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Abstract

In earlier work, we proposed treating wide baseline

matching of feature points as a classification problem, in

which each class corresponds to the set of all possible views

of such a point. We used a K-mean plus Nearest Neighbor

classifier to validate our approach, mostly because it was

simple to implement. It has proved effective but still too

slow for real-time use.

In this paper, we advocate instead the use of randomized

trees as the classification technique. It is both fast enough

for real-time performance and more robust. It also gives us

a principled way not only to match keypoints but to select

during a training phase those that are the most recogniz-

able ones. This results in a real-time system able to detect

and position in 3D planar, non-planar, and even deformable

objects. It is robust to illuminations changes, scale changes

and occlusions.

1. Introduction

Wide baseline keypoint matching has proved to be an effec-

tive tool for applications ranging from camera registration

to object detection. Since the pioneering work by Schmid

and Mohr [1], the algorithms have become ever more robust

to scale, viewpoint, illumination changes and partial occlu-

sions [2, 3, 4, 5, 6, 7].

These wide baseline matching methods, however, are

typically designed to match two images but do not take ad-

vantage of the fact that, for object detection and pose esti-

mation purposes, both a 3D object model and several train-

ing images may be available. As shown in Figs 1 and 2,

our goal is to incorporate this additional information into

a keypoint recognizer that is both robust and fast enough

for real-time object detection, whether or not the object is

planar.

The key ingredient of our approach is to treat wide base-

line matching of feature points as a classification problem,

in which each class corresponds to the set of all possible

views of such a point. During training, given at least one

image of the target object, we synthesize a large number

of views of individual keypoints. If the object can be as-

sumed to be locally planar, this is done by simply warp-

ing image patches around the points under affine or ho-

mographic deformations. Otherwise, given the 3D model,

we use standard Computer Graphics texture-mapping tech-

niques. This second approach relaxes the planarity assump-

tions. At run-time, we can then use a powerful and fast

classification technique to decide to which view set, if any,

an observed feature belongs. This method is as effective

and much faster than the usual way of computing local de-

scriptors and comparing their responses. Once potential

correspondences have been established between the inter-

est points of the input image and those lying on the object,

we apply a standard RANSAC-based method to estimate

the 3D pose.

In previous work [8], we used a K-mean plus Nearest

Neighbor classifier to validate our approach, mostly be-

cause it was simple to implement. It has proved effective

but still too slow for real-time use. Here, we advocate in-

stead the use of randomized trees [9] as the classification

technique. It is both faster and more robust, at the possi-

ble expense of additional training time. Furthermore, it also

gives us a principled way, not only to recognize keypoints,

but also to select during the training phase those that yield

the best recognition rate. As a result, even though we use

a monoscale algorithm for keypoint extraction [10], we can

achieve scale-invariance across a range of scales by using

training images at different resolutions and retaining only

those keypoints that are stable within the range.

In short, the contribution of this paper is not only a faster

algorithm but also one that is more robust through the ap-

propriate selection of keypoints to be recognized.

In the remainder of the paper, we first discuss related

work and recall how wide baseline matching can be stated

as a classification problem. We then present the proposed

keypoint selection method, detail our new classification

method based on randomized trees, and comment the re-

sults.



Figure 1. Detection of a book in a video sequence: The book is detected independently and suc­

cessfully in all subsequent frames at 25Hz in 640×480 images on a standard PC, in spite of partial
occlusion, cluttered background, motion blur, large illumination and pose changes. In the last two

frames, we add the inevitable virtual teapot to show we also recover 3D pose. A video sequence is

available at http://cvlab.epfl.ch/research/augm/detect.html

Figure 2. The method is just as effective for 3D objects. In this experiment, we detected the teddy

tiger using a 3D model reconstructed from several views such as the two first images on the left.

2. Related Work

In the area of automated 3D object detection, we can distin-

guish between “Global” and “Local” approaches.

Global ones use statistical classification techniques to

compare an input image to several training images of an

object of interest and decide whether or not it appears in

this input image. The methods used range from relatively

simple methods such as Principal Component Analysis and

Nearest Neighbor search [11] to more sophisticated ones

such as AdaBoost and classifiers cascade to achieve real-

time detection of human faces at varying scales [12]. Such

approaches, however, are not particularly good at handling

occlusions, cluttered backgrounds, or the fact that the pose

of the target object may be very different from those in the

training set. Furthermore, these global methods cannot pro-

vide accurate 3D pose estimation.

By contrast, local approaches use simple 2D features

such as corners or edges, which makes them resistant to

partial occlusions and cluttered backgrounds: Even if some

features are missing, the object can still be detected as

long as enough are found and matched. Spurious matches

can be removed by enforcing geometric constraints, such

as epipolar constraints between different views or full 3D

constraints if an object model is available. For local ap-

proaches to be effective, feature point extraction and char-

acterization should be insensitive to viewpoint and illumi-

nation changes. Scale-invariant feature extraction can be

achieved by using Harris detector [13] at several Gaussian

derivative scales, or by considering local optima of pyrami-

dal difference-of-Gaussian filters in scale-space [7]. Miko-

lajczyck et al. [4] have also defined an affine invariant point

detector to handle larger viewpoint changes, that has been

used for 3D object recognition [14], but it relies on an iter-

ative estimation that would be too slow for our purposes.

Given the extracted feature points, various local descrip-

tors have been proposed: Schmid and Mohr [1] compute

rotation invariant descriptors as functions of relatively high

order image derivatives to achieve orientation invariance.

Baumberg [3] uses a variant of the Fourier-Mellin transfor-

mation to achieve rotation invariance. He also gives an al-

gorithm to remove stretch and skew and obtain an affine

invariant characterization. Allezard et al. [15] represent

the keypoint neighborhood by a hierarchical sampling, and

rotation invariance is obtained by starting the circular sam-

pling with respect to the gradient direction. Tuytelaars and

al. [2] fit an ellipse to the texture around local intensity ex-

trema to obtain correspondences remarkably robust to view-

point changes. Lowe [7] introduces a descriptor called SIFT

based on several orientation histograms, that is not fully
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affine invariant but tolerates significant local deformations.

Most of these methods are too slow for real-time processing,

except for [5] that introduces Maximally Stable Extremal

Regions to achieve near frame rate matching of stable re-

gions. By contrast, our classification-based method runs

easily at frame rate, because it shifts much of the compu-

tational burden to a training phase and, as a result, reduces

the cost of online matching while increasing its robustness.

Classification as a technique for wide baseline matching

has also been explored by [16] in parallel to our previous

work. In this approach, the training set is iteratively built

from incoming frames, and kernel PCA is used for classi-

fication. While this is interesting for applications when a

training stage is not possible, our own method allows to de-

tect the object under unseen positions since we synthesize

new views. The classification method described in this pa-

per also has a lower complexity than their approach.

3. Keypoint Matching as Classification

Let us first recall how matching keypoints found in an in-

put image against keypoints on a target object O can be

naturally formulated as a classification problem [8]. Dur-

ing training, we construct a set K = {k1 . . .kN} of N

prominent keypoints lying on the object. At runtime, given

an input patch p(kinput) centered at a keypoint kinput ex-

tracted in the input image, we want to decide whether or

not it can be an view of one of the N keypoints ki. In other

words, we want to assign to p a class label Y (p) ∈ C =
{−1, 1, 2, . . . , N}, where the −1 label denotes all the points

that do not belong to the object. Y cannot be directly ob-

served and we aim at constructing a classifier Ŷ such as

P (Y 6= Ŷ ) is small.

In other recognition tasks, such as face or character

recognition, large training sets of labeled data are usually

available. However, for automated pose estimation, it would

be impractical to require a very large number of sample im-

ages. Instead, to achieve robustness with respect to pose

and complex illumination changes, we use a small number

of images and synthesize many new views of the object us-

ing simple rendering techniques to train our classifier: This

approach gives us a virtually infinite training set to perform

the classification.

For each keypoint, we can then constitute a sampling of

its view set, that is the set of all its possible appearances

under different viewing conditions. This sampling allows

us to use statistical classification techniques to learn them

during an offline stage, and, finally, to perform the actual

classification at run-time. This gives us a set of matches

that lets us estimate the pose.

Figure 3. The most stable keypoints selected
by our method on the book cover and the

teddy tiger.

Figure 4. An example of generated views for

the book cover and the teddy tiger, and the
extracted keypoints for these views.

4. Building the Training Set

In [8], we built the view sets by first extracting the keypoints

ki in the given original images then generating new views

of each keypoint independently. As depicted in Fig.4, it is

more effective to generate new views of the whole object,

and extract keypoints in these views. This approach allows

us to solve in a simple way several fundamental problems

at no additional computation cost at run-time: We can eas-

ily determine stable keypoints under noise and perspective

distortion, which helps making the matching robust to noise

and cluttered background.

4.1. Local Planarity Assumptions

If the object can be assumed to be locally planar, a new

view can be synthesized by warping a training image of the

object using an affine transformation that approximates the

actual homography. The affine transformations can be de-

composed as: A = RθR
−1

φ SRφ, where Rθ and Rφ are

two rotation matrices respectively parameterized by the an-

gles θ and φ, and S = diag [λ1, λ2] is a scaling matrix. In

this paper, we use a random sampling of the affine trans-

formations space, the angles θ and φ varying in the range

[−π; +π], and the scales λ1 and λ2 varying in the range

[0.2; 1.8]. Those ranges are much larger than the ones used

in our earlier work, and can be handled because we now de-

termine the most stable points and thanks to our new classi-

fication method.
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4.2. Relaxing the Planarity Assumptions

One advantage of our approach is that we can exploit the

knowledge of a 3D model if available. Such a model is

very useful to capture complex appearance changes due to

changes in the pose of a non convex 3D object, including

occlusions and non-affine warping. Given the 3D model,

we use standard Computer Graphics texture-mapping tech-

niques to generate new views under perspective transforma-

tions.

In the case of the teddy tiger of Fig.2, we used Image

Modeler1 to reconstruct its 3D model. An automated recon-

struction method could also have been used, another alter-

native would have been to use image-based rendering tech-

niques to generate the new views.

4.3. Keypoint Selection

We are looking for a set of keypoints K = {ki} lying on

the object to detect, and expressed in a reference system

related to this object. We should retain the keypoints with a

good probability P (k) to be extracted in the input views at

run-time.

4.3.1. Finding Stable Keypoints

Let T denote the geometric transformation used to generate

a new view, and k̃ a keypoint extracted in this view. T is

an affine transformation, or a projection if the 3D model is

available. By applying T −1 to k̃, we can recover its corre-

sponding keypoint k in the reference system. Thus, P (k)
can be estimated for keypoints lying on the objects from

several generated views. The set K is then constructed by

retaining keypoints ki with a high P (ki). In our experi-

ments, we retain the 200 first keypoints according to this

measure. Fig. 3 shows the keypoints selected on the book

cover and the teddy tiger.

The training set for keypoint ki is then built by collecting

the neighborhood p of the corresponding k̃ in the generated

images, as shown in Figs. 5 and 6.

4.3.2. Robustness to Image Noise

When a keypoint is detected in two different images, its pre-

cise location may shift a bit due to image noise or viewpoint

changes. In practice, such a positional shift results in large

errors of direct cross-correlation measures. One solution is

to iteratively refine the point localization [4], which can be

costly.

In our method, this problem is directly handled by the

fact that we extract the keypoints k̃ in the synthesized views:

These images should be as close as possible to actual im-

ages captured from a camera, and we add white noise to the

1ImageModeler is a commercial product from Realviz(tm) that allows

3D reconstruction from several views with manual intervention.

Figure 5. First row: Patches centered at

a keypoint extracted in several new views,
synthesized using random affine transfor­

mations and white noise addition. Second
row: Same patches after orientation correc­

tion and Gaussian smoothing. These prepro­

cessed patches are used to train the keypoint
classifier. Third and fourth rows: Same as be­

fore for another keypoint located on the bor­

der of the book.

Figure 6. In the case of the teddy tiger, we
restricted the range of acceptable poses and

the orientation correction was not used.

generated views. To simulate a cluttered background, the

new object view is rendered over a complex random back-

ground. That way, the system is trained with images similar

to those at run-time.

5. Keypoint Recognition

In [8], we used a K-mean plus Nearest Neighbor classifier

to validate our approach, because it is simple to implement

and it gives good results. Nevertheless, such classifier is

known to be one of the less efficient classification meth-

ods. We show in this section that randomized trees are bet-

ter suited to our keypoint recognition problem, because they

allow very fast recognition and they naturally handle multi-

class problems.

5.1. Randomized Trees

Randomized trees are simple but powerful tools for clas-

sification, introduced and applied to recognition of hand-

written digits in [9]. [17] also applied them to recognition
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of 3–D objects. We quickly recall here the principles of

randomized trees for the unfamiliar reader. As depicted by

Fig. 7, each non-terminal node of a tree contains a simple

test that splits the image space. In our experiments, we use

tests of the type: “Is this pixel brighter than this one ?”.

Each leaf contains an estimate based on training data of the

conditional distribution over the classes given that an image

reaches that leaf. A new image is classified by dropping it

down the tree, and, in the one tree case, attributing it the

class with the maximal conditional probability stored in the

leaf it reaches.

We construct the trees in the classical, top-down man-

ner, where the tests are chosen by a greedy algorithm to

best separate the given examples, according to the expected

gain of information. The process of selecting a test is re-

peated for each non-terminal descendant node, using only

the training examples falling in that node. The recursion is

stopped when the node receives too few examples, or when

it reaches a given depth.

Since the numbers of classes, training examples and pos-

sible tests are large in our case, building the optimal tree be-

comes quickly intractable. Instead we grow multiple, ran-

domized trees: For each tree, we retain a small random sub-

set of training examples and only a limited random sample

of tests at each node, to obtain weak dependency between

the trees. More details about the trees construction can be

found in [10].

5.2. Preprocessing

In order to make the classification task easier, the patches p

of the training set or at run-time are preprocessed to remove

some variations within the classes attributable to perspec-

tive and noise.

The generated views are first smoothed using a Gaussian

filter. We also use the method of [7] to attribute a 2D ori-

entation to the keypoints and achieve some normalization.

The orientation is estimated from the histogram of gradient

directions in a patch centered at the keypoint. Note that we

do not require a particularly stable method, since the same

method is used for training and run-time recognition. We

just want it to be reliable enough to reduce the variability

within the same class. Once the orientation of an extracted

keypoint is estimated, its neighborhood is rectified as shown

Fig. 5.

Illumination changes are usually handled by normaliz-

ing the views intensities in some way, for example by nor-

malizing by the L2 norm of the intensities. We show be-

low that our randomized trees allow to skip this step. The

classification indeed relies on tests comparing intensities of

pixels. This avoids the use of an arbitrary normalization

method and makes the classification very robust to illumi-

nation changes.

m

m m m

~

><

Figure 7. Type of tree used for keypoint recog­

nition. The nodes contain tests comparing
two pixels in the keypoint neighborhood; the

leaves contain the dl posterior distributions.

5.3. Node Tests

In practice, we use ternary tests based on the difference of

intensities of two pixels taken in the neighborhood of the

keypoint:

If I(p,m1) − I(p,m2) < −τ go to child 1;

If |I(p,m1) − I(p,m2)| ≤ +τ go to child 2;

If I(p,m1) − I(p,m2) > +τ go to child 3.

I(p,m) is the intensity of patch p after the preprocessing

step described in Section 5.2, at pixel location m. m1 and

m2 are two pixel locations chosen to optimize the expected

gain of information as described above. τ is a threshold de-

ciding in which range two intensities should be considered

as similar. In the results presented in this paper, we take τ

to be equal to 10.

This test is very simple and requires only pixel intensi-

ties comparisons. Nevertheless, because of the efficiency

of randomized trees, it yields reliable classification results.

We tried other tests based on weighted sums of intensities

a la Adaboost, on gradients or on Haar wavelets without

significant improvements on the classification rate.

5.4. Run Time Keypoint Recognition

Once the randomized trees T1, . . . , TL are built, the pos-

terior distributions P (Y = c|T = Tl, reached leaf = η)
can be estimated for each terminal node η from the train-

ing set. At runtime, the patches p centered at the keypoints

extracted in the input image are preprocessed and dropped

down the trees. Following [9], if dl(p) denotes the posterior

distribution in the node of tree Tl reached by a patch p, p is

classified considering the average of the distributions dl(p):

Ŷ (p) = argmax
c

dc(p) = argmax
c

1

L

∑

l=1...L

dl(p)

dc(p) is the average of the posterior probabilities of class

c and constitutes a good measure of the match confidence.
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Figure 8. Percentage of correctly classified

views with respect to the number of trees,
using trees of depth 5, 10, and 15.

We can estimate during training a threshold Dc to decide if

the match is correct or not with a given confidence s:

P (Y (p) = c|Ŷ (p) = c, dc(p) > Dc) > s

In practice we take s = 90%. Keypoints giving dc(p)
lower than Dc are considered as keypoints detected on the

background, or misclassified keypoints, and are therefore

rejected. It leaves a small number of outlier matches, and

the pose of the object is found by RANSAC after few itera-

tions.

5.5. Performance

The correct classification rate P (Ŷ (p) = c|Y (p) = c)
of our classifier can then be measured using new random

views. The graph of Fig. 8 represents the percentage of

keypoints correctly classified, with respect to the number

of trees, for several maximal depths for the trees. The graph

shows no real differences between taking trees of depth 10

or 15, so we can use trees with limited depth. It also shows

that 20 trees are enough to reach a recognition rate of 80%.

Growing 20 trees of depth 10 takes about 15 minutes on a

standard PC.

Since the classifier works by combining the responses

of sub-optimal trees, we tried to re-use trees grown for a

first object for another object, as shown Fig. 9: We updated

the posterior probabilities in the terminal nodes, but kept

the same tests in the non-terminal nodes. We experienced

a slight drop of performance, but not enough to prevent the

system from recognizing the new object. In this case, the

time required for training drops to less than one minute.

6. Results

6.1. Planar Objects

We first tried our algorithm on planar objects. Fig. 11 shows

matches between the training image and input images estab-

Figure 9. Re­usability of the set of trees: A

new object is presented to the system, and
the posterior probabilities are updated. The

new object can then be detected.

Figure 10. Comparison with SIFT. When too

much perspective distorts the object image,
the SIFT approach gives only few matches

(left), while our approach is not perturbed

(right).

lished in real-time. The estimated pose is then accurate and

stable enough for Augmented Reality as shown Fig. 1.

We compared our results with those obtained using the

executable that implements the SIFT method [7] kindly pro-

vided by David Lowe. As shown in Fig. 10, when too much

perspective distorts the object view, this method gives only

few matches, while ours is not perturbed. Ours is also much

faster. For a fair comparison, remember that we take advan-

tage of a training stage possible in object detection applica-

tions, while the SIFT method can also be used to match two

given images. Another difference is that we cannot handle

Figure 11. Detection of the book: Inlier
matches established in real­time under sev­

eral poses.
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Figure 12. Deformable objects: the object is
detected and its deformation estimated, us­

ing the method described in [18].

as much scale changes as SIFT because we do not use (yet)

a multi-scale keypoint detection.

6.2. Detecting a 3D Object

Fig. 2 shows results of the detection of a teddy tiger. As

mentioned above, its 3D textured model was reconstructed

from several views with the help of ImageModeler. It can

be detected from different sides, and front and up views.

6.3. Detecting Deformable Objects

Our method is also used in [18] to detect deformable objects

and estimate their deformation in real-time. The matches

are used not only to detect but also to compute a precise

mapping from a model image to the input image as shown

Fig. 12.

7. Conclusion and Perspectives

We proposed an approach to keypoint matching for object

pose estimation based on classification. We showed that

using randomized trees yields a powerful matching method

well adapted to object detection.

Our current approach to keypoint recognition relies on

comparing pixel values in small neighborhoods around

these keypoints. It works very well for textured objects,

but loses its effectiveness in the absence of texture. To in-

crease the range of applicability of our approach, we will

investigate the use of other additional image features, such

as spread gradient [19]. We believe our randomized tree ap-

proach to keypoint matching to be ideal to find out those

that are most informative in any given situation and, thus,

to allow us to mix different image features in a natural way.
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d’arbres de classifi cation,” in Proceedings of Image’Com, 1996.

[18] J. Pilet, V. Lepetit, and P. Fua, “Real-Time Non-Rigid Surface Detec-

tion,” in Conference on Computer Vision and Pattern Recognition,

San Diego, CA, June 2005.

[19] Y. Amit, D. Geman, and X. Fan, “A coarse-to-fi ne strategy for multi-

class shape detection,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2004.

7


