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Abstract

We present a semi-automatic approach to solve occlu-

sion in AR systems. Once the occluding objects have been

segmented by hand in selected views called key-frames, the

occluding boundary is computed automatically in the in-

termediate views. To do that, the 3D reconstruction of the

occluding boundary is achieved from the outlined silhou-

ettes. This allows us to recover a good prediction of the

2D occluding boundary which is refined using region-based

tracking and active contour models. As a result, we get an

accurate estimation of the occluding objects.

Various results are presented demonstrating

occlusion resolution on real video sequences.

Results and videos are available at the URL:

http://www.loria.fr/˜lepetit/Occlusions.

1. Introduction

The objective of augmented reality (AR) is to add vir-

tual objects to real video sequences, allowing computer-

generated objects to be overlaid on the video in such a man-

ner as to appear part of the viewed 3D scene. Applications

include computer-aided surgery, tele-operations, and spe-

cial effects for the film and the broadcast industries. This

paper concentrates on the particular application of video

post-production.

Realistic image composition requires that the augmented

patterns be correctly occluded by foreground objects. How-

ever, solving the occlusion problem for AR is challenging

when little is known about the real world we wish to aug-

ment. Theoretically, resolving occlusion amounts to com-

pare the depth of the virtual objects to that of the real scene.

However, computing dense and accurate depth maps from

images is difficult [9]. This explains why the accuracy of

the obtained occluding boundary is generally poor. More-

over, in most AR applications, the interframe motion is not

a priori known but must be computed. Inacurate motion es-

timation thus results in possibly large reconstruction errors.

In order to overcome problems stemming from possi-

bly large reconstruction errors, Ong [6] proposed a semi

interactive approach to solve occlusion: the occluding ob-

jects are segmented by hand in selected views called key-

frames. These silhouettes are used to build the 3D model

of the occluding object. The 2D occluding boundary is

then obtained by projecting the 3D shape in the intermediate

frames. However, due to the uncertainty on the computed

interframe motion, the recovered 3D shape do not project

exactly onto the occluding objects in the key-frames nor in

the intermediate frames.

In this paper, we also use the concept of key-views but

we do not attempt to build the 3D model of the occluding

objects from all the key-frames. The novelty in this paper

is twofold: (i) we do not attempt to recover the 3D model

of the occluding objects from all the key-views. We only

compute the 3D occluding boundary from two consecutive

key views. The projection of this 3D curve is a good pre-

diction of the actual 2D occluding boundary in the interme-

diate frames. (ii) we recover the actual occluding boundary

with a good accuracy using deformable region-based track-

ing followed by an adjustment stage based on snakes. This

allows us to compensate easily for the interframe motion er-

ror. We then obtain an accurate estimation of the occluding

boundary over the sequence.

2. Overview of the system

Theoretically, the 3D shape of the occluding object can

be computed from its silhouettes detected in an image se-

quence. For AR applications however, the interframe cam-

era motion is computed from image/model correspondences

or with 2D/2D correspondences over time [4, 7]. The errors

resulting from this inaccurate registration makes the 3D re-

construction untractable. That is the reason why we only

attempt to recover the 3D occluding boundary from two

consecutive key-frames instead of recovering the 3D shape

of the occluding object from the whole sequence. Fig. 1

explains the way we compute a first estimation of the 2D

occluding boundary in each frame of the sequence. First,
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the user points out key-frames which correspond to views

where aspect changes of the occluding object occur. These

key-frames are framed in black in Fig. 1. The user also out-

lines the occluding object on these key-frames (in white).

It is well known that the 3D occluding boundary depends

on the camera viewpoint. However, the starting point for

our method is to build a good approximation of the 3D oc-

cluding boundary which will be used for all the frames be-

tween two kew-views. This 3D curve is built using stereo-

triangulation from the two silhouettes outlined by the user

provided that the translation between the two frames is not

null (Fig. 1.a and b). The projection of this approximated

occluding boundary on the intermediate frames thus pro-

vides a fair estimation of the 2D occluding boundary (Fig.

1.c and 1.d).

Due to the uncertainty on the computed interframe mo-

tion, this prediction can be relatively far from the actual

occluding boundary for at least two reasons (see for in-

stance Fig. 7.a): (i) the computed 3D occluding bound-

ary is only an approximation of the real one because stereo-

triangulation is performed from two occluding contours. (ii)

more importantly, errors on the camera parameters induce

reconstruction errors on the 3D curve and consequently er-

rors on its projection in the considered frame.

One of the main contributions of this paper is to show

that the error on the computed camera parameters can be

estimated. The uncertainty on the 3D occluding boundary

can then be deduced. This allows us to define a region

of interest around the predicted contour which is likely to

contain the actual occluding boundary (section 3). The re-

finement stage (section 4) is then carried out within this re-

gion: region-based tracking is first used to recover the re-

gion whose size and texture only differ from the predicted

shape with an affine transformation. Finally, active contour

models are used to adjust the occluding boundary.

3. Reconstructing the 3D occluding boundary

3.1. Computing the camera parameters

In this section we first briefly recall how we compute

the camera motion over the sequence. Our approach to

motion computation takes advantage of 3D knowledge on

the scene as well as 2D/2D correspondences over time [7].

Given the viewpoint [Rk, tk] computed in a given frame

k, we compute the viewpoint p in the next frame k + 1
using the 3D model points Mi whose projections are de-

tected in frame k + 1. In addition, we use interest points

[5] (qi
k, q

i
k+1

)1≤i≤m that are automatically extracted and

matched between frames k and k + 1. The quality of the

viewpoint can be assessed by the distance between qi
k+1 and

the epipolar line epk+1(q
i
k). The viewpoint is therefore re-

covered by minimizing:

Φ(p) = 1

n

∑

n

i=1
dist2(mi, proj(Mi) + λ

2m

∑

m

i=1

dist2(qi

k+1, epk+1(q
i

k)) + dist2(qi

k, epk(qi

k+1))
(1)

3.2. 3D reconstruction

We will now take some time to examine the 3D recon-

struction process of the occluding boundary in a little detail.

LetC1 andC2 be the silhouettes detected in the key-frames.

In order to reconstruct thei r corresponding 3D curve, we

first have to match the points of C1 and C2. Let c1 a point

ofC1. To find its correspondant c2, we determine the points

{c12 . . . c
n
2} ofC2 which lie on the epipolar line associated to

c1, and the points {c11 . . . c
m
1 } of C1 which lie on the epipo-

lar line passing by c1 (see figure 2). If n 6= m, something

gone wrong (due to epipolar geometry imprecision) and we

don’t attribute any correspondant to c1. If n = m, the con-

straint order along the epipolar lines says that there is an

index i such as ci1 = c1 and ci2 = c2. Then, we can recover

the 3D point which reprojects on c1 and c2.

C1

C2

2c
1c

Figure 2. Matching of C1 and C2

As some parts ofC1 do not heave 3D counterpart (if n 6=
m), we still have to estimate the corresponding 3D curve by

interpolation. Let C′ be a set of points that do not have 3D

corresponding points in the reconstruction process, and let

c11 and c22 be its extremities, previously reconstructed as

C11 and C12. Estimating the corresponding 3D curve by

the segment [C11C12] would not be a good idea, because

the reprojection of [C11C12] is not generally C′. A better

estimation is shown in figure 3: the corresponding 3D point

Ic of a point c on C′ is computed as the nearest point to

the segment [C11C12] which belongs to the line [Oc1) (O

the center of the camera). This way the estimated curve

reprojection is C′.

Note that if the key views correspond to very different

aspects of the occluding object, the reconstruction may fail

because the number of intersections of the epipolar line with

the two outlines shapes are different for numerous points on

the curves. That is the reason why the user has to choose

carefully the key-views in order to avoid this kind of prob-

lems. For an example, consider the case of the cow se-

quence in section 5.2.
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Figure 3. Estimation of the unreconstructed

parts of the 3D contour

3.3. Taking into account the error on the estimated
motion

The critical role of motion error in scene reconstruction

has been pointed out in [8]. In this paper, we use the ǫ

indifference region [1] to investigate the reliability of the

estimated camera parameters and to deduce the uncertainty

on the 3D occluding boundary.

The fact that we have elected to minimize a function

Φ(p) means that we set some store by obtaining a low value

of this function. It is reasonable to suppose that values of

Φ almost as low as Φ∗ would satisfy us almost as much as

Φ∗. This gives rise to an ǫ indifference region in p space

described by the equation:

ǫregion = {p such that|Φ(p) − Φ(p∗)| ≤ ǫ}

In a sufficiently small neighborhood of p∗ we may ap-

proximate Φ by means of its Taylor equation:

Φ(p) ≈ Φ(p∗) + ∇Φ(p∗)tδp+
1

2
δptH(p∗)δp (2)

where H∗ is the hessian of Φ computed at p = p∗. More

details on the computation of H∗ are given in Annex A.

As p∗ is the minimum of Φ, the gradient is null at the

optimum ∇Φ(p∗) = 0 and equation (2) becomes

Φ(p) ≈ Φ(p∗) +
1

2
δptH(p∗)δp

The ǫ indifference region is then defined by:

|δptH(p∗)δp| ≤ 2ǫ

which is the equation of a 6-dimensional ellipsoid.

Fig.4 shows these indifference regions computed along

the Stanislas sequence (we use ǫ = 1). The building in the

background is the 3D model used for registration. For each

frame of the sequence, we drew the ǫ indifference region for

the translation parameters.

We can now compute the reconstruction error on the oc-

cluding boundary from these indifference regions. If point

correspondences were available, the reconstruction error

could be recovered in an analytical way from viewpoint un-

certainties [8]. Unfortunately, as we only have curve corre-

spondences, the matched points depends on the viewpoint

and are computed as the intersection of the epipolar line

of the point with C2. We therefore resort to an exhaus-

tive approach. We consider the extremal viewpoints, that are

the vertices of the 6-dimensional indifference ellipsoid. Let

{p1
1, ..., p

12
1 } (resp {p1

2, ..., p
12
2 }) the extremal viewpoints in



Figure 4. The indifference regions for the

translation parameters over the Stanislas se­

quence.

the two key-views. Let m1 be a point on C1. Given an ex-

tremal viewpoint p1, we can compute the 12 possible recon-

structions ofm1 with the 12 extremal views in key-frame 2.

Using the 12 extremal viewpoints in key-frame 1, we then

obtain 122 extremal reconstructions of m1 according to the

uncertainty computed on the two key-views. The convex

hull of these 144 points is a good approximation of the 3D

reconstruction error on m1.

We can now predict the position of the 2D occluding

boundary in the in-between frames by simply reprojecting

the 3D occluding boundary. To estimate the 2D uncertainty

on the projected boundary C, we have to take into account

the 3D reconstruction error and the uncertainty on the con-

sidered viewpoint. We again resort to an exhaustive method:

for each point mi on C, the 122 possible extremal recon-

structions are projected onto the current frame using the 12
extremal viewpoints of this frame. We define the spatial un-

certainty on the predicted occluding boundary associated to

mi as the convex hull of these 123 image points. This area

is denoted Λi in the following.

The main stages for computing the 2D uncertainty on

the predicted occluding boundary are illustrated in Fig. 5:

Fig. 5.a exhibits a point on the predicted boundary and Fig.

5.b shows the projection of the corresponding 3D extremal

points using the extremal viewpoints and the convex hull

Λi. Finally, Fig. 7.a shows the 2D uncertainty computed

for each point of the predicted boundary (dotted line). The

points are drawn with black circles or crosses and the un-

certainty is drawn in white. The reader can notice that some

points on the steps have no associated spatial uncertainty.

Indeed, because the key silhouettes do not match exactly,

the epipolar line computed with some extremal viewpoints

does not always intersect C2. If more than 50% of the

epipolar lines computed with the 122 extremal viewpoints

do not intersect C2, the spatial uncertainty is not defined at

this point.

a. b.

Figure 5. Computation of the spatial uncer­
tainty on the predicted occluding boundary.

4. Refining the occluding boundary

As a result of the prediction stage we get an estimate

of the occluding boundary along with its 2D uncertainty in

the considered frame. In addition we compute not only the

boundary but also the texture of the occluding object so as

to get a predicted template of the occluding object. The

texture Itemplate is computed from the nearest key-view by

using 2d local image transformation.

We still have to determine the occluding object from the

predicted template. Due to the error on the computed mo-

tion and also because reconstruction is achieved from oc-

cluding contours, the template boundary can be relatively

far from the actual occluding object and their shapes can

also differ (see for instance Fig. 7.a). However, it is im-

portant to note that the actual boundary belongs to the com-

puted uncertainty region. Following previous works on de-

formable structures [2] we use a hierarchical algorithm; we

first compute a global estimation of the shape deformation

between the key-frame and the current frame. Then we use

a fine tuning deformation to adjust the details. As affine

transformations seem to be appropriate to describe shape

variations due to motion uncertainties, the affine motion that

best matches the occluding template on the considered im-

age is searched for:

transfa(m) =

{

a1mx + a2my + a3

a4mx + a5my + a6

The optimal parameter a is defined as the one that yields

the best fit between the predicted template Itemplate and the

current image I . The best match is defined as the minimum

of the correlation measure:

Ψ(a) =
∑

i

ψa(i) (3)

ψa(i) =

dx,dy
=W

∑

dx, dy = −W
(mi + d) ∈ RC

(Itemplate(mi+d)−I(transfa(mi+d)))
2



where the predicted curve C is defined by the set of ver-

tices {mi}1≤i≤n, d = (dx, dy), W is the size of the cor-

relation window and RC is the region inside C. Note that

only the points which are inside the occluding objects are

considered in the estimation. This way, points belonging to

the changing background do no affect the matching process.

In addition, we have slightly modified the correlation

measure in order to take into account the 2D uncertainty

on the predicted curve. A penalty term is used to ensure

that the matched point belongs to Λi. The penalty has the

form αW 2 where α is a constant value. The function to be

minimized is therefore defined as:

ψa(i) =







∑

d(Itemplate(mi + d) − I(transfa(mi + d)))2

if transfa(mi) ∈ Λi,

αW 2 otherwise.

Note that if Λi is not defined, or equivalently if Λi =
∞, the first item of ψa is used because the assumption

transfa(mi) ∈ Λi is fullfiled. These points are therefore

considered in the correlation function without further con-

straints. Finally, fine tuning adjustement of the occluding

boundary is performed with snakes from transfa(C).

5. Results and discussion

The effectiveness of our approach is demonstrated on

three sequences: the Stanislas sequence, the cow sequence

and the Loria sequence. Each of these sequence demon-

strates the hability of our algorithm to handle occlusions in

various situations. We want to prove that our algorithm is

efficient even in some cases which are well known to be

difficult both for viewpoint recovery and 3D reconstruction.

In the considered examples we especially adress the case

of camera motions along the optical axes which are diffi-

cult for the tracking task and the 3D reconstruction (see

the cow sequence and the Loria sequence). We also con-

sider in the Loria sequence a camera path which goes to-

wards the occluding object and goes beyond it. Note that

the original and the augmented videos can be seen at out

URL http://www.loria.fr/˜lepetit/Occlusions

5.1. The Stanislas Sequence

The Stanislas sequence was shot from a car which turned

around the square. Our aim is to incrust a virtual plane pass-

ing behind the statue. Here, the 3D model of the opera is

used for registration (the building in the back of the scene)

while the 3D model of the statue is unknown. The three key-

frames chosen by the user are shown in Fig. 6 (frames 66,

118, 150). Fig. 6 exhibits the recovered occluding boundary

in the frames 15, 66 and 130. The overall visual impression

is very good though the predicted boundary is sometimes

relatively far from the actual one.

Fig. 7 clearly proves the efficiency of incorporating mo-

tion error into our process. The uncertainty on the predicted

curve is drawn in white. The points mi that are outside

the uncertainty region Λi after the region based tracking are

shown black crosses, whereas the points inside the region

are drawn with black circles. For both images, the predicted

2D curve is shown in dotted lines. If the 2D uncertainty is

not considered (Fig. 7.a), the recovered boundary is erro-

neous, especially near the steps. On the contrary, if points

are constrained to be in the uncertainty region, the occlud-

ing boundary is successfully recovered (Fig. 7.b).

5.2. The cow sequence

This sequence consists of 120 frames. The camera un-

dergoes various motions: translation along the optical axis

and also rotating motions. In this sequence, we want to

add a brown cow just behind the black and white cow. The

key views used to recover the 3D occluding boundaries as

well as the outlined boundaries are shown in Fig. 8. Note

that some key views are very close (frames 30, 31, 40, 41).

This is because the aspect graph of the occluding object is

very complicated especially due to the legs of the cow: in

frame 30, only 3 legs are visible whereas the four legs are

visible in frame 31. Also between frame 40 and 41, three

legs are visible (two of them are pressed) whereas the four

legs are visible in frame 41. Fours legs are visible whereas

two of them are pressed in the next frame. The topology

of the occluding boundary is then different between these

two frames. This leads us to define two key-views in or-

der that the 3D reconstruction and especially the matching

stage succeeds. The 3D occluding boundaries built from the

key-views are shown in Fig. 9 (first row). Also shown in the

figure are zooms on the computed 2D occluding boundary

for frames 20, 35 and 110 so that the user can appreciate the

accuracy of the occluding boundary. Finally, some snap-

shots of the augmented scene are shown in Fig. 10. When

looking at the full video, the reader can notice that the com-

position is very stable and realistic, even on the foreground

of the scene, and that the added objects really appear part of

the 3D scene.

5.3. The Loria sequence

This sequence consists of 500 frames and was shot

around our laboratory, the LORIA. The dominant motion

of the camera is a translation along the optical axis. Such

a motion is known to be difficult both for motion recov-

ery and for 3D reconstruction. Indeed, the line of sight of

3D points which lie in front of the camera are nearly par-

allel and small localization error on the corresponding 2D

points may lead to large errors on the reconstructed point.

Besides this, another difficulty of this sequence originates



Figure 6. (first row) : The key­views along with the user­defined silhouette: frame 60, 118 and 150.

(second row): The recovered occluding boundary in the frames 15, 66,130 and the augmented scene.

a.

regionsΛ i

b.

Figure 7. The recovered occluding boundary without (a) and with (b) the use of the 2D uncertainty.
The predicted curve is shown with dotted lines. The points that belong to the uncertainty region Λi are shown with black

circles, whereas the points outside Λi are drawn with black crosses.



Figure 8. The key­frames for the cow sequence: frames 0, 30, 31, 40, 41, 120.

b c

120414031300

a

20
35

110

Figure 9. The cow sequence:

(first row) : The 3D occluding boundary built from the key views: (a) from frames 0 and 30, (b) from

frames 31 and 40, (c) from frames 41 and 120.
(last row) : The computed occlunding boundary (bold lines) in frames 20, 35 and 110 superimposed

on the original images.



Figure 10. Snapshots of the augmented scene : frames 5, 15, 35, 60, 80, 110.

in the place of the virtual object in the scene. The virtual

object stands near the camera path and is occluded by the

white post. As the camera moves, the size of the occluding

object increases. This can cause trouble both on the recon-

struction process and on the region based refinement stage.

In addition, the occluding boundary must be outlined with

a good acuracy because the added object lies in the fore-

ground of the scene and small errors are easily detected by

the human vision.

In this sequence, we only use two key-views (frames 0

and 327) because the aspect of the occluding object does

not change very much. Though the motion is a translation

along the optical axis, the viewpoint is correctely recovered

and the 3D reconstruction of the white post is quite good

(Fig. 11). The last row of Fig. 11 shows the result of the

refinement stage for several frames. The predicted occluded

boundary is drawn with dashed lined whereas the results of

the region based refinment stage is shown with bold lines.

Although some prediction is sometimes relatively far from

the actual occluding boundary, the refinement stage succeed

in recovering the actual boundary in nearly all cases. How-

ever, some problems arise at the end of the sequence when

the light post is going to leave the image. This is because

small errors on the viewpoint sometimes results in large re-

projection errors on the object and the prediction can be far

form the actual boundary (see Fig. 11.e).

Finally, the scene has been augmented with a porsche

which is parked in front of the building (Fig. 12).

6. Conclusion

We have presented a new approach for resolving occlu-

sion for AR tasks. The key concept is that fine detection

of occluding boundary can be achieved with moderate user

interaction. One of the main strengths of our algorithm con-

cerns its ability to handle uncertainties on the computed

motion between two frames. Through judicious choice of

key-frames, our approach seems to be more convenient and

more accurate than most existing approaches.

Annex A: Computing the Hessian H∗

The computation of H∗ originates in [3],
H∗ is the value of the Hessian H = ∂

∂z
(∂Φ

∂z
)t com-

puted at the minimum p∗ of Φ. Φ is defined as Φ(p) =
1

n

∑

n

i=1
ri

2 + λ

2m

∑

m

i=1
vi

2 where

ri
2 = dist2(mi, proj(Mi))

vi
2 = dist2

(

qi

k+1, epk+1(q
i

k)
)

+ dist2
(

qi

k, epk(qi

k+1)
)

ri
2 and vi

2 can be expressed as an analytical function

of the 6-dimensional vector p = (α, β, γ, tx, ty, tz) using

the fundamental matrix. Because the analytic expression

of the second derivatives of vi
2 with respect to p are really

untractable, we use an approximation to the first order: H ≈

2
∑

1

n

(

∂ri

∂p

)t(
∂ri

∂p

)

+ λ
2m

∑

(

∂vi

∂p

)t(
∂vi

∂p

)

.
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Figure 11. The Loria sequence:

(first row) : The key­views (frame 0 and 327) and the 3D occluded boundary.

(second row) : Zoom on the predicted occluding boundary (dashed lines) and the recovered occlud­
ing boundary (bold lines) for frames 156, 216, 414, 441, 465.

Figure 12. The augmented scene for the Loria sequence (frames 0, 100, 300, 400).
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