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Abstract

We review some recent techniques for 3D tracking and
occlusion handling for Computer Vision-based Augmented
Reality. We discuss what their limits for real applications
are, and why Object Recognition techniques are certainly
the key to further improvements.

1. Introduction

Computer Vision has great potential for Augmented Re-

ality applications. Because it can rely on visual features that

are naturally present to register the camera, it does not re-

quire engineering the environment and is not limited to a

small volume, like magnetic, mechanical or ultrasonic sen-

sors are. Moreover, it is certainly not conceited that only

Computer Vision can assure an alignment between the real

world and the virtual one with an accuracy of the order of

the pixel, since it is precisely on this information it relies

on.

And still, not real AR applications based on exist. Many

applications have been foreseen for many years now—in

medical visualization, maintenance and repair, navigation

aid, entertainment—and yet markers-based applications are

the only successful ones. However markers are a limited

solution because they still require engineering the environ-

ment, work on a limited range, and end-users often do not

like them.

The reason of such absence is quite obvious. Most of the

current approaches to 3D tracking are based on what can

be called recursive tracking. Because they exploit a strong

prior on the camera pose computed from the last frame, they

are simply not suitable for practical applications: First, the

system must either be initialized by hand or require the cam-

era to be very close to a specified position. Second, it makes

the system very fragile. If something goes wrong between

two consecutive frames, for example due to a complete oc-

clusion of the target object or a very fast motion, the system

can be lost and must be re-initialized in the same fashion.

Sensor fusion with GPS and magnetic sensors are also

very promising and impressive results have been demon-

strated [5]. However, such approaches are limited to out-

door applications and are not adapted to augmentation of

mobile objects.

Recently, several works relying only on Computer Vi-

sion but able to register the camera without any prior on the

pose have been introduced. An example is depicted Fig. 1.

They are not only suitable for automated initialization, they

are fast enough to process each frame in real-time, making

the tracking process extremely more robust, preventing loss

of track and drift. We shall call the approach tracking-by-
detection.

Robustness of camera registration is not the only aspect

of Augmented Reality where object recognition techniques

can contribute. Handling occlusions between the real ob-

jects and the virtual ones is another one. Currently there

is no satisfactory real-time methods. When it comes to oc-

clusion masks, errors of only a few pixels are easily notice-

able by the user and intensity or 3D reconstruction-based

approaches can only produce limited results. It is certainly

only with a high-level interpretation of the scene that the

problem can properly be solved.

In the remainder of the paper, we review some recent

techniques for camera registration and occlusion handling,

discuss their limitations, and try to give directions of re-

search.

2. Tracking-by-Detection

In tracking-by-detection approaches, feature points are

first extracted from incoming frames at run-time and

matched against a database of feature points for which the

3D locations are known. A 3D pose can then be estimated

from such correspondences, for example using RANSAC to

eliminate spurious correspondences.

It should be noted that it does not imply that recursive

tracking methods become useless. Tracking-by-detection
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Figure 1. The advantages of tracking-by-detection approaches for Augmented Reality. The target object, the book in this example, is

detected in every frame independently. No initialization is required from the user, and tracking is robust to fast motion and complete

occlusion. The objects 3D pose can be estimated and the object can be augmented.

tends to be less accurate while recursive approaches usually

have a narrow but peak basin of convergence that makes

them more accurate. One strategy can then be to first es-

timate the pose with a detection method, and then refine it

with a more traditional approach. Exploiting temporal con-

sistency is also still interesting but not straightforward to do

if one does not want to re-introduce drift.

The difficulty in implementing tracking-by-detection ap-

proaches comes from the fact that the database images and

the input frames may have been acquired from very differ-

ent viewpoints. The so-called wide baseline matching prob-

lem becomes a critical issue that must be addressed. One

way to establish the correspondences is to use SIFT, as it

was done in [6]. Another approach that proved to be very

fast is to use a classifier to recognize the features.

In the following, we describe such an approach, and an

extension that relaxes somehow the need for texture. We

also discuss the limits.

2.1. A Simple Classifier for Keypoint Recognition

Several classification methods have been proposed for

keypoint recognition. We quickly describe here the method

of [3] because of its simplicity and efficiency.

A database of H prominent feature points lying on the

object model is first constructed. To each feature point

corresponds a class, made of all the possible appearances

of the image patch surrounding the feature point. There-

fore, given the patch surrounding a feature point detected

in an image, the task is to assign it to the most likely

class. Let ci, i = 1, . . . , H be the set of classes and let

fj, j = 1, . . . , N be the set of binary features that will

be calculated over the patch. Under basic assumptions, the

problem reduces to finding

ĉi = argmax
ci

P (f1, f2, . . . , fN | C = ci) , (1)

where C is a random variable that represents the class.

In [3], the value of each binary feature fj only depends on

the intensities of two pixel locations dj,1 and dj,2 of the

image patch:

fj =

{
1 if I(dj,1) < I(dj,2)
0 otherwise

where I represents the image patch. Note that the values of

these features are unchanged when an increasing function

is applied to the intensities of the image patch. That makes

the final method very robust to light changes.

But since these features are very simple, many of them

are required for accurate classification (N ≈ 300), and

therefore a complete representation of the joint probability

in Eq. (1) is not feasible. The Ferns approach of [3] par-

titions the features into several groups, and the conditional

probability becomes

P (f1, f2, . . . , fN | C = ci) =

M∏

k=1

P (Fk | C = ci) . (2)

In practice, it appears that the locations dj,1 and dj,2

of the features can be picked at random, making training

particularly simple. The terms P (Fk | C = ci) are es-

timated by computing the features on training samples of

each class. From a small number of images, many new

views can be synthesized using simple rendering techniques

as affine deformations, and extract training patches for each

class. White noise is also added for more realism.

The resulting method is extremely fast, and very sim-

ple to implement. Rotation and perspective invariance are

directly learned by the classifier, and no parameter really

needs tuning.

2.2. Relaxing the Need for Texture

The method described above produces a set of 3D-2D

correspondences from which the object pose can be com-

puted. In theory, when the camera internal camera are

known, only three—or four to remove some ambiguities—

correspondences are needed. In practice, much more are

required to obtain an accurate pose and to be robust to erro-

neous correspondences. That implies that the previous ap-

proach is limited to relatively well-textured objects in prac-

tice.

However it should be noted that the previous ap-

proach only aims to establish point-to-point correspon-

dences, while the appearance of feature points, not only

their locations, also provide a cue on the orientation of the

target object. As shown in Fig. 2, [1] recently introduced



Figure 2. Relaxing the need for texture. [1] not only matches fea-

ture points, but also estimates their local pose. These local poses

can be extended to retrieve the object pose. As a result, a single

feature is often enough to make the method very robust to occlu-

sion (right image), and suitable for low textured objects.

a method to efficiently estimate the local transformations

around feature points and exploit them to compute the ob-

ject pose. Actually, a single feature point becomes enough

to estimate this pose, relaxing the need for textured objects.

The method described in [1] performs in three steps.

First, a classifier similar to the one described in Section 2.1

provides for every feature point not only its class, but also

a first estimate of its transformation. This estimate allows

carrying out, in the second step, an accurate perspective rec-

tification using linear predictors. The last step checks the

results and remove most of the outliers.

The transformation of the patches centered on the feature

points are modeled by a homography defined with respect

to a reference frame. The first step gives an initial homog-

raphy estimate Ĥ of the true homography H, and the hy-

perplane approximation of [2] is used to efficiently estimate

the parameters x̃ of a corrective homography:

x̃ = A

(
p(Ĥ) − p∗

)
, (3)

where

• A is the matrix of the linear predictor, and depends on

the retrieved class ci for the patch. It can be learned

from a training set.

• p(Ĥ) is a vector that contains the intensities of the

original patch p warped by the current estimate Ĥ of

the transformation.

• p∗ is a vector that contains the intensity values of the

patch under a reference pose.

This equation gives the parameters x̃ of the incremental ho-

mography that updates Ĥ to produce a better estimate of

true homography H.

2.3. It Is Not Enough

Many challenges remain. To see that, let’s say one want

to detect the car in Fig. 3, and estimate its 3D pose, for ex-

ample to add a virtual logo on it. While humans have no

(a)

(b) (c)

Figure 3. Some challenges for Computer Vision. (a) An example

of a difficult object for tracking-by-detection approaches. The re-

flections, the absence of texture, and the smooth edges make the

car difficult to detect. (b) A real image and (c) an image rendered

by GoogleEarth of the corresponding scene. No existing method is

able to establish correct correspondences between the two images.

problem seeing the car, no existing method is able to do

it. The surface of the car is shiny and smooth, and most

of the feature points come from reflections and are not rel-

evant for pose estimation. The only stable feature points

one can hope to extract (on the corners of the windows, on

the wheels, on the lights...) will be extremely difficult to

match because of complex light effects and the transparent

parts. While this example is a bit extreme, everyday objects

are indeed often specular, not well textured and of complex

shape. The recent success should not make researchers in

AR overlook the difficulties that remain to be solved.

Let’s now consider an application for navigation aid on a

large scale. Many such applications have been imagined by

the Augmented Reality community. Sensors such as GPS

and magnetic sensors can of course be of great help, but vi-

sion is still needed for accuracy. For such an application

to actually work, the system must be robust not only to per-

spective changes, but also to complex light changes with the

time of day and the time of year, the change of appearance

of the vegetation between summer and winter, and so on.

To illustrate the problem, we compare in Fig. 3(b) and (c)

a real outdoor image with an image rendered using the tex-

tured model of the same scene of GoogleEarth. Once again,

it is not particularly difficult for a human to realize it is the

same scene seen from the same viewpoint. However, no ex-

isting method is able to establish correct correspondences

between the two images. Between the two images, the sun

position, the field natures,... changed and that makes texture

based methods fail. For real applications, a vision-based

tracking system should be able to be robust to such changes.
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Figure 4. A real image and the corresponding of visibility and

lighting maps computed by [4]. The method is robust to com-

plex light changes, but the small errors along the finger boundaries

break the illusion.

3. Handling Occlusions

Another problem that remains to be solved is the cor-

rect handling of occlusions between real and virtual objects.

When a 3D model of the real occluding objects is available,

it is relatively easy to solve. However, it is not possible to

model the whole environment, in particular when the oc-

cluding objects can be pedestrians or the user hands. Very

few methods have been proposed yet. We describe below

an existing method and its limits.

3.1. A Subtraction Method

[4] starts by registering the object to be augmented using

the method described above [3]. It computes visibility and

lighting maps by matching the texture in the model image

against that of the input image. The visibility map defines

whether or not a pixel in the model image is visible or hid-

den in the input one. Considering a lighting map in addition

to the visibility map allows to handle complex combinations

of occlusion and lighting patterns. An example of visibility

and lighting maps is shown in Fig. 4.

Since comparing the textures is sometime not enough to

decide if the pixels are occluded or not, it imposes some

spatial coherence on the visibility map. This is done by

limiting the number of transitions between visible and oc-

cluded pixels.

3.2. Limitations

Considering the problem difficulty, the method described

above gives good results, but the quality does not reached

the standards for a large public application. Once again, the

human eye instantly spots the mistakes done by the algo-

rithm, in particular along the boundaries of the occluding

objects. The simple spatial consistency ensured by the al-

gorithm is definitively not sufficient to reach the same accu-

racy as a human, who can recognize the occluding object in

Fig. 4 as a finger without any problem.

4. Conclusion

This paper tried to point out the limitations of the current

Computer Vision techniques that prevent the implementa-

tion of mature Augmented Reality applications. Research

has certainly reach the limits of what can be done with lo-

cal low-level approaches, and a high-level “understanding”

of the scene is now required from the computer to go fur-

ther. Most of the recent advances in Computer Vision have

been obtained mainly thanks to the introduction of Ma-

chine Learning techniques. The Object Recognition field

in particular obtained impressive results, and as we tried to

demonstrate in this paper, it is the most promising direc-

tion to solve the current limitations. We can only encourage

researchers interested in Computer Vision for Augmented

Reality to consider the Object Recognition field as a source

of inspiration in the future.
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