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Video-Based In Situ Tagging on Mobile Phones
Wonwoo Lee,Youngmin Park,Vincent Lepetit, and Woontack Woo, Member, IEEE

Abstract—We propose a novel way to augment a real-world
scene with minimal user intervention on a mobile phone: the user
only has to point the phone camera to the desired location of
the augmentation. Our method is valid for horizontal or vertical
surfaces only, but this is not a restriction in practice in manmade
environments, and it avoids going through any reconstruction of
the 3D scene, which is still a delicate process on a resource-limited
system like a mobile phone. Our approach is inspired by recent
work on perspective patch recognition, but we adapt it for better
performances on mobile phones. We reduce user interaction with
real scenes by exploiting the phone accelerometers to relax the
need for fronto-parallel views. As a result, we can learn a planar
target in situ from arbitrary viewpoints and augment it with
virtual objects in real-time on a mobile phone.

Index Terms—Mobile Phone, Augmented Reality, Camera
Registration, Vanishing Point Detection.

I. INTRODUCTION

S
MARTPHONES have become a very popular platform

for Augmented Reality (AR) applications. Their use is

becoming widespread, and they are often equipped with hard-

ware useful for localization and relatively good computational

capacities. Several recent works have shown that it is possible

to develop Computer Vision techniques for AR on mobile

phones [1]–[5].

In this paper, we consider a mobile AR tagging application,

where real-world objects are augmented by virtual contents

through a mobile phone camera. In this scenario, users can

select a target object in a database and interact with virtual

contents that are overlaid on the target object. They can also

add a new target object to the database and overlay virtual

contents on it as well. The current target detection approaches

have limitations in this scenario: Learning a new target takes

time especially on mobile devices because of their limited

computational power and resources; 2) the 3D structure or

a fronto-parallel view image of a target is required to learn

the target’s appearance for recognition.

We present a novel Computer Vision-based approach that

makes it easy to add augmentations to the real world, even for

a non-expert user. As shown in Figure 1, we avoid the need to

go through a 3D reconstruction phase, which is still delicate

to perform correctly, and cumbersome as well, especially on

a resource-limited system like a mobile phone. We also avoid

using feature points, as they are not available in every scene.

Instead, we combine a recent patch recognition technique [6]

adapted to mobile phone platforms and an image rectification

method that uses both Computer Vision techniques and the

phone’s accelerometers.

W. Lee, Y. Park, and W. Woo are with Gwnagju Institute of Science and
Technology, Gwangju, 500-712, South Korea.

V. Lepetit is with EPFL CVLab, Switzerland.

Fig. 1: Overview of our approach. The user simply has to

point the mobile phone toward the desired location for the

augmentation, and then take a picture like the ones on the

left column. Our method guesses the surface orientation for a

coherent insertion, by combining the phone’s accelerometers

and Computer Vision techniques. It can then recognize the

location even from new viewpoints, and track it for real-time

augmentation (see middle and right columns).

In our approach, the user simply has to point the phone

camera toward the location he or she wants to augment.

Through the phone accelerometer and line segments in the

captured image, we can retrieve the surface orientation and

rectify the captured image, and then insert the virtual objects

in a coherent fashion. This is possible for horizontal or

vertical surfaces only; however, manmade environments do

not present a restriction in practice. Most of the time, our

algorithm can correctly estimate the real surface orientation—

either horizontal or vertical; otherwise the user can correct it

quite easily. The scale factor can be defined by moving the

phone toward or away from the surface, before fine-tuning it.

This mode of operation results in a very intuitive interaction.

Once the user has defined the virtual content, its location in

the real world can be recognized, even from new viewpoints

and tracked in 3D for consistent rendering. For detection, we
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adapted Gepard, a template-based approach proposed in [6]

to a mobile phone platform, because it works even on low-

textured surfaces. The main idea behind Gepard is to compare

a set of templates, each template corresponding to the average

appearance of the surface from a given viewpoint when the

camera pose is slightly changed, with the texture around

feature points.

Here, we skip the feature point detection step and use larger

patches instead for greater robustness. We also replaced the

way the templates are computed, which consumes a large

amount of memory in Gepard, by rendering and blurring

operations. This is more suitable given the limited resources

of the phone architecture, and it takes only few seconds.

Another difference with Gepard is that we can relax the need

for a fronto-parallel view to build the set of templates. In [7],

we showed how to exploit the phone’s accelerometers to rec-

tify the captured image into a fronto-parallel view. However,

for vertical surfaces, this was possible only for rotation around

the pitch axis. This paper describes an extended version of that

process, which introduces a method exploiting both Computer

Vision techniques and the phone’s accelerometers to estimate

the surface orientation under general viewing conditions.

In the remainder of the paper, we first review related work in

Section II. Sections III and IV detail how the set of templates

are built. Detection and tracking of a target from the templates

are explained in Section V. Experimental results are given in

Section VI and Section VII concludes the paper.

II. RELATED WORK

Several recent works have demonstrated that it is possible

to run Computer Vision algorithms for localization and 3D

tracking on mobile phones [1]–[5]. They are all based on

feature points and therefore require a fair amount of texture to

work correctly. Moreover, mobile phones often have relatively

low-quality cameras, which tend to blur the images under fast

motion and make the feature points difficult to detect.

We therefore considered Gepard, an alternative method

based on template matching, which was proven to be adaptable

to poorly textured objects and blurry images [6] 1. Given

an image patch to detect, Gepard generates a set of “mean

patches.” Each mean patch is computed as the average of

the patches seen over a limited range of viewpoints, and the

ranges over all the mean patches cover all possible views.

Then, by comparing an input patch to the mean patches, one

can recognize it and get an estimate of the camera’s viewpoint.

Parallel Tracking and Mapping (PTAM) [2] relies on a related

method as it compares downscaled, blurred images for camera

relocalization [8], but it cannot generalize to unseen points of

view.

However, Gepard is not directly adapted to mobile phone

applications. It considers only patches centered on feature

points. Since we wanted to avoid feature point detection, we

skipped the feature points detection and use comparatively

much larger patches to achieve greater robustness. Gepard

also computes the mean patches as a linear combination

of eigenpatches; unfortunately, this requires a great deal of

1The Gepard algorithm is referred to as ALGO2 in [6].

memory to store all the precomputed data. We therefore

propose a way to simulate the computation of the mean patches

that does not require precomputed data.

Another restriction of Gepard is that it requires a fronto-

parallel view of the original patch to detect, or equivalently,

knowledge of its 3D orientation. This could be avoided, for ex-

ample, by using an automated 3D reconstruction of the scene,

but a non-expert user would still find that difficult to perform,

and it would require camera motion before augmenting the

scene anyway. Other works have developed interactive 3D

reconstruction using AR [9]–[12], but they still require some

time and expertise.

In this work, we take a much more drastic approach, but

one that appears to be very convenient in actual practice. We

assume that the real surface is planar and either horizontal or

vertical, and we try to guess its relative orientation with the

phone by using the phone accelerometers. This results in a

very intuitive and quick process, which is very desirable on a

mobile phone.

III. ESTIMATING THE SURFACE ORIENTATION

In the scenario of our application, the user points the phone

toward the surface that is to be augmented and captures an

image. As we want to augment the surface in a convincing

3D fashion, even from novel viewpoints, we need to know the

3D orientation of the surface in the captured image. From this

orientation, we can generate views of the surface from other

viewpoints that will be used for recognition. This process will

be detailed in the next section. This section focuses on the

surface orientation estimation.

We first use the accelerometer values to guess whether the

surface targeted by the phone user is either horizontal or

vertical. Let us denote by θh the angle the phone makes with

a horizontal plane as provided by the accelerometer, so that

θh = 0 when the camera points toward the horizon. Then, the

following assumptions are often true in practice:

• If −π

4
< θh <+π

4
then the surface is vertical,

• otherwise the surface is horizontal.

If our guess should be wrong, the user can correct it by directly

choosing a surface model, either horizontal or vertical.

If the surface is horizontal, it becomes relatively easy to

estimate the surface orientation because the accelerometers

can provide the phone orientation with respect to the gravity

force that is collinear with the normal of a horizontal surface.

However, doing this with a vertical surface is more difficult:

The surface may be slanted, as depicted in Figure 1, and

the orientation of this type of surface cannot be estimated

from the accelerometers only. We therefore provide a method

that combines the accelerometers output with Computer Vision

techniques. We consider, in turn, these two cases, estimating

the orientation of horizontal and vertical surfaces, for the

remainder of this section.

A. Horizontal Surface

In the case of a horizontal target, it is possible to compute

the surface orientation from the accelerometers, as previously

noted. However, we still need the surface translation to define
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Fig. 2: Relationship between the captured view and the fronto-

parallel view.

a full pose. Unfortunately, it is not possible to calculate the

distance between the camera and the surface from a single

image. Instead we use an arbitrary value d0. In practice, d0

is chosen to set the augmentation scale to a value so that the

augmentation more or less fills in the captured image. Thus,

the user can define the scale of the augmentation by simply

moving the phone toward or away from the surface. As shown

in most of the figures in this paper, the augmentation will

correspond to a large object if the camera is far away from

the surface; conversely, the augmentation will correspond to a

small object if the camera is close to the surface. This is very

intuitive, but it is limited to a certain range of scale within

which the user can move the phone, and the interface lets the

user adjust the scale if necessary.

The relationship between the captured view and fronto-

parallel view is illustrated in Figure 2. Without loss of gener-

ality, we can set the pose of the virtual camera in the fronto-

parallel location as [I|0]. The orientation obtained as explained

above gives us the rotation matrix R for the captured image,

which is a rotation around the X-axis in this coordinate system.

It is easy to see that the coordinates of the camera center, c,

are [0,d0 sinθp,d0(1−cosθp)]
�, and the translation vector for

the captured image is t =−Rc.

From [13], the expression of the homography H f←c that

warps the captured image to the virtual frontal view is then:

H f←c = K

�

R−
tn�

d0

�−1

K−1
, (1)

where K is the camera calibration matrix and n the vector

[0,0,−1]�. This will be used in the next section to generate

the data required to detect the target surface and estimate its

orientation from novel views.

B. Vertical Surface

The assumption of the sole existence of pitch rotation,

which is used in the horizontal target case, is not generally

applicable to a vertical target: The orientation between the

camera and the target surface changes, depending not only on

the camera’s movement but also on the target’s rotations in the

vertical axis. We therefore use the image itself, in addition to

the accelerometers to estimate the orientation of the vertical

surface.

The orientation of a planar surface can be estimated from the

vanishing points of its projection. Vanishing point estimation

from a single image has been extensively studied [13], and

most of the algorithms, including recent ones, rely on straight

line extraction and clustering [14], [15]. However, vanishing

α

v

s
Ideal line

Fig. 3: Distance α(s,v) between a point, v, and a line segment,

s. It is defined as the angle between s and the straight line that

passes through vv and the mid-point of s.

point estimation is still a burden on mobile phones due to their

limited computational power.

We therefore propose a method that also exploits the ac-

celerometers: By predicting the vanishing point of vertical

lines from the accelerometer values, we can speed up and

make this estimation more reliable.

The phone accelerometer provides the direction of gravity,

g, in the phone’s local coordinate system. Since g is vertical,

the vanishing point, vv, of vertical lines in the captured image

can be obtained by simply projecting g onto the image plane:

vv = Kg . (2)

However, we cannot rely only on the accelerometer values

because the phone accelerometer values are unstable due to

sensor noise and small hand movement. Hence, we only use

Eq. (2) to predict vv and refine it further using information

from the image.

We first extract straight line segments using the fast al-

gorithm proposed in [16]. We ignore segments shorter than

a threshold lth because their directions are not reliable and

could affect the vanishing point estimation (lth = 15 pixels

works well in practice). We then consider the segments that

are likely to be vertical lines by measuring their distances

to the initial estimate of vv. We adopt the distance function

illustrated in Figure 3 and proposed in [17]. It is defined as the

angle between the segment and the line that passes through vv

and the mid-point of the segment.

The segments for which this distance is smaller than a

threshold are considered to be projections of vertical 3D lines.

From these segments, we can estimate vv by using Random

Sample Consensus (RANSAC) [18]. The point that minimizes

the mean distance from inliers is finally kept as the vanishing

point, vv, of vertical lines.

For the vanishing point, vh, of horizontal lines, we use

the J-Linkage algorithm [14], based on line clustering. J-

Linkage first builds the m hypotheses, the candidates for vh.

The hypotheses are computed as the intersections of two

lines randomly selected from the set of extracted straight line

segments from which we removed the vertical lines used to

estimate vv.

To retain only the promising hypotheses only, we apply the

orthogonality constraint, which is that two vanishing points

should satisfy:

(K−1vv)
� · (K−1vh) = 0 . (3)

We therefore keep the intersection p of two lines as a hypoth-

esis only if it satisfies:

(K−1vv)
� · (K−1h)≤ τh , (4)
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where h is the intersection point of the two lines. τh is a

fixed threshold. We compute m hypotheses h1,h2, . . . ,hm. Five

hundred hypotheses are typically used in [14], but in practice

considering m = 100 hypotheses is sufficient, thanks to the

orthogonality constraint.

J-Linkage then determines which hypotheses can corre-

spond to the vanishing point by clustering the lines using an

agglomerative approach. Initially each line is considered as a

cluster, and the similarity between two clusters is measured

by the Jaccard distance [19]:

d (C1,C2) =
|pref(C1)∪pref(C2)|− |pref(C1)∩pref(C2)|

|pref(C1)∪pref(C2)|
,

(5)

where pref(C1) and pref(C2) are the “preference sets” of the

two clusters. If a cluster contains only one line, its preference

set is defined as the set of hypotheses that are close enough

to the line; that is, if the distance function α(,) of Figure 3 is

smaller than a threshold. If a cluster contains more than one

line, its preference set is the intersection of the preference sets

of its elements.

At each iteration, the clusters are compared against each

other, and the two clusters having the minimal distance are

merged. This process is iterated until the minimal distance be-

tween clusters becomes 1, i.e., there is no overlap between the

preference sets of any two clusters. Each final cluster therefore

provides one point. The point minimizing the orthogonality

test in Eq. (3) is chosen as the vanishing point, vh, of horizontal

lines.

Once both vanishing points have been obtained, we can

compute the surface orientation. The rotation, R, between the

frontal view and the captured view is obtained as detailed in

the appendix. The translation vector, t, can then simply be

computed as

t = Rd−d , (6)

where d = (0,0,d0)
�

. From R and t, the warping homography

H f←c is computed as in Eq. (1).

Figure 4 shows the results of vanishing points estimation

and image rectification. The vertical and horizontal lines are

robustly extracted from the input image and vanishing points

are estimated from them. As we can see the initial vertical

vanishing point is close to the correct solution but is still

inaccurate. Our method refines it with line segments, and the

resulting horizontal and vertical vanishing points are then quite

accurate. It can also estimate vanishing points in cluttered

scenes as shown in rows 2 and 3 of Figure 4.

IV. GENERATING DATA FOR PATCH RECOGNITION

A. Review of Gepard [6]

Given a reference image patch, p, in a frontal view, Gepard

computes a set of “mean patches.” Then it recognizes a surface

visible in the captured image and estimates its orientation by

matching it against the mean patches. The original expression

of a mean patch ph is:

ph =
1

|Ph|
∑

P∈Ph

w(p,P) , (7)

Fig. 4: Vanishing points detection and image rectification. First

column: lines passing through the initial solution of the vertical

vanishing point vv; second column: detected line segments;

third column: lines passing through the estimated vanishing

points; fourth column: fronto-parallel view image. The red and

blue lines pass through vv after refinement and the horizontal

vanishing point vh.

where P represents a camera pose, and w(p,P) is a patch p

seen under pose P. Each set Ph is made of poses around a

pose that we will denote by Ph. The poses Ph are regularly

sampled, and together all the Ph’s span the set of all possible

poses.

In Gepard, learning a patch simply means computing the

corresponding ph. Then, for an input patch, q, one can

compute:

e = min
h

�q−ph�
2 , and ĥ = argmin

h

�q−ph�
2
. (8)

If the patch difference, e, is small, q is the same patch as p

but is viewed from a pose close to Pĥ. That gives a good

estimate of the patch spatial orientation, which is further

refined through template matching techniques.

In practice, Eq. (7) is not used directly, as this would be very

costly. Instead, Gepard uses an approximation that exploits the

fact that image warping is a linear transformation. A patch, p,

is decomposed into its mean and principal components as

p ∝ v+
L

∑
l=1

αlvl (9)

where v and vi are the mean and principal components of a

large set of image patches. L is the dimension of principal

components. Then, Eq. (7) becomes

ph ∝
1

|Ph|
∑

P∈Ph

w

�

v+
L

∑
l=1

αlvl ,P

�

. (10)

In Gepard, both v and vi are computed offline. See [6] for

more details.

This approach requires a large amount of memory for

storing the precomputed data, and is therefore not suitable for

a mobile phone. We give below another approach that does

not rely these memory-consuming precomputations.
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Input patch
Patch 

warping

Radial 

blurring

Gaussian 

blurring
Accumulation

Fig. 5: Creation of the mean patches by blurring. To compute

each mean patch, the reference patch is first warped, and radial

blur and Gaussian blur are then applied. The resulting patches

are accumulated into a texture on the GPU to send them to

the CPU in one single read.

B. Patch Learning on a Mobile Phone

As can be seen in [6], the mean patches look like the

reference patch after some non-uniform blur. This is related to

Geometric Blur [20], which also blurs images for recognition

and matching; however Geometric Blur relies on Gaussian

smoothing with a spatially varying standard deviation, which

is slow. We propose here an alternative to generate the mean

patches, which is also based on blurring, but is a more efficient

method. As shown in Figure 5, we use a combination of

radial blur and Gaussian blur, performed on the mobile phone’s

graphics processing unit (GPU), to compute the mean patches.

a) Warping: In order to approximate a mean patch, ph,

the central patch in the surface frontal view is first rendered

into a new patch we denote by ph to correspond to pose

Ph. Rendering on the phone’s GPU takes only about 0.3 ms,

whereas CPU-based patch warping took about 100 ms in our

experiments.

To generate the poses, we regularly sample the rotations

every 20 degrees around the three axes. We also use 3 scale

factors (0.5, 1, 2) that we apply to d0 before computing the

translation in order to detect the surface from a range of

distances. We then directly use OpenGL ES to render ph.

b) Radial blur: In the second pass, radial blur is applied

to ph to get a new patch rh. The intensity of each pixel, m,

of rh is computed as the average of the pixel intensities over

an arc of a circle centered on the patch center c and going

through m. The length of the arc, l, varies linearly with the

distance between c and m:

l = θr�c−m� . (11)

In this formula, θr is a parameter expressed in radians and we

use the value θr = 0.17, which, in practice, is about 10 degrees.

The pose sampling step and the maximum radial blur range are

experimentally determined to guarantee reasonable detection

performance. According to the results shown in Figure 6,

our algorithm achieves good performance with the selected

parameters 2. Although the performance is a little better with

the 5 degrees sampling step, the 10 degrees sampling step was

selected because it gives almost the same performance with a

fewer number of views, which makes the learning stage faster.

To confirm the effectiveness of the radial blur, we measured

the patch detection performance against viewpoint changes

2The performance is measured with a set of images that are used for the
experiments shown in Figure 13.
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Fig. 6: Detection performance with varying pose sampling

steps and maximum blur ranges.

on the Graffiti image set 3 with different blurring schemes.

In the experiment, we changed the viewpoint by rotating

the reference image by 0 to 70 degrees and measured the

similarity to the reference patch through Normalized Cross

Correlation (NCC). Patch detection is considered successful if

the similarity exceeds 0.9. Figure 7 shows the results, where R

and G(m) represent the radial blur and the Gaussian blur with

a m×m kernel, respectively: The mean patches computed by

combining the radial blur with the Gaussian blur outperform

those generated through Gaussian blur only.

c) Gaussian blur: Gaussian blur is then applied to rh,

and the resulting patch approximates a mean patch ph as given

by Eq. (7). The Gaussian filter is separable, and therefore is

implemented with two 1D filters for efficiency. In practice, we

use σ = 11 for the Gaussian kernel standard deviation.

d) Downsampling and Accumulation: As in Gepard, ph

is downsampled from 128× 128 to 32× 32 and normalized

to be robust to light changes. It is finally stored in a texture

buffer of the GPU with the other generated mean patches.

The accumulation of multiple patches in a texture reduces the

number of readbacks from the GPU.

V. DETECTION AND TRACKING

Once a patch has been learned, it can be detected in new

images to initialize a tracking algorithm based on template

matching. If a known patch is visible in the captured image,

we first extract the patch in the image center to detect the patch

and to estimate its orientation. By contrast with Gepard, we

apply to this patch the transformation detailed in Section IV;

that is, we apply the same radial and Gaussian blurs and

downscaling. This gives us more tolerance to translation and

rotation, and the small additional computational burden is

possible as it is done on only one patch for each captured

image.

This gives us an input patch q, and we can proceed as in

Eq. (8): If e is small enough, we assume the input patch is one

of the learned patches, and we use the corresponding pose Pĥ,

to initialize a tracking algorithm. We chose to use the ESM-

Blur algorithm [21], as it is robust to motion blur, which is

3Available at http://www.robots.ox.ac.uk/~vgg/research/affine
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Fig. 7: Effectiveness of radial blur. Combining the radial blur

and the Gaussian blur outperforms simple Gaussian blurring.

a frequent problem with the low-quality cameras of mobile

phones. ESM-Blur is used, first, to refine the pose provided

by the detection, and then to track the patch in the subsequent

captured images. When tracking fails, we re-run the detection

procedure. Tracking with ESM-Blur is accelerated by NEON,

a set of SIMD (Single Instruction Multiple Data) instructions

of ARM CPUs for faster speed.

VI. EXPERIMENTAL RESULTS

We implemented our method on both a mobile phone and a

PC. We used Apple’s iPhone 3GS and iPhone 4 as our mobile

phone platforms and a PC with a 2.4 GHz CPU and a GeForce

8800GTX GPU. Cameras capture videos in 480×360 on the

mobile phones and 640×480 on the PC. Note that the speed of

our approach is independent of the size of the input images. In

both platforms, cameras are calibrated in advance. We assume

that the phone camera’s focal length is fixed, although it has

an auto-focus function. We always set the focus of the camera

at the center of image, where we take a patch to learn it.

We set the size of an input patch to 128 × 128 and the

number of views for patch learning to 225, which provides

good detection performance with reasonable speed. Currently,

the algorithm is implemented for single target detection. The

amount of memory required for the data learned from a target

depends on the sampled patch size and the number of views to

learn. In our experiments, each mean patch is downsampled

to 32 × 32, and it requires 4 kilobytes for pixel intensities

and 36 bytes for a 3× 3 homography pose matrix. For 225

views, about 907 kilobytes are required in total to store the

data learned from a target.

A. Fronto-parallel Image Generation

Figure 8 shows the captured images of planar targets and the

corresponding fronto-parallel view images. Horizontal targets

are rectified based on the phone accelerometer values and our

approach successfully retrieves the corresponding images as

they would be seen from frontal views. Rectification results

of vertical targets are shown in Figure 8(b). Using vanishing

points allows users to capture images of the targets from arbi-

trary viewpoints and the target images are correctly rectified

even when the textures of the targets are complex. A vertical
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Fig. 9: Logarithmic plot of vanishing point detection speed

depending on the number of lines. By exploiting the ac-

celerometers, our approach (WA) is more than 10 times faster

than the method in [14] (WOA).

target can also be rectified through the accelerometer if there

are not enough lines for vanishing point detection in its image,

as shown in the last column of Figure 8(a). However, in

this case, the camera’s motion relative to the target surface

is limited to the pitch rotation only as we assume for the

horizontal target.

Rectification for horizontal targets is accomplished swiftly

because no additional complex computations are required for

rectification. Warping a 320 × 480 image takes about 110-

130 ms. On the other hand, to do the same thing with

vertical targets takes a few seconds, due to the vanishing point

detection step. The speed of vanishing point detection depends

on how many lines exist in the captured image. Typically, 100

to 250 lines are extracted from a real scene and vanishing

point detection takes less than 2 seconds. We compared the

vanishing point detection speed of our approach (denoted

by WA) with the method in [14] (denoted by WOA), which

retrieves vanishing points only from lines. In our implemen-

tation of [14], we set the maximum number of hypotheses

to 500 and skipped the refinement step through Expectation-

Maximization because we also did not conduct the refinement

step. As shown in Figure 9, adopting the phone accelerometer

drastically reduces vanishing point detection time.

To evaluate the accuracy of detected vanishing points, the

reference vanishing points are obtained by manual operations.

Ten people, who were non-experts in Computer Vision and

image processing, were asked to find horizontal and vertical

lines as accurately as possible from 10 images captured from

ordinary real environments. The error between the reference

vanishing point and the one computed by our method is mea-

sured as the angle between two 3D rays, i.e., back-projections

of them. The average error is 1.02 degrees for the horizontal

vanishing point and 0.86 degrees for the vertical vanishing

point. For our purpose of frontal view generation, the accuracy

is in an acceptable range, considering the rectification results

in Figure 8. With a small loss of accuracy, we can get

significant speed ups on mobile phones.

B. Learning Speed

Figure 10 compares the time required for learning on both

PC and mobile phone platforms. While the four main steps—
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(a) (b)

Fig. 8: Examples of estimated fronto-parallel views (bottom row) from different input images (top row). (a) Only the phone

accelerometers are needed for horizontal surfaces (columns 1 to 4). It is also true when a vertical surface is rotated in pitch

only, as shown in column 4. (b) However, for slanted vertical surfaces, we need to combine the accelerometer’s output with

vanishing points detection.

Fig. 11: Planar targets used for evaluation. From the top left:

Sign-1, Sign-2, Car, Wall, City, Cafe, Book, Grass, Macmini,

and Board. The patches delimited by the yellow squares are

used as a reference patch.

warping, radial blur, Gaussian blur, and accumulation—take

approximately the same time on a PC, on the mobile phone,

radial blur clearly becomes the bottleneck. This can be ex-

plained by the fact that only horizontal and vertical memory

accesses are needed for Gaussian blurring, whereas radial blur

needs more complex accesses, and the phone’s GPU is not

adapted yet to this type of access.

Given the improvements in terms of recognition rates that

radial blur provides, it is worth using the radial blur despite its

relatively heavy computational burden. For 225 mean patches,

the mean patch computation time is about 5 seconds, which

is a good trade-off between the time required for learning and

the recognition performance.

C. Patch Detection and Tracking

Figure 13 shows the patch detection results against view-

point changes and image noise. We used 10 planar targets

with different textures in this experiment.4 Apart from the

viewpoint changes, we added zero-mean Gaussian noises with

a standard deviation σ ranging from 0 to 30 to pixel intensities.

The first two targets (Sign-1 and Sign-2) are low-textured

objects, which are common in the real world. The proposed

algorithm successfully detects those two targets under view-

point changes up to 60 degrees, regardless of the amount of

4Some image data is available at http://www.metaio.com/research. See [22]
for details.
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Fig. 12: Performance comparison with Gepard. Our approach

performs slightly worse in terms of recognition rates, but it is

better adapted to mobile phones.

noise. The next 5 targets are more textured. Our detection

method remains robust to viewpoint changes up to 60 degrees

and noises up to σ = 30. The last three targets (Grass,

MacMini, and Board) have rich but repetitive textures, with

thin structures. This case was the worst one for our approach,

and the NCC score dropped more quickly.

The comparison between our algorithm and Gepard [6] is

shown in Figure 12. In all data sets, Gepard outperformed our

method, but the performance loss was not large if the targets

have rich textures. Gepard also reveals some weakness in

repeated textures, although it is still better than ours. We expect

this is because Gepard exploits the two-step pose optimization

based on [23], [24], while we use only one [21].

Compared to Gepard, the advantage of our approach is in

memory usage, which is crucial on mobile phone platforms.

Typically, Gepard requires a load of about 30-90MB of pre-

computed data, depending on its parameters 5, which is a

large amount of data for a mobile phone platform to store

in memory. In contrast, there is no need for precomputed

data in our method. We have obtained the capability of online

learning on mobile phones by reducing the memory usage,

while sacrificing detection performance only a little.

The speed of patch detection is shown in Table I. Patch

5We used the source code available at http://campar.in.tum.de/Main/
StefanHinterstoisser.
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Fig. 10: Computation times for learning the mean patches. The overall time increases on (a) the PC , (b) iPhone 3GS, and (c)

iPhone 4 as the number of views increases.
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Fig. 13: Evaluation of the accuracy of the retrieved pose for different types of images. We applied our method to retrieve the

pose and plotted the Normalised Cross-Correlation between the original patch and the test images rectified by the retrieved

pose. Each curve corresponds to a different amount of noise. For the first patches, we obtain very good results up to 60 degrees.

Patches with high frequencies like Grass, MacMini, and Board yield lower performances.

TABLE I: Patch detection speed (unit: ms)

iPhone 3GS iPhone 4
Mean Stdev Mean Stdev

Mean patches comparison 3.06 0.25 2.5 0.19

Pose estimation / tracking 64.0 30.9 51.7 22.6

detection consists of two main parts, mean patches comparison

and pose estimation. The mean patches comparison takes about

3 ms with 225 views. The speed of pose estimation and

tracking with ESM-Blur can vary greatly as the number of

iterations required for pose optimization changes depending

on the accuracy of the initial pose provided by patch detection.

In practice, we set the maximum number of iterations to 50,

which results in a reasonable speed (10 to 20 frames per

second) and accurate registration.

D. Real World Examples

Figure 14 shows the result of the patch detection on outdoor

objects. The first column shows the input images. In all the

examples, the fronto-parallel views of the objects are unavail-

able in the captured images, but the method we proposed

estimated correctly the right camera pose. After learning from

the input images, the objects are successfully detected and

tracked by our algorithm on mobile phones. Note that our

algorithm works well even with poor textures. In the examples,

we assume that the origin of the world coordinate system is

at the center of the detected patch, and virtual objects are

synthesized on it. The orientations of virtual contents are pre-

defined for specific target types, i.e., horizontal and vertical.

The target’s surface should be planar, or it should be far

enough to be seen as planar from the camera’s viewpoint. If

our method is applied to a non-planar scene, detecting the

target may not be possible because the target’s image will be

distorted in fronto-parallel view generation step.

E. Discussions

1) Accelerometer and Gyroscope Sensors: The accelerom-

eter measured on mobile phones are noisy and this may affect

the estimation of the frontal view. However, the noises are not

large, and there is only negligible distortion in the warped

fronto-parallel images. In the case of vertical targets, the

accelerometer values are used only for initialization and thus,

the noises does not affect to the vanishing point estimation
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Fig. 14: Results on different types of surfaces. For all these

examples, the user simply had to shoot the image on the left

and select the computer model he or she wanted to add. Note

that our method works well with low-textured objects.

results. The gyroscope sensor, which has been adopted by

recent mobile phones, can provides the device’s orientation

relative to a reference. If the reference is set to gravity, then

the gyroscope sensor could replace the accelerometer in our

approach and the assumption of pitch rotation can be removed

if a target is horizontal. If the target is vertical, however,

we still need to estimate vanishing points for warping to the

fronto-parallel view.

2) Limitations: Figure 15 shows some cases of failure in

fronto-parallel view generation and target recognition. The

computed frontal view image becomes unreliable if the target

surface is slanted too much, because the target is imaged

as a small number of pixels and hence the warped image

becomes too blurred. With a vertical target, fronto-parallel

view generation fails when there are no horizontal or vertical

lines in a scene. However, real-world scenes usually contain

horizontal and vertical lines, and thus this is not a significant

limitation. Recognition failures typically happen on surfaces

with repetitive textures that make it difficult to identify a

specific target or on glossy objects whose textures changes

depending on the viewpoints.

VII. CONCLUSION

We proposed an approach to Augmented Reality on mobile

phones that is very intuitive to use by combining recent

Computer Vision techniques and the use of the phone sensors.

It can be adapted to the possibilities of mobile phones as it lets

users add augmentations even in outdoor environments with

very limited need for user intervention, and it requires only a

limited amount of computational power.

(a) (b)

(c) (d)

Fig. 15: Cases of failure. (a) The generated fronto-parallel

view image becomes unreliable when a surface is slanted too

much; (b) Vanishing point estimation fails when there are no

horizontal or vertical lines; (c) and (d) Recognition failures

typically happen on surfaces with repetitive textures such as

brick patterns or on glossy objects.

APPENDIX

ROTATION MATRIX FROM TWO VANISHING POINTS

This appendix describes how to compute the rotation matrix

between two views given the vanishing points of two sets

of orthogonal lines in the two views. Back-projecting the

vanishing points vi and v�i of one set gives the 3D directions

di and d�
i of the lines in each view’s local coordinate frame:

di =
K−1vi

�K−1vi�
d�

i =
K−1v�i
�K−1v�i�

(12)

Since the vanishing points are affected by rotation only, di

and d�
i are related by Rd�

i = di, and we have:

R





| | |
d�

1 d�
2 d�

3

| | |



=





| | |
d1 d2 d3

| | |



 . (13)

In our problem, the first view is the virtual frontal view and

d1, d2, and d3 become (1,0,0)�, (0,1,0)�, and (0,0,1)�,

respectively. The matrix on the right hand side of Eq. (13) is

therefore the Identity matrix. For the second view, only two

directions, d�
1 and d�

2 are available from two vanishing points.

The third direction can be obtained as the vector product of

these two directions: d�
3 = d�

1 ×d�
2. R can then be computed

as:

R =





| | |
d�

1 d�
2 d�

3

| | |





�

. (14)
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