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Abstract

Realistic merging of virtual and real objects requires that

the augmented patterns be correctly occluded by foreground

objects. In this paper, we propose a semi-automatic method

for resolving occlusion in augmented reality which makes

use of key-views. Once the user has outlined the occluding

objects in the key-views, our system detects automatically

these occluding objects in the intermediate views. A region

of interest that contains the occluding objects is first com-

puted from the outlined silhouettes. One of the main con-

tribution of this paper is that this region takes into account

the uncertainty on the computed interframe motion. Then

a deformable region-based approach is used to recover the

actual occluding boundary within the region of interest from

this prediction.

Results and videos are available at the URL:

http://www.loria.fr/˜lepetit/Occlusions.

1. Introduction

The objective of augmented reality (AR) is to add vir-

tual objects to real video sequences, allowing computer-

generated objects to be overlaid on the video in such a man-

ner as to appear part of the viewed 3D scene. Applications

include computer-aided surgery, tele-operations, and spe-

cial effects for the film and the broadcast industries. This

paper concentrates on the particular application of video

post-production.

Realistic image composition requires that the augmented

patterns be correctly occluded by foreground objects. How-

ever, solving the occlusion problem for AR is challenging

when little is known about the real world we wish to aug-

ment. Theoretically, resolving occlusion amounts to com-

pare the depth of the virtual objects to that of the real scene.

However, computing dense and accurate depth maps from

images is difficult. This explains why the accuracy of the

obtained occluding boundary is generally poor. Moreover,

in most AR applications, the interframe motion is not a pri-

ori known but must be computed. Inacurate motion estima-

tion thus results in possibly large reconstruction errors.

In order to overcome problems stemming from possi-

bly large reconstruction errors, Ong [6] proposed a semi

interactive approach to solve occlusion: the occluding ob-

jects are segmented by hand in selected views called key-

frames. These silhouettes are used to build the 3D model

of the occluding object. The 2D occluding boundary is

then obtained by projecting the 3D shape in the intermediate

frames. However, due to the uncertainty on the computed

interframe motion, the recovered 3D shape do not project

exactly onto the occluding objects in the key-frames nor in

the intermediate frames.

In this paper, we also use the concept of key-views but

we do not attempt to build the 3D model of the occluding

objects from all the key-frames. The novelty in this paper

is twofold: (i) we do not attempt to recover the 3D model

of the occluding objects from all the key-views. We only

compute the 3D occluding boundary from two consecutive

key views. The projection of this 3D curve is a good pre-

diction of the actual 2D occluding boundary in the interme-

diate frames. (ii) we recover the actual occluding boundary

with a good accuracy using deformable region-based track-

ing followed by an adjustment stage based on snakes. This

allows us to compensate easily for the interframe motion er-

ror. We then obtain an accurate estimation of the occluding

boundary over the sequence.

2. Overview of the system

Theoretically, the 3D shape of the occluding object can

be computed from its silhouettes detected in an image se-

quence. For AR applications however, the interframe cam-

era motion is computed from image/model correspondences

or with 2D/2D correspondences over time [4, 7]. The errors

resulting from this inaccurate registration makes the 3D re-

construction untractable. That is the reason why we only

attempt to recover the 3D occluding boundary from two

consecutive key-frames instead of recovering the 3D shape

of the occluding object from the whole sequence. Fig. 1
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explains the way we compute a first estimation of the 2D

occluding boundary in each frame of the sequence. First,

the user points out key-frames which correspond to views

where aspect changes of the occluding object occur. These

key-frames are framed in black in Fig. 1. The user also out-

lines the occluding object on these key-frames (in white).

It is well known that the 3D occluding boundary depends

on the camera viewpoint. However, the starting point for

our method is to build a good approximation of the 3D oc-

cluding boundary which will be used for all the frames be-

tween two kew-views. This 3D curve is built using stereo-

triangulation from the two silhouettes outlined by the user

provided that the translation between the two frames is not

null (Fig. 1.a and b). The projection of this approximated

occluding boundary on the intermediate frames thus pro-

vides a fair estimation of the 2D occluding boundary (Fig.

1.c and 1.d).

Due to the uncertainty on the computed interframe mo-

tion, this prediction can be relatively far from the actual

occluding boundary for at least two reasons (see for in-

stance Fig. 5.a): (i) the computed 3D occluding bound-

ary is only an approximation of the real one because stereo-

triangulation is performed from two occluding contours. (ii)

more importantly, errors on the camera parameters induce

reconstruction errors on the 3D curve and consequently er-

rors on its projection in the considered frame.

One of the main contributions of this paper is to show

that the error on the computed camera parameters can be

estimated. The uncertainty on the 3D occluding boundary

can then be deduced. This allows us to define a region

of interest around the predicted contour which is likely to

contain the actual occluding boundary (section 3). The re-

finement stage (section 4) is then carried out within this re-

gion: region-based tracking is first used to recover the re-

gion whose size and texture only differ from the predicted

shape with an affine transformation. Finally, active contour

models are used to adjust the occluding boundary.

3. Reconstructing the 3D occluding boundary

3.1. Computing the camera parameters

In this section we first briefly recall how we compute

the camera motion over the sequence. Our approach to

motion computation takes advantage of 3D knowledge on

the scene as well as 2D/2D correspondences over time [7].

Given the viewpoint ✂ ✄✆☎✞✝✠✟✡☎✡☛ computed in a given frame☞
, we compute the viewpoint ✌ in the next frame

☞✎✍✑✏
using the 3D model points ✒✔✓ whose projections are de-

tected in frame
☞✕✍✖✏

. In addition, we use interest points

[5] ✗✙✘ ✓☎ ✝✠✘ ✓☎✛✚✢✜✤✣ ✜✛✥✦✓✙✥✦✧ that are automatically extracted and

matched between frames
☞

and
☞★✍✩✏

. The quality of the

viewpoint can be assessed by the distance between ✘ ✓☎✛✚✢✜ and

the epipolar line ✪✫✌ ☎✛✚✢✜ ✗✬✘ ✓☎✭✣ . The viewpoint is therefore re-

covered by minimizing:✮✰✯✲✱✴✳✶✵ ✷✸✺✹ ✸✻✽✼ ✷✿✾❁❀✬❂✫❃❅❄ ✯❇❆ ✻❉❈ ✱❋❊✤●✫❍❋✯✙■ ✻ ✳❑❏▼▲❄❖◆ ✹ ◆✻✽✼ ✷✾❁❀✬❂P❃ ❄ ✯❇◗ ✻❘P❙ ✷ ❈❅❚ ✱ ❘✫❙ ✷ ✯❇◗ ✻❘ ✳❯✳❱❏ ✾❁❀✬❂✫❃ ❄ ✯❇◗ ✻❘ ❈❅❚ ✱ ❘ ✯❇◗ ✻❘P❙ ✷ ✳❯✳
(1)

Let ❲ ✜ and ❲✰❳ be the occluding object outlined in the

two key-views. We build the 3D occluding boundary using

stereo triangulation: Let ❨ ✜ be a point on ❲ ✜ . Its corre-

sponding point in the other key-view is the intersection of

the epipolar line with ❲ ❳ . As usual, the order constraint is

used to solve the ambiguity of the correspondence problem.

3.2. Taking into account the error on the estimated
motion

The critical role of motion error in scene reconstruction

has been pointed out in [8]. Recently, Csurka and Faugeras

[3] attempted to compute the covariance on the fundamental

matrix recovered from point correspondences between two

frames. The uncertainty is computed under the assumption

that the matched points are independent. However, this sta-

tistical assumption leads to decrease arbitrarily the uncer-

tainty on the fundamental matrix as the number of matched

points increases.

That is the reason why we prefer to use the ❩ indifference

region [1] to investigate the reliability of the estimated cam-

era parameters. The fact that we have elected to minimize a

function ❬❭✗❪✌ ✣ means that we set some store by obtaining a

low value of this function. It is reasonable to suppose that

values of ❬ almost as low as ❬❴❫ would satisfy us almost as

much as ❬❴❫ . This gives rise to an ❩ indifference region in ✌
space described by the equation:❩P❵P❛❖❜ ✓❞❝✠❡❣❢✐❤ ✌❣❥✤❦✦❧♥♠♣♦q♠❑r✿♦♥s ❬❭✗❪✌ ✣✉t ❬❭✗✈✌ ❫ ✣ s①✇②❩✤③

In a sufficiently small neighborhood of ✌④❫ we may ap-

proximate ❬ by means of its Taylor equation:❬❭✗✈✌ ✣⑥⑤ ❬❭✗❪✌ ❫ ✣ ✍⑧⑦ ❬❭✗❪✌ ❫ ✣❅⑨❖⑩ ✌ ✍ ✏❶ ⑩ ✌ ⑨❯❷ ✗❪✌ ❫ ✣q⑩ ✌ (2)

where ❷ ❫ is the hessian of ❬ computed at ✌ ❢ ✌❸❫ . More

details on the computation of ❷ ❫ are given in Annex A.

As ✌❸❫ is the minimum of ❬ , the gradient is null at the

optimum
⑦ ❬❭✗❪✌❸❫ ✣ ❢❺❹ and equation (2) becomes❬❭✗❪✌ ✣⑥⑤ ❬❭✗✈✌ ❫ ✣ ✍ ✏❶ ⑩ ✌ ⑨❯❷ ✗✈✌ ❫ ✣❅⑩ ✌

The ❩ indifference region is then defined by:s ⑩ ✌ ⑨❯❷ ✗✈✌ ❫ ✣❅⑩ ✌✉s①✇ ❶ ❩
which is the equation of a 6-dimensional ellipsoid.



-4-202468
136140144

0

2

4

6

8

10

-4-202468

150

0

2

4

6

8

10

intermediate frameintermediate frame
intermediate frame

key-frame 3

reprojectionreprojection
+

refinement refinement

key-frame 2

key-frame 1

b

a

c d

the 3D occluding

boundary

approximation of

C1

C2

C3

+

Figure 1. Overview of the system.

Figure 2. The indifference regions for the
translation parameters over the Stanislas se­

quence.

Fig.2 shows these indifference regions computed along

the Stanislas sequence (we use ❩ ❢ ✏
). The building in the

background is the 3D model used for registration. For each

frame of the sequence, we drew the ❩ indifference region for

the translation parameters.

We can now compute the reconstruction error on the oc-

cluding boundary from these indifference regions. If point

correspondences were available, the reconstruction error

could be recovered in an analytical way from viewpoint un-

certainties [8]. Unfortunately, as we only have curve corre-

spondences, the matched points depends on the viewpoint

and are computed as the intersection of the epipolar line

of the point with ❲ ❳ . We therefore resort to an exhaus-

tive approach. We consider the extremal viewpoints, that are

the vertices of the 6-dimensional indifference ellipsoid. Let

❤ ✌ ✜✜ ✝♥❻❞❻✽❻❞✝✙✌ ✜ ❳✜ ③ (resp ❤ ✌ ✜❳ ✝♥❻❞❻✽❻❞✝✙✌ ✜ ❳❳ ③ ) the extremal viewpoints in

the two key-views. Let ❨❼✜ be a point on ❲❴✜ . Given an ex-

tremal viewpoint ✌④✜ , we can compute the
✏ ❶

possible recon-

structions of ❨❼✜ with the
✏ ❶

extremal views in key-frame 2.

Using the
✏ ❶

extremal viewpoints in key-frame 1, we then

obtain
✏ ❶ ❳

extremal reconstructions of ❨❽✜ according to the

uncertainty computed on the two key-views. The convex

hull of these
✏♥❾❿❾

points is a good approximation of the 3D

reconstruction error on ❨ ✜ .
We can now predict the position of the 2D occluding

boundary in the in-between frames by simply reprojecting

the 3D occluding boundary. To estimate the 2D uncertainty

on the projected boundary ❲ , we have to take into account

the 3D reconstruction error and the uncertainty on the con-

sidered viewpoint. We again resort to an exhaustive method:

for each point ❨ ✓ on ❲ , the
✏ ❶ ❳

possible extremal recon-

structions are projected onto the current frame using the
✏ ❶

extremal viewpoints of this frame. We define the spatial un-

certainty on the predicted occluding boundary associated to❨✎✓ as the convex hull of these
✏ ❶❿➀

image points. This area

is denoted ➁➂✓ in the following.

The main stages for computing the 2D uncertainty on

the predicted occluding boundary are illustrated in Fig. 3:

Fig. 3.a exhibits a point on the predicted boundary and Fig.

3.b shows the projection of the corresponding 3D extremal

points using the extremal viewpoints and the convex hull➁➂✓ . Finally, Fig. 5.a shows the 2D uncertainty computed

for each point of the predicted boundary (dotted line). The

points are drawn with black circles or crosses and the un-

certainty is drawn in white. The reader can notice that some

points on the steps have no associated spatial uncertainty.

Indeed, because the key silhouettes do not match exactly,
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Figure 3. Computation of the spatial uncer­

tainty on the predicted occluding boundary.

the epipolar line computed with some extremal viewpoints

does not always intersect ❲✰❳ . If more than 50% of the

epipolar lines computed with the
✏ ❶ ❳

extremal viewpoints

do not intersect ❲✰❳ , the spatial uncertainty is not defined at

this point.

4. Refining the occluding boundary

As a result of the prediction stage we get an estimate

of the occluding boundary along with its 2D uncertainty in

the considered frame. In addition we compute not only the

boundary but also the texture of the occluding object so as

to get a predicted template of the occluding object. The

texture ➃ ⑨ ❛ ✧⑥➄➆➅✽➇ ⑨ ❛ is computed from the nearest key-view by

using 2d local image transformation.

We still have to determine the occluding object from the

predicted template. Due to the error on the computed mo-

tion and also because reconstruction is achieved from oc-

cluding contours, the template boundary can be relatively

far from the actual occluding object and their shapes can

also differ (see for instance Fig. 5.a). However, it is im-

portant to note that the actual boundary belongs to the com-

puted uncertainty region. Following previous works on de-

formable structures [2] we use a hierarchical algorithm; we

first compute a global estimation of the shape deformation

between the key-frame and the current frame. Then we use

a fine tuning deformation to adjust the details. As affine

transformations seem to be appropriate to describe shape

variations due to motion uncertainties, the affine motion that

best matches the occluding template on the considered im-

age is searched for:♦❯➈❁r❋➉➊❥➌➋ ➇ ✗➍❨ ✣ ❢➏➎ r ✜ ❨✎➐ ✍ r✞❳➆❨➒➑ ✍ r ➀r❋➓✤❨✎➐ ✍ r✞➔➆❨➒➑ ✍ r✞→
The optimal parameter r is defined as the one that yields

the best fit between the predicted template ➃ ⑨ ❛ ✧⑥➄➆➅✽➇ ⑨ ❛ and the

current image ➃ . The best match is defined as the minimum

of the correlation measure:➣ ✗✙r ✣ ❢↕↔ ✓➛➙ ➇ ✗✙➜ ✣ (3)

➙ ➇ ✗➍➜ ✣ ❢ ➝✛➞✡➟ ➝P➠✛➡✉➢↔➤ ➐ ✝ ➤ ➑ ❢ t➦➥✗➍❨ ✓ ✍➧➤ ✣➩➨➒➫✺➭
✗✬➃ ⑨ ❛ ✧⑥➄➆➅✽➇ ⑨ ❛❿✗➍❨ ✓ ✍❭➤ ✣✛t ➃✦✗➍♦❯➈❁r❋➉➊❥➌➋ ➇ ✗➍❨ ✓ ✍❭➤ ✣q✣✠✣ ❳

where the predicted curve ❲ is defined by the set of ver-

tices ❤ ❨ ✓ ③ ✜P✥❸✓➍✥❸❡ ,
➤ ❢ ✗ ➤ ➐ ✝ ➤ ➑ ✣ , ➥ is the size of the cor-

relation window and ➫➦➭ is the region inside ❲ . Note that

only the points which are inside the occluding objects are

considered in the estimation. This way, points belonging to

the changing background do no affect the matching process.

In addition, we have slightly modified the correlation

measure in order to take into account the 2D uncertainty

on the predicted curve. A penalty term is used to ensure

that the matched point belongs to ➁✰✓ . The penalty has the

form ➯ ➥ ❳
where ➯ is a constant value. The function to be

minimized is therefore defined as:

➙ ➇✞✗➍➜ ✣ ❢➳➲➵ ➸ ✹ ➝ ✗✬➃ ⑨ ❛ ✧⑥➄➆➅✽➇ ⑨ ❛ ✗➍❨➒✓ ✍➺➤ ✣➻t ➃❑✗✙♦❯➈❁r✿➉➊❥➌➋✭➇✴✗➍❨➒✓ ✍➺➤ ✣q✣✠✣ ❳➜❯➋➼♦❯➈❁r❋➉➊❥➌➋✭➇✞✗➍❨➒✓ ✣✰➨ ➁✰✓❅✝➯ ➥ ❳➩➽ ♦q♠❱✪✡➈➌➾➚➜❅❥✡✪❋❻
Note that if ➁ ✓ is not defined, or equivalently if ➁ ✓★❢➪ , the first item of ➙ ➇ is used because the assumption♦❯➈❁r✿➉➊❥➌➋✭➇✞✗✙❨✎✓ ✣➼➨ ➁➂✓ is fullfiled. These points are therefore

considered in the correlation function without further con-

straints. Finally, fine tuning adjustement of the occluding

boundary is performed with snakes from ♦❯➈➌r❋➉➊❥➌➋✭➇✞✗❉❲ ✣ .
5. Results and discussion

The effectiveness of our approach is demonstrated on

two sequences. The Stanislas sequence was shot from a

car which turned around the square. Our aim is to incrust a

virtual plane passing behind the statue. Here, the 3D model

of the opera is used for registration (the building in the back

of the scene) while the 3D model of the statue is unknown.

The three key-frames chosen by the user are shown in Fig.

4 (frames 66, 118, 150). Fig. 4 exhibits the recovered oc-

cluding boundary in the frames 15, 66 and 130. The overall

visual impression is very good though the predicted bound-

ary is sometimes relatively far from the actual one.

Fig. 5 clearly proves the efficiency of incorporating mo-

tion error into our process. The uncertainty on the predicted

curve is drawn in white. The points ❨ ✓ that are outside

the uncertainty region ➁ ✓ after the region based tracking are

shown black crosses, whereas the points inside the region

are drawn with black circles. For both images, the predicted

2D curve is shown in dotted lines. If the 2D uncertainty is

not considered (Fig. 5.a), the recovered boundary is erro-

neous, especially near the steps. On the contrary, if points

are constrained to be in the uncertainty region, the occlud-

ing boundary is successfully recovered (Fig. 5.b).

Finally, our algorithm is demonstrated on the cow se-

quence. Zooms on the cow and the user-defined silhouettes



Figure 4. (first row) : The key­views along with the user­defined silhouette: frame 60, 118 and 150.
(second row): The recovered occluding boundary in the frames 15, 66,130 and the augmented scene.

are presented in Fig. 6.b, c and d. The three key-views are

relatively far. Moreover, the aspects of the cow are very dif-

ferent in the considered key-frames. Even in this case, the

recovered occluding boundary before the snake process is

quite convincing (see Fig. 6.e). Finally, adjustment with

snakes allows us to recover accurately the occluding object

(Fig. 6.f) and to augment the scene (Fig 6.g and 6.h).

6. Conclusion

We have presented a new approach for resolving occlu-

sion for AR tasks. The key concept is that fine detection

of occluding boundary can be achieved with moderate user

interaction. One of the main strengths of our algorithm con-

cerns its ability to handle uncertainties on the computed

motion between two frames. Through judicious choice of

key-frames, our approach seems to be more convenient and

more accurate than most existing approaches.

Annex A: Computing the Hessian ❷ ❫❷ ❫ is the value of the Hessian ❷ ❢ ➶➶✡➹ ✗ ➶✡➘➶✡➹ ✣ ⑨ com-
puted at the minimum ✌④❫ of ❬ . ❬ is defined as

✮✰✯✲✱✴✳➴✵✷✸ ✹ ✸✻❞✼ ✷ ❊ ✻ ❄ ❏ ▲❄❖◆ ✹ ◆✻❞✼ ✷❋➷ ✻ ❄ where❊ ✻ ❄ ✵ ✾❁❀✬❂✫❃❅❄ ✯❇❆ ✻❖❈ ✱✞❊♥●P❍❋✯✙■ ✻ ✳❯✳➷ ✻ ❄ ✵ ✾❁❀✬❂P❃ ❄⑥➬ ◗ ✻❘P❙ ✷ ❈❅❚ ✱ ❘P❙ ✷ ✯❇◗ ✻❘ ✳❯➮➱❏ ✾❁❀✬❂✫❃ ❄✃➬ ◗ ✻❘ ❈❅❚ ✱ ❘ ✯❇◗ ✻❘P❙ ✷ ✳❯➮➈✡✓ ❳ and ❐✭✓ ❳ can be expressed as an analytical function

of the 6-dimensional vector ✌ ❢ ✗✬➯⑥✝✠❒✃✝❅❮➻✝q♦ ➐ ✝q♦ ➑ ✝q♦ ➹ ✣ using

the fundamental matrix. Because the analytic expression

of the second derivatives of ❐ ✓ ❳ with respect to ✌ are really

untractable, we use an approximation to the first order: ❷❰⑤❶ ✹ ✜❡❽Ï ➶ ❵❅Ð➶ ➄✰Ñ ⑨ Ï ➶ ❵❅Ð➶ ➄✰Ñ ✍ÓÒ❳ ✧ ✹ Ï ➶✤Ô Ð➶ ➄➩Ñ ⑨ Ï ➶✡Ô Ð➶ ➄❴Ñ .
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a.
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b.

Figure 5. The recovered occluding boundary without (a) and with (b) the use of the 2D uncertainty.

The predicted curve is shown with dotted lines. The points that belong to the uncertainty region ➁ ✓ are shown with black

circles, whereas the points outside ➁ ✓ are drawn with black crosses.

a. b. c. d.

e. f. g. h.

Figure 6. The cow sequence.

(a): an image of the cow sequence; (b,c,d) zoom on the key-views and the user defined silhouettes (frames 0,30,60); (e): the

recovered occluding boundary before snake adjustment in frame 46; (f): the recovered final boundary; (g,h): the augmented

scene.


