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Abstract

We present a novel method for performing data association

that handles complex motion models and also increases the

robustness of tracking. Instead of using a motion model de-

fined recursively, we prefer to robustly fit the motion model

over multiple frames simultaneously. This allows us to el-

egantly handle arbitrarily complex motion models, track

initiation, occlusion and false alarms. This also improves

the robustness to motion model weakness and to frequent

false-negatives and false-positives, and the autonomy of the

tracker. Our algorithm is easy to implement and we show its

capabilities on two real examples of complex motion track-

ing.

1. Introduction

All the numerous approaches to tracking are intrinsically re-

cursive: at time ✂ , a state containing the objects parameters

is estimated, according to the observations in the coming

frame and the state estimated at the previous step. This state

contains the object position as well as object dynamics esti-

mated from the sequence of images observed so far and can

be regarded as a summary of observation in the images. The

successive states are considered forming a Markov chain,

and using a predictive motion model, the state at time ✂ is

predicted from state estimated at time ✂☎✄✝✆ only.

The first drawback we see in the recursive expression of

tracking is that the previous states are not updated accord-

ing to the observations in new frames. If one such state

does not reflect all the information present in the related

frame, this could make the tracker fail. Of course, some so-

lutions have been given. In Multiple Hypothesis Tracking,

the several hypotheses of assignments between targets and

measurements are simultaneously tracked, and by pruning

the tree after a while, the correct assignments can be es-

timated in retrospect. Particle-set algorithms use multiple

samples of the state to handle multiple hypotheses, and do

not directly give a single estimated object position but re-

quire a batch-mode post-processing [1], which is obviously

not suitable for online tracking.

Another disadvantage of traditional approaches is that

motion model has to be expressed in a recursive way, that

can be difficult or impossible. Usually, it is based on a lo-

cal constancy assumption, like constant velocity and accel-

eration, and compensates the weakness of such models by

adding white noise to the predicted positions. Nevertheless,

that can be critical when occlusion or false negatives due

to cluttered background happen in a large number of con-

secutive frames: The predicted position can be far from the

actual position in case of agile motion for the target.

We propose a new formulation of probabilistic tracking,

where the tracking is not performed frame by frame. In-

stead, a motion model is fitted to the detections in an inter-

val of frames at the same time. This allow us to get a robust

estimation of the motion. Furthermore the motion model

can be arbitrarily complex, provided we can use enough

frames forward and backwards at each time step. The usual

motion models (with a recursive expression) can easily be

expressed as required by our approach, so we can handle a

larger class of motions than traditional recursive tracking.

Our new formulation computes the motion that maxi-

mizes a specified likelihood using a robust estimator to han-

dle occlusion and false alarms. The mixture parameters in-

volved in the likelihood expression are estimated iteratively

and enforce the temporal coherence of the tracking. We

will show how this can be performed online, with only a

small delay between the acquisition of a frame and the cor-

responding output. This delay in our method can be com-

pared to the delay involved in multiple hypothesis tracking

to wait for hypothesis branches pruning [2, 3].

To summarize, our approach handles in the same formal-

ism the following advantages:✞
it easily deals with complex motion models ;✞ it easily deals with abrupt motion changes ;✞ it can easily handle a relatively large number of mis-

detections, even consecutive ones, and provides an ac-

curate estimate of the target position even when a mis-

detection occurs ;✞ the output of our algorithm is the actual target position,

and not a density that requires a post-treatment.
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a. b.

Figure 1: Ball and golf club tracking with our method: (a) the ball tracking is performed without any manual initialization

and is not perturbed by motion discontinuities which tend to break Kalman style approaches; (b) the golf club tracking is

unperturbed by the mis-detections (corresponding to black disks) and the false-alarms, intentionally added to try to distract

the tracker.

The paper is organized as follows. Section 2 introduces

our approach. Section 3 demonstrates the applicability of

our algorithm on two real world applications. Section 4

compares our approach with more traditional ones. Possible

extensions of our method are discussed in the conclusion.

2. Robust Data Association

In this section we first state our problem and show how to

robustly estimate the local motion. Then we discuss how

the different steps of the algorithm can be performed online

and we give a pseudo code description of this algorithm.

2.1. Problem Statement

Assuming that the time is discretized and frames are in-

dexed by their acquisition time, let ✟✡✠☞☛✍✌✏✎✒✑✠✒✓✔✓✕✓ ✎✡✖✘✗✠✚✙ be the

set of hypotheses on the target generated by a detection al-

gorithm for frame ✂ . The ✎✘✛✠ are real vectors of dimension✜
. The true target location ✢ ✠ can be present in ✟ ✠ or not, in

case of failure of the detection algorithm.

We denote by ✣ ✠ the interval of frames acquired between

time ✂✤✄✦✥★✧ and ✂✪✩✫✥✭✬ , and ✮ ✠ ☛✯✌✏✟ ✠✱✰ ✖✳✲ ✓✴✓✵✓ ✟ ✠✷✶ ✖✹✸ ✙ the

hypotheses for frames in ✣ ✠ . We assume that the successive

target positions ✢ ✠ satisfy a known motion model ✺ , at

least over the interval ✣ ✠ . For each ✂ , we want to determine

which ✎✘✛✠ corresponds to the target ✢✳✠ or decide that a detec-

tion failure has occurred and give an estimate of ✢✹✠ in this

case. We also want to do this by only considering the mea-

sures done over time to avoid any user interaction. In this

paper we assume that only one target object satisfies ✺ .

2.2. Local Motion Definition

We want to estimate the target motion over ✣ ✠ , i.e., the

successive target positions ✻ ✠ ☛✼✌✏✢ ✠✱✰ ✖✳✲✾✽ ✓✵✓✴✓ ✽ ✢ ✠✷✶ ✖ ✬ ✙ , or

equivalently the motion model parameters. Since we con-

sider only the frames in ✣ ✠ , ✻ ✠ can be taken to be the motion

with maximum posterior probability given the measures ✮ ✠ ,✿❁❀❃❂❅❄✚❆❈❇ ✻❊❉ ✮ ✠●❋ . According to Bayes’ rule, we have:✻ ✠ ☛ argmax❄ ❆❈❇ ✻❊❉ ✮ ✠●❋ ☛ argmax❄ ❍ ❆❈❇ ✮ ✠ ❉ ✻ ❋ ❆✪❇ ✻ ❋❆✪❇ ✮ ✠■❋❑❏
We have some prior knowledge about the motion. Some

motions, even if they satisfy the motion model, are physi-

cally impossible, e.g., because of unrealistic velocity or ac-

celeration; in this case we set the prior ❆✪❇ ✻ ❋ ☛▼▲ . For

simplicity, all possible motions are given a uniform prior

probability, but a better estimate could be used.
❆✪❇ ✮◆✠ ❋ is

constant, irrespective of ✻ . So our new aim is to find✻✦✠☎☛ argmax❄ ❆❈❇ ✮❖✠✴❉ ✻ ❋◗P ❇ ✻ ❋
where P ❇ ✻ ❋ ☛❘✆ if the motion ✻ is possible and 0 other-

wise.

2.3. Robust Estimation

A good way to estimate ✻ ✠ is to use a random sampling

paradigm such as the robust estimators RANSAC [4] and

MLESAC [5]. They are usually employed in computer vi-

sion for recovering epipolar geometry and estimating 3D

motions from a set of matched points, but they are in fact

general algorithms for robust estimation. Here, the random

sampling approach is useful to handle mis-detections and

false alarms.

The space of possible target motions is randomly sam-

pled with ❙ motion samples ✻ S (with ❙ being large

enough, see section 2.7), computed from minimal sets of

measures. Each set is made of ❚ randomly selected mea-

sures from different frames in ✣ ✠ , which are utilised to pre-

dict a target trajectory ✻ S ☛❘✌✵✢ ✠✱✰ ✖✳✲★❯ S ✽ ✓✴✓✴✓ ✽ ✢ ✠✷✶ ✖✹✸❱❯ S ✙ over
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Figure 2: One motion used for the random motion space

sampling, in the two-dimensional case. The motion has

been computed from the hypotheses represented by rounded

boxes.✣ ✠ as depicted by Figure 2. We keep the sample ❲✻ that max-

imizes the “likelihood” over the motion space sampling:❲✻❳☛ argmax❄
S

❆❈❇ ✮ ✠ ❉ ✻ S ❋◗P ❇ ✻ S ❋ ✓ (1)❲✻ is an initial estimate of ✻ ✠ , computed from a minimal

set of measures. It can be refined using more measures, as

we will show section 2.6.

2.4. The Observation Model

As in classical tracking work, the measures are assumed to

be independent, both mutually and with respect to the target

motion, so that ❆✪❇ ✮ ✠ ❉ ✻ S ❋ in Equ. 1 can be written:❆❈❇ ✮ ✠ ❉ ✻ S ❋ ☛ ✶ ✖ ✸❨❩✔❬ ✰ ✖✳✲ ❆✪❇ ✟ ✠✷✶ ❩ ❉ ✢ ✠✷✶ ❩ ❯ S ❋ ✓
Note that ❆✪❇ ✟ ✠✷✶ ❩ ❉ ✢ ✠✷✶ ❩ ❯ S ❋ has the same form as the observa-

tion model in classical tracking methods, and we will re-

fer here to common reasoning used in target tracking [6] to

define its expression. In the following, the index ✂❭✩❫❪ is

omitted for readability.

We make the following standard assumptions. The clut-

ter is modeled with a Poisson process with spatial density ❴
in the image. Any true target measurement is assumed to be

unbiased and to have a normal distribution with covariance❵❜❛
. We also consider

❵❞❝
, the covariance of ✢ S, since ✢ S is

computed from noisy measurements.

We compute the “innovation” ❡ ✛ :❡ ✛ ☛❫✎ ✛ ✄❢✢ S

of all ✥ candidate measurements and their covariance❵❞❣ ☛ ❵❜❛ ✩ ❵❜❝ ✓

We finally get the observation density:❆✪❇ ✟★❉ ✢ S ❋ ☛✐❤✡❥❃❴❞✩ ✖❦✛ ❬ ✑ ❤ ✛♠❧ ❂✒♥♣♦ ✄ ✑q ❡ ✛✵r ❵ ✰ ✑❣ ❡ ✛✵st ❇✈✉✘✇ ❋◗① ❉ ❵②❣ ❉ ✽
where the ❤ ✛ are mixture parameters (with ③ ✖✛ ❬ ❥ ❤ ✛ ☛④✆ ).
2.5. Estimating The Mixture Parameters

The parameter ❤ ✠ ❯ ✛ ❇ ✆⑥⑤⑧⑦⑨⑤⑩✥ ✠◗❋ can be interpreted as the

probability that the target corresponds to measurement ✎✹✛✠ at

time ✂ , and ❤ ✠ ❯ ❥ can be interpreted as the probability that a

detection failure occurs at time ✂ . A good initial guess for

the ❤ ✠ ❯ ✛ is: ❤ ✠ ❯ ❥❶☛❷✆❸✄✐❹❈❺ if the target measurement is in✟ ✠ with probability ❹☎❺ ; ❹❈❺ reflects the performance of the

target detector, and for ✆❻⑤❼⑦⑥⑤❽✥ ✠ , ❤ ✠ ❯ ✛ ☛❘❾✡❿✖ ✗ .Next the ❤ ✠ ❯ ✛ are re-estimated as follows. We introduce

the indicator variables ➀✡✛✠ , where ➀✹✛✠ ☛➁✆ if the target corre-

sponds to the ⑦ th measure at time ✂ ( ➀ ❥✠ ☛➂✆ if a detection

failure occurs), and ➀✡✛✠ ☛④▲ otherwise ( ➀ ❥✠ ☛➃▲ if the target

has been detected). We have:❆✪❇ ➀✳✛✠ ☛④✆✡❉ ❤ ✽ ✮❖✠ ❋ ☛ ✿❁❀❃❂❄ ❆❈❇ ➀✹✛✠ ☛⑩✆ ✽ ✻❊❉ ❤ ✽ ✮❖✠ ❋☛ ✿❁❀❃❂❄ ❆❈❇ ➀✹✛✠ ☛⑩✆➄❉ ✻ ✽ ❤ ✽ ✮ ✠●❋ ❆✪❇ ✻❊❉ ❤ ✽ ✮ ✠◗❋➅⑧✿❁❀❃❂❄ ❆❈❇ ➀ ✛✠ ☛⑩✆➄❉ ✻ ✽ ❤ ✽ ✮❖✠ ❋ ❆✪❇ ✮❖✠✴❉ ✻ ✽ ❤ ❋■P ❇ ✻ ❋ ✓
The term ❆✪❇ ✮ ✠ ❉ ✻ ✽ ❤ ❋◗P ❇ ✻ ❋ is computed as before. ❆❈❇ ➀✡✛✠ ☛✆✡❉ ✻ ✽ ❤ ✽ ✮ ✠●❋ can be estimated as:❆✪❇ ➀✳✛✠ ☛⑩✆➄❉ ✻ ✽ ❤ ✽ ✮ ✠◗❋ ☛ ❆ ✛③ ✖ ✗➆ ❬ ❥ ❆ ➆ ✽
where

❆ ✛ is the likelihood of a measure given that is the

target
❇ ✆❜⑤✝⑦➇⑤➈✥➉✠ ❋ , and

❆ ❥ is the likelihood of a detection

failure: ➊➋ ➌ ❆ ❥ ☛➈❤ ❥ ❴❆ ✛ ☛➈❤ ✛♠➍✱➎➐➏ ❇ ✰➒➑➓ ❣→➔↔➣❅↕✤➙ ➑➛ ❣→➔ ❋➜ ➝ q➟➞✘➠➢➡➥➤ ↕❈➦ ➤ ✆❸⑤❼⑦❁⑤✝✥➉✠ ✓
The new estimates of the ❤✒✠ ❯ ✛ are:❤❱➧ ✠ ❯ ✛ ☛➈➨ ✓ ❆✪❇ ➀ ✛✠ ☛➩✆✡❉ ❤ ✽ ✮ ✠●❋ ✽
in which ➨ ensures that ③ ✖ ✗✛ ❬ ❥ ❤ ➧ ✠ ❯ ✛ ☛➫✆ . This estimation

should be iterated until convergence.

2.6. Estimating the Target Position

Once the final estimates ❤ ✛ are computed, an initial estimate✻ of the motion is computed using equation (1). This mo-

tion is computed from a minimal set of target positions and

can be refined. Reference [5] minimises a robust cost func-

tion over all the input data. We prefer the method usually
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used after RANSAC: the motion is refined using the mea-

sures “close” to the predictions ✢ over the image interval✣→✠ . A measure ✎ in a frame is considered to be close to the

prediction ✢ in this frame if

❧ ❂✒♥⑥➭ ✄ ✑q ❇ ✎❸✄❢✢ ❋ r ❵ ✰ ✑❣ ❇ ✎❸✄❢✢ ❋■➯t ❇✈✉✘✇ ❋◗① ❉ ❵ ❣ ❉ ➲✝➳ q ❇➢➵ ▲✡➸ ✽ ✜ ❋ ✓
If several measures are close to the prediction, only the clos-

est one is kept. Finally, the refined motion provides a good

prediction for the target position in frame ✂ , and it is given

as the output: if the target is not detected, it is a good es-

timation; otherwise this is usually a better estimation than

the detection.

2.7. Number of Motion Samples

The number of motion samples ❙ should be chosen suf-

ficiently high to ensure (with a probability ❆ ) that at least

one of the sets used for sampling contains only measures

originating from the target. Literature on the RANSAC al-

gorithm provides a formula to estimate ❙ that we can easily

adapt in our context: the probability that a selected mea-

sure in frame ✂ is originating from the target is ❹✤❺❃➺❑✥ ✠ , and

approximately equals ❹✤❺❃➺❑✥ , with ✥ the average number of

detections. Then at least ❙ selections (i.e., ❙ sets of ❚ mea-

sures) are required, where
❇ ✆➻✄ ❇ ❹ ❺ ➺❑✥ ❋↔➼→❋↔➽ ☛➾✆➚✄ ❆ , so ❙

should be chosen as:❙✚➪ ➶✔➹✳➘ ❇ ✆➒✄ ❆ ❋➶✔➹✳➘ ❇ ✆➒✄ ❇ ❹☎❺✘➺❑✥ ❋ ➼ ❋ ✓
Numerical example: the values ❆ ☛➾▲ ✓ ➵✹➴ ✽ ❹✤❺➷☛➾▲ ✓ ➵ ✽ ✥➬☛➴ ✽ ❚➻☛⑧➮ give ❙✫➱ ➴ ✆✵➮ .
2.8. Algorithm

The recursive estimation of both the mixture parameters and

the target position can be performed online, if we accept a

small delay between the acquisition of a frame and the tar-

get position output. The number of re-estimations of the

mixture parameters is fixed. For this description, we as-

sume that only one re-estimation is done, but adding more

iterations is straightforward. We also assume that ❚✚☛✃➮
measures are required to estimate a motion.

Our algorithm can be summarized as follow. At time ✂ :✞ Detection is performed on frame ✂ ;✞ Computation of the ❤ ➧ ✛ is performed on frame ✂☎✄❢✥★✬
using the detections in frames ✂✪✄❢✥★✧✚✄❐✥✭✬ to ✂ ;✞
All the ❤ ➧ ✛ for frames between ✂✏✄❻✥ ✧ ✄ ✉ ✥ ✬ and ✂✏✄❻✥ ✬
have been computed. Their values are employed to

estimate the target position for frame ✂✪✄ ✉ ✥✪✬ .

t−nA t

Computation

Detection
Acquisition

j’γof

t−2nA−nB t−nA−nBt−2nA

estimation
Target position

Figure 3: Actions performed at time ✂ .
This is illustrated by Figure 3. A pseudo-code description is

given below. For numerical stability, log likelihood motion

samples is computed instead of likelihood, i.e., we compute:

log-likelihood ❇ ✻ ❋ ☛ ✶ ✖ ✸❦❩✔❬ ✰ ✖✹✲ ➶✔➹✳➘ ❇✕❆❜❇ ✟ ✠✷✶ ❩ ❉ ✢ ✠✷✶ ❩ ❯ S ❋↔❋ ✓
Tracker()

For each time ✂ :
Call detector on frame ✂ to generate ✟✹✠
ComputeThe ❤ ➧ ForFrame( ✂✭✄❢✥✭✬ )

ComputeTargetPositionForFrame( ✂❒✄ ✉ ✥✪✬ )

ComputeThe ❤ ➧ ForFrame( ✂ )❤ ➧ ✠ ❯ ✛☞❮ ▲ for ▲❰⑤❢⑦⑥⑤❽✥ ✠
Repeat ❙ times:✻ S ❮ GenerateOneMotionSampleForFrame( ✂ )

If ✻ S is impossible (unrealistic velocity, etc...)

continueÏ❭Ï ✻ S ❮ log-likelihood( ✻ S, ❤ )

Compute the ❆ ✛ , the measures likelihoods❚✵ÐÒÑ ❮ ③ ✖ ✗✛ ❬ ❥ ❆ ✛
For ⑦❞☛❫▲ to ✥ ✠

If ❤ ➧ ✠ ❯ ✛ ➲ÔÓ ➔➼◗Õ✏Ö ❧ ❂✒♥★❇ Ï✾Ï ✻ S ❋❤ ➧ ✠ ❯ ✛☞❮ Ó ➔➼◗Õ✏Ö ❧ ❂✒♥★❇ Ï✾Ï ✻ S ❋
Normalise the ❤ ➧ ✠ ❯ ✛ such as ③➂❤ ➧ ✠ ❯ ✛ ☛④✆

ComputeTargetPositionForFrame( ✂ )Ï✾Ï ✻✦×✤Ø ➎ ❮ ▲
Repeat ❙ times:✻ S ❮ GenerateOneMotionSampleForFrame( ✂ )

If ✻ S is impossible (unrealistic velocity, etc...)

continueÏ❭Ï ✻ S ❮ log-likelihood( ✻ S, ❤ ➧ )
If
Ï❭Ï ✻ S ➪ Ï✾Ï ✻ ×✤Ø ➎✻ ❮ ✻ SÏ✾Ï ✻❼×✤Ø ➎ ❮ Ï✾Ï ✻ S

Refine ✻ (see section 2.6)

Refined ✻ provides the target position in frame ✂
4



GenerateOneMotionSampleForFrame( ✂ )
Select randomly 3 frames

❇ ✂ ✑ ✽ ✂ q ✽ ✂◗Ù ❋ such as:Ú ✂✪✄❢✥✭✧✐⑤✝✂ ➆ ⑤❽✂★✩✦✥✭✬ Û❰☛➩✆ ✽ ✉ ✽ ➮♠Ü✂ ✑❜Ý☛➈✂ q ✽ ✂ ✑❜Ý☛⑧✂ Ù ✽ ✂ q Ý☛➈✂ Ù ✓
Select randomly one measure ✎ ✠➢Þ for each ✂ ➆
Compute ✻ from ❇ ✎ ✠ ➑ ✽ ✎ ✠ ➓ ✽ ✎ ✠✷ß✴❋ .
Return ✻

3. Results

We show the applicability of our algorithm to two real world

applications. The first one is tennis-ball tracking with a sin-

gle camera, e.g., for broadcast enhancement purposes. The

second one is golf-club tracking during a swing.

3.1. Tennis Ball Tracking
3.1.1. Ball Detection

Ball detection consists of detecting moving objects, and

keeping those that approximately match our expectation for

color, size and aspect ratio for the ball. To this end we com-

pute two masks. The first is derived by differencing current

and previous frames and thresholding the result. The same

operation is performed on current and next frames to obtain

the second mask. A logical AND operation between these

two masks gives the mask of the moving objects in the cur-

rent frame. Some criteria on color and shape are applied to

clusters in the resulting mask to keep only those that look

like a tennis ball and to generate hypotheses on the ball po-

sition. Note that due to the relatively poor quality of the

images the color test is not sufficient by itself to detect the

typical tennis ball color.

3.1.2. 2D-Motion Model of the Ball

We need to express the motion model and to compute the

motion parameters from a set of measures. If the camera is

in a “natural” position (image plane approximately perpen-

dicular to the ground without tilt), the ball trajectory in the

camera coordinate system can be expressed as:à ❇ ✂ ❋ ☛âáã➇ä ❥ ✩ ✂❶åä ❥æ ❥ ✩ ✂ åæ ❥ ✄ ✂ q➐çè ❥ ✩ ✂❰åè ❥ éê
where

ç
is the acceleration due to gravity. The ball trajec-

tory in the image is :➊ëë➋ ëë➌ Ð ❇ ✂ ❋ ☛⑧Ð ❥ ✩➁ì✹í ➝✕î☎ï ✶➉✠☞ðî☎ï ➠ñ ï ✶➉✠❭ðñ ï ☛⑧Ð ❥ ✩ ì í ➝↔ò ïó ï ✶➉✠②ôò ïó ï♠➠✑ ✶➉✠❻ôó ïó ïõ❱❇ ✂ ❋ ☛ õ ❥ ✩➁ì✳ö ➝ø÷✵ï ✶➉✠❈ð÷✏ï ✰Ò✠ ➓■ù ➠ñ ï ✶✭✠❭ðñ ï ☛ õ ❥ ✩ ì ö ➝➐ú ïó ï ✶➉✠❻ôú ïó ï ✰❒✠ ➓❻ûó ï✳➠✑ ✶➉✠❸ôó ïó ï
where ÐÒ❥ , õ ❥ , ü Õ , ü❈ý are the — unknown — camera inter-

nal parameters. In the following, we take ❇ Ð➉❥ ✽ õ ❥ ❋ to be at

the image center. Given three ball 2D positions at different

times ✂ ✑ , ✂ q , ✂ Ù , the motion parameters can be computed by

solving the linear system þ♣ÿ ☛ ✁
with:

þ ☛ á✂✂✂✂✂✂ã
✆ ✂ ✑ ▲ ▲ ▲ ✄➒✂ ✑ Ð ❇ ✂ ✑ ❋▲ ▲ ✆ ✂ ✑ ✄➒✂ q ✑ ✄➒✂ ✑ õ❱❇ ✂ ✑ ❋✆ ✂ q ▲ ▲ ▲ ✄➒✂ q Ð ❇ ✂ q ❋▲ ▲ ✆ ✂ q ✄➒✂ qq ✄➒✂ q õ❱❇ ✂ q ❋✆ ✂◗Ù ▲ ▲ ▲ ✄➒✂◗Ù➐Ð ❇ ✂◗Ù ❋▲ ▲ ✆ ✂ Ù ✄➒✂ qÙ ✄➒✂ Ù õ❱❇ ✂ Ù❑❋ é

✄✄✄✄✄✄ê ✽ ÿ✍☛ á✂✂✂✂✂✂✂✂ã
ü Õ î☎ïñ ïü Õ ðî☎ïñ ïü❈ý ÷✏ïñ ïü❈ý ð÷✏ïñ ïü ý ùñ ïðñ ïñ ï

é ✄✄✄✄✄✄✄✄ê✁ ☛✆☎ Ð ❇ ✂ ✑ ❋ ✄❢Ð❒❥ ✽ õ❱❇ ✂ ✑ ❋ ✄ õ ❥ ✽✞✝✟✝✞✝➉✽ õ❱❇ ✂ Ù❑❋ ✄ õ ❥✡✠ r
✓

The refined motion can be computed the same way, with

more 2D positions as explained in section 2.6. Let ✢➩☛☛ ✠ ❇ ✁ ❋ be the ball position at time ✂ for this trajectory, the

covariance matrix
❵②❝

of this position can be approximated

as ❍✡☞ ☛ ✠☞ ✁ ❏ ✌✎✍ í
. . . ✍ ö✑✏ ❍✒☞ ☛ ✠☞ ✁ ❏ r

where ✓ Õ and ✓♠ý are the standard deviation on measure-

ments. The analytical expression for ✔✖✕ ✗✔✖✗ can then be easily

derived using Maple, for example.

3.1.3. Tracking Results

We demonstrate our ball tracker on a long video sequence

composed of about 1000 deinterlaced frames. The tracking

task is made difficult by the presence of different objects

moving in the background. The average number of false

detections is about 4 per frame. The ball sometimes goes

near the camera, and the apparent displacement becomes

large. On the other hand, the ball is sometimes far from the

camera, and becomes too small to be detected. Since the

ball goes in and outside the camera field, we use a simple

test based on the likelihood on the refined motion: If it is

lower than a threshold, we consider that the ball is not seen

by the camera.

We use the values ✥ ✧ ☛➈✥ ✬ ☛✙✘ , and two re-estimations

of the mixture parameters. As shown in Figure 5, this is

usually enough for convergence. Figure 6 presents three

motion samples used for a frame of the trajectory shown

Figure 7.a, which have a likelihood respectively equal to

0.0077, 0.0036 and 0.00445. We verify on the whole se-

quence that the likelihoods of the samples that are close to

the actual motion (like the first one) are effectively much

higher than the likelihoods of the bad samples.

The tracking is performed well despite the appearance

and disappearance of the ball and the motion discontinu-

ities: The “future” frames allow to track the ball when it

is appearing or just after it bounced. More traditionally,

the ball can be tracked when disappearing or before it will
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Figure 4: Two examples of ball detection results.

Figure 5: Estimation of the mixture parameters. The de-

tected position at left corresponds to the ball and the right

one is a false alarm. Their respective ❤ ✛ parameter takes

successively the values (0.45, 0.45), (0.72, 0.1), (0.73,

0.08).

bounce thankful to the considered “past” frames. Two re-

covered trajectories are shown in Figures 1.a and 7.

3.2. Golf Club Tracking

The second example is golf club tracking during a swing.

The difficulties are first in the detection because the club is

thin and reflective. Furthermore, during a swing, the club

velocity is very high and its acceleration varies significantly

during the transition between upswing and downswing.

3.2.1. Club and Club Motion Model

The golf literature provides a good swing model, called the

double-pendulum model [7]. This model consists of two

levers, hinged in the middle. The upper lever roughly corre-

sponds to the golfer’s shoulders and arms, while the lower

lever corresponds to the club and the “hinge” between them

corresponds to the wrists and hands. The hinge works only

in a single plane in which the upper lever is swung about its

fixed pivot at the top which is roughly located in the middle

of the golfer’s upper chest. The double-pendulum model

is three-dimensional, and we consider here its orthographic

projection in the image plane of a camera placed in front

of the golfer. As shown in Figure 8, this projection can be

parameterised by:

- the 2D point ✚ , the fixed pivot;

- the 2D distance ✛ between ✚ and the second pivot;

- the 2D length ✜ of the club;

- the angle ✢ between the upper lever and the Ð -axis;

- the angle ✣ between the two levers.

Figure 6: Three motion samples used for a frame of the

trajectory shown in Figure 7, with likelihoods respectively

equal to 0.0077, 0.0036 and 0.0045. The first sample, the

one with the best likelihood, is close to the actual motion.

The squares indicate the hypotheses employed to compute

the sample, the black disks correspond to the predictions,

and the ellipses represent their covariances. The gray disks

correspond to the detections, their gray level indicating their

detection time.

Figure 7: A recovered trajectory from a monocular se-

quence. Tracking is not lost after the ball has bounced.

C

ψ

l
R

ϕ

Figure 8: The double-pendulum model for a golf swing.
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The point ✚ is assumed to be known, and the club measures

are parametrised as ✎❜☛ ❇ ✛ ✽ ✜ ✽ ✢ ✽ ✣ ❋ . We model the club dy-

namics as a second order process (including the 2D lengths✛ and ✜ : they are the projections of constant lengths in 3D

and also varying). Given three club measures at different

times ✂ ✑ , ✂ q , ✂◗Ù , the motion parameters can be computed by

solving the linear systems þ♣ÿ Ó ☛ ✁ Ó with:þ✍☛ áã ✆ ✂ ✑ ✂ q ✑✆ ✂ q ✂ qq✆ ✂ Ù ✂ qÙ éê
where ÿ Ó is a vector among➊➋ ➌ áã ✛ ❇ ▲ ❋å✛ ❇ ▲ ❋✤✛ ❇ ▲ ❋ éê ✽ áã ✜ ❇ ▲ ❋å✜ ❇ ▲ ❋✤✜ ❇ ▲ ❋ éê ✽ áã ✢ ❇ ▲ ❋å✢ ❇ ▲ ❋✤✢ ❇ ▲ ❋ éê ✽ áã ✣ ❇ ▲ ❋å✣ ❇ ▲ ❋✤✣ ❇ ▲ ❋ éê✦✥ ✧★
and

✁ Ó the corresponding vector among➊➋ ➌ áã ✛ ❇ ✂ ✑ ❋✛ ❇ ✂ q ❋✛ ❇ ✂ Ù✵❋ éê ✽ áã ✜ ❇ ✂ ✑ ❋✜ ❇ ✂ q ❋✜ ❇ ✂ Ù✵❋ éê ✽ áã ✢ ❇ ✂ ✑ ❋✢ ❇ ✂ q ❋✢ ❇ ✂ Ù✏❋ éê ✽ áã ✣ ❇ ✂ ✑ ❋✣ ❇ ✂ q ❋✣ ❇ ✂ Ù✵❋ éê✦✥ ✧★ ✓
The covariance on the prediction ✢ ❇ ✂ ❋ can be computed as in

the previous example. As before, unrealistic predicted mo-

tions (based on the computed velocities and accelerations)

are rejected.

3.2.2. Club Position Hypotheses Generation

The club detection is done as follows. First we detect the

moving objects using the same technique as before. Seg-

ment detection is then performed on these objects. We con-

sider only pairs of close parallel segments because they are

a good cue for the club position in the image. Then the two

segments of each pair are merged in one segment. Generally

the resulting segments cover only a part of the shaft (even if

they correspond to the club) because the segment detection

does not work as well as we would like. The club extrem-

ities are then estimated by looking for color discontinuities

along the segment. At this stage, we do not know which

extremity corresponds to the club head, and each detection

give us two hypotheses ❇ ✛ ✑ ✽ ✜ ✽ ✢ ✑ ✽ ☛ ✑ ❋ and ❇ ✛ q ✽ ✜ ✽ ✢ q ✽ ☛ q ❋ .
3.2.3. Golf Club Tracking Results

We have tested our algorithm on several sequences of vari-

ous swings over a cluttered background. The average num-

ber of detections is about 5, and ❹✤❺ varies between 0.8 and

0.95. During a swing, the shaft acceleration is not constant

and can take on a large range of values. We use the values✥ ✧ ☛➁✥ ✬ ☛ ➴
, so the acceleration of the shaft is assumed

to be approximately constant over an interval of 11 frames.

To demonstrate the robustness of our algorithm to suc-

cessive mis-detections and false-alarms, we have manu-

ally replaced the correct detections by false-alarms when

a. b.

c. d.

Figure 9: (a) detections over the first golf sequence and

(b) the tracking result; (c) and (d) other results for differ-

ent swings. The black disks corresponds to the club head

when the club has not been detected.

the golf club velocity is particularly high for the sequence

shown Figure 9.a and b. Figure 9.b presents the tracking re-

sult and the three added false alarms. In spite of this “trap”

and the high velocity and high variations of the acceleration,

the tracking performs remarkably well.

The Figure 9.b shows the robustness of the tracker to

mis-detections and false-alarms (the club detections over

time for this sequence are shown Figure 9.a). The movie

attached to this paper shows the tracking and the detections

frame by frame. Figure 9 also presents the recovered club

head trajectory for different swings. Some correct detec-

tions have been randomly removed to test the robustness,

but nevertheless the tracking is unperturbed. All the same

parameters values have been used for these sequences.

4. Comparison with the Recursive Ap-

proach

In classical recursive approach, a state ✩✭✠ represents the cur-

rent estimate at time ✂ of the target parameters. In Kalman

filter, this state is a single hypothesis of the target position

and dynamics and an associated covariance matrix. In Mul-

tiple Hypothesis Tracking, it is represented by a mixture of

Gaussians. In particle-set tracking [8], the particles both

represent the multiple hypothesis and the state density.

In all cases, the tracking relies on the same principle:

The states ✩➉✠ embed information about target dynamics es-

timated from previous observations; the state in the com-

ing frame is predicted using a recursive motion model and

7



its density is estimated according to the observation in this

frame. When the target is not detected or is occluded in

successive frames, the prediction becomes less and less ac-

curate, and the error estimate becomes grosser and grosser.

In particle-based trackers, this also supposes a particularly

large number of particles to represent the error. If then

an abrupt change in the direction of motion then occurs, it

would probably defeat the tracker.

On the contrary, our approach is robust enough to tol-

erate weak motion models, even under difficult conditions.

For example, during the golf upswing and even more dur-

ing the downswing, the constant acceleration motion model

is a very poor approximation of reality. These motions fea-

ture large accelerations and an abrupt change in the direc-

tion of motion, that would probably defeat kalman-based

approaches. Our approach also robust enough to handle the

frequent false-negatives and false-positives that detecting a

thin object such as a golf club entails.

5. Conclusion and Future Works

We have presented a new approach to tracking. It relies

on fitting a local motion model to detections over time us-

ing a robust algorithm. We demonstrated this approach in

an online tracking framework. Since our algorithm consid-

ers an interval of frames to estimate the target motion, it is

more robust and accurate than classical recursive tracking

algorithms. It can be employed for applications that allow

a small delay between the acquisition of a frame and the

tracker output for this frame.

Our first example consisted of the tracking of a tennis

ball that goes into and outside the camera field of view

and bounces when hitting the ground and the tennis racket.

Our algorithm is not perturbed by these discontinuities and

tracks the ball without any manual initialization. Our sec-

ond example, the golf swing tracker, demonstrated that

our method is also robust to successive mis-detections and

false-alarms even when the target velocity is particularly

large.

We can imagine a number of improvements to this work.

In this paper we assume that the target is always visible. The

fact that the target may not be visible should be integrated

into the method. The tracker should also be able to take into

account several targets. Another very promising extension

is to consider multiple motion models: By recovering the

actual motion model that fits the data, this method could be

employed for motion recognition.

Since it relies on the data association principle, our al-

gorithm considers only discrete targets. Nevertheless, it

should be easily feasible to use view-based detection and

consider more complex objects than in our examples, like

human face or body, making our algorithm a reliable alter-

native to popular particle-based trackers.
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