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Abstract
We demonstrate how to exploit reflections for accurate

registration of shiny objects: The lighting environment can

be retrieved from the reflections under a distant illumination

assumption. Since it remains unchanged when the camera

or the object of interest moves, this provides powerful ad-

ditional constraints that can be incorporated into standard

pose estimation algorithms.

The key idea and main contribution of the paper is there-

fore to show that the registration should also be performed

in the lighting environment space, instead of in the image

space only. This lets us recover very accurate pose esti-

mates because the specularities are very sensitive to pose

changes. An interesting side result is an accurate estimate

of the lighting environment.

Furthermore, since the mapping from lighting environ-

ment to specularities has no analytical expression for ob-

jects represented as 3D meshes, and is not 1-to-1, register-

ing lighting environments is far from trivial. However we

propose a general and effective solution. Our approach is

demonstrated on both synthetic and real images.

1. Introduction
It has long been known that specular reflections provide

useful shape and pose information [23, 26, 3]. However,

practical approaches to using them to retrieve detailed shape

information have only been reported recently [8, 4]. More-

over, to the best of our knowledge, they have not yet been

exploited for pose estimation. As depicted by Figure 1, we

show that they can indeed be used to increase the accuracy

of registration methods. This is in contrast to all current

approaches we know of, which treat reflections, and more

generally lighting effects, as nuisances to be discounted us-

ing either robust statistics or descriptors that are insensitive

to their effects [10, 12].

More specifically, we represent the light striking the tar-

get object by an environment map. It associates 3D direc-

tions with the properties of the light-rays coming from these
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Figure 1. Improving the pose using specular reflection constraints.

(a) Projection of a cylindrical model given the pose estimated by

standard template matching [2]. The CD case at the bottom side of

the image was not used for pose-estimation but we use its known

position with respect to the cylinder to project its corresponding

two-facet model into the image. The yellow circle highlights the

inaccurate reprojection of the case. (b) Projecting the same models

in a side-view that was not used to perform pose estimation high-

lights the inaccuracies, especially at the bottom-right corner of the

CD case. (c,d) Projections of the models using the pose obtained

by imposing our lighting constraints. They are now much more

accurate as evidenced by the side-view.

directions from both primary light sources such as lamps or

windows, and secondary ones such as walls. We compute

such a map from the specular pixels given a 3D model of

the target object and its pose. Our key observation is then

that the correct pose parameters are those that predict the

correct location for the specular reflections and therefore let

us compute environment maps that remain unchanged as the

object moves. This strongly constrains the pose parameters

because reflections are more sensitive to slight pose changes

than texture, as shown in Fig. 2.
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Figure 2. Specularities provide strong pose constraints. (a) Two

shiny boxes. (b) Both boxes have been moved very slightly. The

displacement of the specularities is much larger than the motion

of the underlying texture and therefore yields much stronger pose

constraints.

We show that these lighting constraints can substantially

improve the precision of a standard template matching algo-

rithm [2]. For instance, we can reduce by 97% the residual

error of the object to camera distance and horizontal rota-

tion parameters produced when using only template match-

ing. The kind of pose improvement made possible by our

method is clearly important in the case of mixed reality,

where a small tracking error can result in unrealistic aug-

mented scene, which is what happens to the virtual CD-case

of Fig. 1(a,b). We will also show that this is important when

trying to re-synthesize specularities at the right places.

Our algorithm can be summarized as follows: Given

short image sequences and approximate pose estimates

computed by standard template matching, we estimate the

Lambertian and specular components for each frame and

derive environment maps from the estimated specular im-

ages. Since these maps are functions of the pose parameters,

we can align them at the same time as we align the image

textures and use the same template matching approach to do

so.

In short, we simultaneously register in the image space

and in the lighting environment space. The main challenge

in implementing this approach was to compute environment

maps that can be used for this purpose. In particular our

maps have to be differentiable with respect to the pose pa-

rameters since the registration algorithm requires the ana-

lytical computation of derivatives, something that standard

approaches to computing environment maps do not provide

for. Fig. 3 depicts our solution to this problem, which is

very generic. It could be incorporated into other 3D track-

ing approaches and thus, open new avenues of research.

2. Related Work

Camera pose estimation and 3D tracking have been ex-

tensively explored [10, 12]. They typically involve match-

ing 2D image features against 3D ones and tend to discard

lighting information. The use of edge and line features is

often justified on the basis of their insensitivity to light-

ing changes. Most feature-based and template-based ap-

proaches rely on normalized cross-correlation or on region

descriptors such as SIFT [14] to achieve lighting invariance.

Our approach that explicitly seeks to exploit lighting

changes to increase accuracy is therefore more closely re-

lated to works on illumination or irradiance recovery, which

have long been studied in the Computer Vision and Com-

puter Graphics communities.

In a very generic way, the lighting environment can be

formalized by the plenoptic function [1] whose most ex-

tensive definition includes light-rays properties for each 3D

position and orientation [7, 9, 13, 6, 25]. However, consid-

ering all its degrees of freedom is very cumbersome, and

most approaches focus on local regions under the assump-

tion that the rest of the scene is sufficiently far away. That

way, the properties of the light-rays depend on their direc-

tions alone. This simpler plenoptic function only has 2 de-

grees of freedom and can be treated as a 2D image, which

is often referred to as an environment map.

For some applications, such a map can be built by using

fish eye lenses [21] or a panoramic view made from a rotat-

ing camera at the center of the region of interest. Another

possibility is to use an image acquired using a light probe.

For this purpose, a mirrored sphere constitutes an excellent

choice both because all directions are represented in its im-

age and because it is easy to map back the environment map

using the analytical definition of the sphere [5]. However, it

is not always possible to introduce such an ideal light probe

in the environment before acquiring the images. To address

this issue, the use of random objects that actually are present

in the scene has been demonstrated [17, 24] or even human

eyes [16]. Unlike the sphere mentioned above, such an ob-

ject may not behave like a perfect mirror and the specular

component must first be separated from the Lambertian im-

age texture.

This separation can be achieved in many different ways,

depending on the chosen representation for the lighting en-

vironment. One may use a sparse representation made of

point light sources [18, 11], and extract the highlights only

as local intensity maxima. However a dense representation

is more general. In that case, the specular reflections of the

environment on the object surface have to be extracted en-

tirely. In case of dielectric objects and sources of a unique

chromaticity, they can be retrieved using [22]. When en-

gineering the capture is possible, polarization approaches

such as [15] allow for accurate diffuse-specular separation.

[19] considers the image flow, but only in the case of ob-

jects that are formed of parts that are either strictly Lam-

bertian or strictly specular. When a 3D model of the object

of interest is available, it can be exploited to handle materi-

als with more generic reflection properties [17, 24]. Since

the object is represented by a mesh and not as an analyti-

cal surface, one has to be careful when mapping back the

extracted specularities to the environment map. [17] uses a
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Figure 3. Computing a differentiable environment map from specular image pixels, by associating a color to each 3D orientation. (a) One

image from a sequence of a specular and textured objet to which a 3D model is registered. (b) The corresponding specular image. (c)

Direct mapping from image to 3D orientation creates holes due to sampling problems and does not allow the computation of the derivatives

required for template matching. (d) Inverse mapping produces a map that is suitable for template matching, but cannot be differentiated

analytically for objects represented as 3D meshes. (e,f) For convex objects, we overcome this problem by first mapping the mesh vertices

from the image to the environment map and then assigning to each environment map point the color obtained by linear interpolation over

the triangle the point lies on. (g,h) For non-convex objects, the mapping becomes a many-to-one relation and the final color is taken to be

the mean of the colors at locations computed from all the triangles the point lies on.

low resolution environment map called illumination hemi-

sphere and makes each specular pixel vote independently.

This gives robustness to pose and reflections extraction er-

rors but results in relatively poor quality maps in which the

structure of the specularities is lost. [24] fits a function

made of spherical harmonics, and as a result, gets smoothed

environment maps. While in their context these approaches

to building environment maps are sufficient for shape and

texture recovery, we need a more accurate one for precise

pose estimation since we match the structure and the shape

of the light sources present in the environment.

Our own approach to computing environment maps fol-

lows the same philosophy as [17, 24] when extracting the

specular reflections but is designed to produce sharp and

differentiable environment maps, such as those of Fig. 3.

3. Approach

Our approach to accurately computing the pose of a tar-

get object in each frame of an n-image video-sequence

{Ii}i=1..n includes three steps. Given the pose in the first

frame, which can be obtained using a technique based on

matching feature points, and an untextured 3D model M
in the form of a triangulated mesh, we first perform stan-

dard template matching, which yields rough pose-estimates

in the rest of the sequence. From these initial poses, we then

separate Lambertian from specular image components. Fi-

nally, given the specularities, we refine the pose estimates

in the images so that their corresponding environment maps

are as similar as possible to the one associated with the first

image. In the remainder of this section, we describe these

three steps in more detail.



3.1. Initial Pose Estimation

We treat the first image as a reference and perform tem-

plate matching to estimate the pose in the others. More

specifically, given the pose Θ1 in the first image I1, we seek

to recover the pose Θi in the following ones in terms of 3

exponential map coefficients for rotation and 3 translation

parameters. Let W (I,Θ,Θ′) be the function that warps the

image of mesh M with pose Θ in I to synthesize the one

that would have been produced if its pose had been Θ′. We

use barycentric coordinates to select regularly spaced 3D

points on each of the nf facets of M and assign to these

points the intensity corresponding to their reprojection in

image I1 given pose Θ1. We retrieve the pose Θi in image

Ii by maximizing

fT(Θi) =

nf
∑

j=1

NCC (W (I1,Θ1,Θi)(pj(Θi)), I(pj(Θi))) , (1)

where the pj are the 2D projections of the 3D points sam-

pled on facet j, and NCC(., .) represents normalized cross-

correlation. Bilinear image interpolation lets us treat fT as

a differentiable function of the pose, which is important for

optimization purposes.

3.2. Isolating Specularities

To extract specularities, we could have used sophisti-

cated methods, such as those proposed [22, 20] for dielec-

tric materials. However, for the sake of both simplicity and

generality, we used a much simpler median-based approach,

which has proved adequate for our purposes.

Because normalized cross-correlation is relatively insen-

sitive to illumination changes, template matching yields

pose estimates that, while not perfectly accurate, are suffi-

cient to estimate the object’s underlying texture. As shown

by Fig. 4, we estimate the Lambertian component of the

texture by warping back all the images to the first one

so that corresponding object parts are superposed. In the

warped images, the Lambertian image component is stabi-

lized, while the specular one is not. We therefore perform

median filtering on a pixel per pixel basis in the stack of

images to remove the specular component and represent the

object’s texture as the image

T = Mediani W (Ii,Θi,Θ1) .

The specular component in image i is then taken to be

Si = Ii − W (T,Θ1,Θi) .

Si is a reliable estimate because the median filtering is

robust to the intensity changes produced by small pose-

estimation inaccuracies. Even though T is only an approx-

imation of the true object texture when the object moves

with respect to the lighting, it suffices for our purposes

because specularities typically produce intensity changes

much larger than those attributable to Lambertian effects.

3.3. Computing the Environment Maps

Given the pose parameters Θ, we represent the environ-

ment map as an image E(Θ,S) corresponding to a 2D map-

ping of a sphere, and whose intensities come from a specu-

lar image S. We follow the mapping function of [5] since it

results in low distortion in all directions, but extend it to 3D

meshes while making it differentiable.

We build our environment maps as described in Fig. 3(e-

h): We first project the vertices of our triangulated mesh M
into the environment map E. Each resulting 2D triangle is

filled by interpolating the values in the specular image Si.

This solves the sampling problem illustrated by Fig. 3(c).

However, special care is required to handle the fact that sev-

eral points in the specular images can fall at the same envi-

ronment map location because they correspond to the same

normals.

More specifically, given the 3D vertices {vk} of M, we

compute the viewing direction ek(Θ) of vertex vk as the

normalized vector joining it to the camera center. The di-

rection dk(Θ) of the light-ray striking the object at vk and

reaching the camera is given by

dk(Θ) =
ek(Θ) − 2(ek(Θ) · nk)nk

‖ek(Θ) − 2(ek(Θ) · nk)nk‖
,

where nk is the normal to the object’s surface at vertex vk.

Projecting vk in the environment image then amounts to

computing the point qk in the environment map that corre-

sponds to direction dk(Θ) = [dx,dy,dz]
T

qk(Θ) =





0.5 + dx arccos(dz)

2π
√

d2
x+d2

y

0.5 +
dy arccos(dz)

2π
√

d2
x+d2

y



 .

We then exploit qk to estimate the intensity at each loca-

tion s in E. We assume that the facets of the mesh are

sufficiently small so that their projections in E remain tri-

angles, which can always be achieved by retriangulation of

the mesh. At location s = [s, t]T in the environment image,

the intensity E(Θ,S)(s) is taken as the mean of the inten-

sities in S at location obtained from the facets on which s

lies.

We first compute the barycentric coordinates of s for ev-

ery facet j it lies on

bj(Θ) =





p
j
1 p

j
2 p

j
3

q
j
1 q

j
2 q

j
3

1 1 1





−1

(Θ)





s

t

1



 ,

where p
j
k and q

j
k are the environment image coordinates of

the kth vertex of facet j. The environment image can finally

be written as

E(Θ,S)(s) =
1

nf

nf
∑

j=1

S(mj(Θ)) ,
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Figure 4. Estimation of texture and reflections. (a,b) First and last frame of a video sequence. (c,d) The diffuse and specular images

computed as described in Section 3.2. Image (d) was gamma-corrected for clarity.

where the mj are locations in the specular image defined

by the previously computed barycentric coordinates bj with

respect to the projection of facet j in S. Note that E(Θ,S)
is differentiable with respect to Θ, which is critical for tem-

plate matching.

3.4. Pose Refinement from Environment Maps

In each image Ii of the sequence, starting from the rough

estimate of the pose Θi of Section 3.1 and under the as-

sumption of static lighting, we can now use both the texture

and environment map representations to refine the pose by

minimizing

f(Θi) = min
Θ

fE(Θi)− λfT(Θi) , with (2)

fE(Θi) =
∑

s

(E(Θi,Si)−E(Θ1,S1))
2

where fT is the texture correlation term of Eq. 1, and fE

quantifies the difference between the environment maps es-

timated from the first frame and from the current one. λ is

a weight that we compute so that the two terms have gradi-

ents with initially equal magnitude, thus ensuring that they

have a comparable influence.

Fig. 5 depicts energy landscapes around a correct pose

in one frame of a video sequence. To produce them, we

have taken a known pose and evaluated both fT and fE

at various poses around it. To represent it in 2D we have

fixed 4 parameters and sampled the Z-axis translation and

the X-axis rotation, which are the two parameters that are

only weakly constrained by texture matching in the exam-

ple of Fig. 1. The lighting energy landscape of Fig. 5(b)

shows a steep energy drop at the correct pose for X-axis ro-

tation, which greatly constrains the optimization. This can

be seen in the total energy landscape of Fig. 5(c), which

exhibits a deeper narrower energy minimum than the one

of Fig. 5(a) computed from texture only. This means that

the global minimum is defined with more accuracy and that

it can be reached more easily. These are the root reasons

why combining texture and lighting constraints brings the

improvement we demonstrate below.

(a) (b) (c)

Figure 5. Energy landscapes with image center corresponding to

the correct pose. Each image is a plane cutting the 6D space of

the energy function. When evaluating the energy, we only let the

X-axis rotation and the Z-translation vary, since they are the less

constrained parameters in a texture-based tracking, and set the oth-

ers to their optimal values. (a) is the texture energy, (b) the lighting

one, and (c) the addition of the two, which exhibits a much better

defined minimum that the other two.

4. Results

We demonstrate our approach first on synthetic images

and then on real ones.

4.1. Synthetic Images

Fig. 6 illustrates our results using synthetic images for

which we can quantify the improvement in accuracy that

the lighting constraints provide. The synthetic poses used

to generate the images are randomly perturbed. These poses

are then independently refined using either only texture or

both texture and environment maps. Table 1 shows the dis-

tance between the recovered poses and the original ones.

Our approach brings substantial improvements over using

texture alone, especially as far as estimating Z-Axis trans-

lation and rotation around the X-Axis are concerned. These

two parameters are precisely those that are difficult to re-

cover using texture cues only because they can vary a lot

more than others without changing much the projected ap-

pearance. It is of interest to note that the magnitude of

the residual errors of all the parameters optimized with our

method are now of the same order, which was not the case



(a) Synthetic image (b) Randomized pose (c) Texture only (d) Our approach

Figure 6. Using synthetic images. (a) Original frame from a sequence we synthesized. (b) The pose has been randomized. As a result the

top right corner of the cylinder projects at the wrong place. (c) Simple template matching falls into a local minimum and barely improves

the pose. (d) Using the lighting constraints brings a substantial improvement and the 3D model now projects at the right place.

(a) Original environment map (b) Differences with randomized pose (c) Differences with texture pose (d) Differences with our method

Figure 7. Partial views of the environment maps for the can of Fig. 6. (a) The original environment map used to produce Fig. 6 (a). (b)

The difference image between the original environment map and the one computed by the projection of the specularities present in image

Fig. 6(a), using the method of section 3.3(a) and the initial randomized pose. Differences from ground truth mainly involve elongated and

skewed lighting areas. (c) Difference image with the environment map obtained after the optimization based on texture cues only. The areas

are still skewed and too spread, hence the big differences. (d) By contrast, the difference image obtained after using texture and lighting

cues is almost black, which means that the shape and localization of the lighting areas in the recovered environment are very similar to the

target image (a). This is related to the accurate pose recovery that is quantified in Table 1 and visible in Fig. 6 (d).

Camera Position Texture Our Error

Error in mm on : Approach Method Reduction

x 1.16 (1.35) 0.31 (0.33) 73.4%

y 1.60 (2.79) 0.20 (0.19) 87.3%

z 7.42 (9.70) 0.20 (0.33) 97.4%

Camera Rotation Texture Our Error

Error in Deg. on : Approach Method Reduction

x 2.42 (3.17) 0.08 (0.13) 96.7%

y 0.29 (0.51) 0.14 (0.14) 54.1%

z 0.78 (1.10) 0.06 (0.09) 94.2%

Table 1. Error evaluation in synthetic images, average values

(Standard deviation). The Z-axis translation indetermination and

X-axis rotation indetermination are resolved by the lighting term.

For these parameters, our method reduces the residual error by

about 97%.

with the texture only approach. This emphasizes the idea

that lighting and texture clues are complementary.

In Fig. 7, we compare the environment map we recover

with the one that was used to create the images. They are

very similar, which means that our recovered map could be

used to convincingly light virtual objects added to the real

scene. This was not the case with the environment that can

be estimated using the poses from simple texture matching.

4.2. Real Images

Fig. 8 shows an example in which combining texture

and lighting constraints help. The duck is not very tex-

tured. As a result, when using texture only, the recovered

poses yield correct reprojection in the middle of the duck

— where the texture is — but not at the edges as shown in

Fig. 8(b,c). Using the lighting constraints fixes this problem

and results in a correct reprojection everywhere. In particu-

lar, as shown on fig. 8(d,e), the head and tail now reproject

correctly mainly because the X-axis rotation is better con-

strained.

In Fig. 9, we come back to our central theme. Even

the small pose-estimation inaccuracy that results from using

only the texture and ignoring illumination effects results in

a dramatic motion of the specularities when using this pose

to synthesize new images. This motion disappears when

using the poses returned by our algorithm.

Accurate pose estimation is crucial for augmented and

mixed-reality. In Fig. 1 we demonstrate that our method can

refine poses up to a point where it becomes possible to add

synthetic objects at correct places even if they are relatively

far from the observed object. Furthermore, it shows that

the accuracy is conserved in a perpendicular view, which is



(a) Initial pose (b) Texture only (c) Texture only (d) Our approach (e) Our approach

Figure 8. Tracking a poorly-textured duck. (a) First frame of the video sequence with registered 3D model. We show in the upper right

corner a zoomed version of its tail. (b,c) Using texture only leads to an increasing drift, as evidenced by the fact that the model’s occluding

contours are not at the right places. (d,e) The lighting constraints suppress the drift and the model is correctly projected. The corresponding

video can be found at http://cvlab.epfl.ch/research/poseref.

(a)

(b) (c)

(d) (e)

Figure 9. Resynthesizing specularities. (a) An image with a spec-

ularity highlighted by the overlaid ellipse and white lines. It is

produced by a point light source at a known location. (b,c) Poses

recovered without and with the lighting constraints. (d) Relighting

the model using the pose estimated using texture only produces a

specularity at the wrong place. (e) Using the lighting constraints

yields a refined pose that produces a specularity at the right place.

not used for pose estimation, and where using texture only

yields inaccurate results.

Fig. 10 shows the Lambertian appearance of another

shiny object and the environment map, both recovered from

a 300-frame sequence. Fig. 11 shows that we can use them

(a) Initial pose (b) Texture

→
↓

→
(c) Specular image (d) Environment map

Figure 10. Computing an environment map from a 300-frame

video. (a) Initial pose of a partial model of the helmet in the first

frame of the video. (b,c) Recovered diffuse and specular pixels.

(d) Close-up on the computed environment map in which we can

see the reflection of an office window.

to synthesize new views in which the reflections are accu-

rately located, which is important for graphics and Mixed-

Reality applications.

5. Conclusion

Standard pose-estimation algorithms tend to discard

lighting-information. In this paper, we have shown that it

can be explicitly used to increase the accuracy of a standard

template matching algorithm. Our approach relies on a very

generic computation of environment maps. It could there-

fore be incorporated into other 3D tracking approaches,

hence opening new avenues of research.

Convincing results were obtained for both accurate ob-

ject localization in side view and realistic synthetic render-

ing of shiny objects which are known to require high preci-

sion in geometry and pose estimation.

The ability to estimate poses that are both accurate and

consistent with a recovered representation of the lighting



(a) Real image (b) Texture only (c) Our approach

Figure 11. Synthesizing images with correctly located and shaped

specularities. (a) Top: Frame #200 in the video sequence of

Fig. 10. Bottom: A close-up of this image around the specular-

ity created by the window. We manually outlined it in red. (b)

Top: Image synthesized by relighting the recovered texture using

the environment map and the pose computed using texture only.

Bottom: The corresponding close-up. The red outline is the same

as in (a). The blue dotted line delineates the synthesized specu-

larity and does not match the red contour. (c) Top: Synthesizing

using the pose computed with our method. Bottom: Note that

the rectangular shape of the office window specularity is perfectly

clear and exactly matches the red outline.

environment offers interesting opportunities for future ap-

plications, such as optimizing the surface normals of the

object for refining the shape of the 3D input model and to

estimate the reflections properties of the object’s material.

Mixed-reality applications can also take advantage of the

accurate poses and environment estimate.
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