.

The resultant graph is shown in Figure 1 (first page), left.
The nodes are placed according to the first constraint found;
some of these constraints are long-range and weak, and so
the graph is distorted. Optimizing using Toro produces the
consistent graph on the right. The time per keyframe is 150
ms, so that the whole trajectory is reconstructed in 37 seconds,
about 2 times faster than realtime. The connection to view
stitching [31] is obvious, to the point where we both use the
same term “‘skeleton” for a subset of the views. However, their

method is a batch process that uses full bundle adjustment
over a reduced set of views, whereas our approximate method
retains just pairwise constraints between views.

C. Relocalization

Under many conditions, VO can lose its connection to the
previous keyframe. If this condition persists (say the camera
is covered for a time), then it may move an arbitrary distance
before it resumes. The scenario is sometimes referred to as
the “kidnapped robot” problem. View-based maps solve this
problem with no additional machinery. To illustrate, we took
the small loop sequence from the TrajectorySynth experiment,
and cut out enough frames to give a Sm jump in the actual
position of the robot. Then we started the VO process again,
using a very weak link to the previous node so that we
could continue using the same skeleton graph. After a few
keyframes, the view integration process finds the correct
match, and the new trajectory is inserted in the correct place
in the growing map (Figure 7). This example clearly indicates
the power of constant re-recognition.

D. Accuracy of View-Based Maps

To verify the accuracy of the view-based map, we acquired
a sequence of video frames that are individually tagged
by “ground truth” 3D locations recorded by the IMPULSE
Motion Capture System from PhaseSpace Inc. The trajectory
is about 23 m in total length, consisting of 4 horizontal loops
with diameters of roughly 1.5 m and elevations from 0 to 1m.
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7: Kidnapped robot problem. There is a cut in the VO
process at the last frame in the left trajectory, and the robot is
transported Sm. After continuing a short time, a correct view
match inserts the new trajectory into the map.

There are total of 6K stereo images in the trajectory, with 224
graph nodes, and 360 edges. The RMS error of the nodes was
3.2 cm for the view-based system, which is comparable to the
observed error for the mocap system. By contrast, open-loop
VO had an error of 14 cm.

VI. CONCLUSION

We have presented a complete system for online generation
of view-based maps. The use of re-recognition, where the
robot’s position is re-localized at each cycle with no prior
information, leads to robust performance, including automatic
relocalization and map stitching.

There are some issues that emerged in performing this
research that bear further scrutiny. First, the time taken by
SGD optimization will not be acceptable for graphs with
more than a few thousand edges, and better methods, perhaps
hierarchical, should be found. Second, we would like to
investigate the monocular case, where full 6DOF constraints
are not present in the skeleton graph.
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