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Abstract

We propose a non-iterative solution to the PnP

problem—the estimation of the pose of a calibrated camera

from n 3D-to-2D point correspondences—whose computa-

tional complexity grows linearly with n. This is in contrast

to state-of-the-art methods that are O(n5) or even O(n8),
without being more accurate. Our method is applicable for

all n ≥ 4 and handles properly both planar and non-planar

configurations. Our central idea is to express the n 3D

points as a weighted sum of four virtual control points. The

problem then reduces to estimating the coordinates of these

control points in the camera referential, which can be done

in O(n) time by expressing these coordinates as weighted

sum of the eigenvectors of a 12 × 12 matrix and solving a

small constant number of quadratic equations to pick the

right weights. The advantages of our method are demon-

strated by thorough testing on both synthetic and real-data.

1. Introduction
The aim of the Perspective-n-Point problem—PnP in

short—is to determine the position and orientation of a

camera given its intrinsic parameters and a set of n corre-

spondences between 3D points and their 2D projections. It

has many applications in Computer Vision, Robotics, Aug-

mented Reality and has received much attention in both the

Photogrammetry [21] and Computer Vision [12] communi-

ties. In particular, applications such as feature point-based

camera tracking [26, 18] require dealing with hundreds of

noisy feature points in real-time, which requires computa-

tionally efficient methods.

In this paper, we introduce a non-iterative solution with

better accuracy and much lower computational complex-

ity than non-iterative state-of-the-art methods, and much

faster than iterative ones with little loss of accuracy. Our

approach is O(n) for n ≥ 4 whereas all other methods

we know of are either specialized for small fixed values

of n, very sensitive to noise, or much slower. The spe-

cialized methods include those designed to solve the P3P

problem [9, 23]. Among those that handle arbitrary val-

ues of n [8, 6, 13, 11, 23, 28, 7, 2, 9], the lowest-complexity

one [7] is O(n2) but has been shown to be unstable for noisy
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2D locations [2]. This is currently addressed by algorithms

that are O(n5) [23] or even O(n8) [2] for better accuracy

whereas our O(n) approach achieves even better accuracy

and reduced sensitivity to noise, as depicted by Fig. 1 in the

n = 6 case and demonstrated for larger values of n in the

result section.

A natural alternative to non-iterative approaches are it-

erative ones [19, 5, 14, 17, 20] that rely on minimizing an

appropriate criterion. They can deal with arbitrary numbers

of correspondences and achieve excellent precision when

they converge properly. In particular Lu et al. [20] intro-

duced a very accurate algorithm, which is fast in compar-

ison with other iterative ones but slow compared to non-

iterative methods. As shown in Fig. 1, our method achieves

an accuracy that is almost as good, and is much faster and

without requiring an initial estimate. This is significant be-

cause iterative methods are prone to failure if poorly initial-

ized. For instance, Lu et al.’s approach relies on an initial

estimation of the camera pose based on a weak-perspective

assumption, which can lead to instabilities when the as-

sumption is not satisfied. This happens when the points

of the object are projected onto a small region on the side

of the image and our solution performs more robustly un-

der these circumstances. Furthermore, if maximal precision

is required our output can be used to initialize Lu et al.’s,

yielding both higher stability and faster convergence.

Our central idea was to write the coordinates of the n 3D

points as a weighted sum of four virtual control points. This

reduces the problem to estimating the coordinates of the

control points in the camera referential, which can be done

in O(n) time by expressing these coordinates as weighted

sum of the eigenvectors of a 12 × 12 matrix and solving

a small constant number of quadratic equations to pick the

right weights. The accuracy of the resulting algorithm is

better than the one of the more complex ones [23, 2]. Our

approach also extends to planar configurations, which cause

problems for some methods as discussed in [22, 24], by us-

ing three control points instead of four.

In the remainder of the paper, we first discuss related

work focusing on accuracy and computation time. We then

introduce our new formulation and derive our system of

linear and quadratic equations. Finally, we compare our

method against the state-of-the-art ones using synthetic data

and demonstrate it using real data.
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Figure 1. Comparing our method against state-of-the-art ones. Top row. Accuracy of non-iterative methods as a function of noise when

using n = 6 3D/2D correspondences: AD, the method of Ansar and Daniilidis [2]; Clamped DLT, the DLT algorithm after clamping the

internal parameters with their known values; and EPnP, our method. Bottom row. Accuracy of iterative methods using n = 6: LHM,

Lu et al.’s method [20] initialized with a weak perspective assumption; EPnP+LHM, Lu et al.’s algorithm initialized with the output of

our algorithm. Bottom-Right. Computation times for all five methods –plus Clamped DLT+LHM– as a function of n, the number of

correspondences, using MATLAB on a standard PC. The accuracy results are plotted using the boxplot representation: The blue boxes

denote the first and third quartiles of the errors, the lines extending from each end of the box depict the statistical extent of the data, and the

crosses indicate observations that fall out of it. Our method is both more accurate and faster than the other non-iterative ones, especially for

large amounts of noise, and has almost similar accuracy than the iterative LHM. Furthermore, if maximal precision is required, the output

of our algorithm can be used to initialize LHM and obtain faster convergence than using other techniques.

2. Related Work

There is an immense body of literature on pose estima-

tion from point correspondences and, here, we focus on

non-iterative approaches since our method falls in this cat-

egory. In addition, we will also introduce Lu et al. [20] it-

erative method, which yields very good results and against

which we compare our own approach.

Most of the non-iterative approaches, if not all of them,

proceed by first estimating the points 3D positions in the

camera coordinate system by solving for the points depths.

It is then easy to retrieve the camera position and ori-

entation as the Euclidean motion that aligns these posi-

tions on the given coordinates in the world coordinate sys-

tem [15, 3, 29].

The P3P case has been extensively studied in the litera-

ture, and many closed form solutions have been proposed

such as [6, 8, 9, 11, 23]. It typically involves solving for

the roots of an eight-degree polynomial with no odd terms,

yielding up to four solutions in general, so that a fourth

point is needed for disambiguation. Fisher and Bolles [8]

reduced this P4P problem to the P3P by taking subsets

of three points and checking consistency. Similarly, Ho-

raud et al. [13] reduced the P4P to a 3-line problem. For

the 4 and 5 points problem, Triggs [28] derived a system

of quadratic polynomials, which solves using multiresultant

theory. However, as pointed out in [2], this does not perform

well for larger number of points.
Even if four correspondences are sufficient in general to

estimate the pose, it is nonetheless desirable to consider

larger point sets to introduce redundancy and reduce the

sensitivity to noise. To do so, Quan and Lan [23] consider

triplets of points and for each of them derive four-degree

polynomials in the unknown point depths. The coefficients

of these polynomials are then arranged in a
(n−1)(n−2)

2 × 5
matrix and singular value decomposition (SVD) is used to

estimate the unknown depths. This method is repeated for

all of the n points and therefore involves O(n5) operations.1

It should be noted that, even if it is not done in [23], this

complexity could be reduced to O(n3) by applying the same

trick as we do when performing the SVD, but even then, it

would remain slower than our method. Ansar and Dani-

ilidis [2] derive a set of quadratic equations arranged in a
n(n−1)

2 ×
(

n(n+1)
2 + 1

)
linear system, which, as formu-

lated in the paper, requires O(n8) operations to be solved.

They show their approach performs better than [23].

The complexity of the previous two approaches stems

from the fact that quadratic terms are introduced from the

inter-point distances constraints. The linearization of these

1Following [10], we consider that the SVD for a m × n matrix can be

computed by a O(4m2n + 8mn2 + 9n3) algorithm.



equations produces additional parameters, which increase

the complexity of the system. Fiore’s method [7] avoids the

need for these constraints: He initially forms a set of lin-

ear equations from which the world to camera rotation and

translation parameters are eliminated, allowing the direct

recovery of the point depths without considering the inter-

point distances. This procedure allows the estimation of the

camera pose in O(n2) operations, which makes real-time

performance possible for large n. Unfortunately, ignoring

nonlinear constraints produces poor results in the presence

of noise [2].

By contrast, our method is able to consider nonlinear

constraints but requires O(n) operations only. Furthermore,

in our synthetic experiments, it yields results that are more

accurate than those of [2].

It is also worth mentioning that for large values of n
one could use the Direct Linear Transformation (DLT) al-

gorithm [1, 12]. However, it ignores the intrinsic camera

parameters we assume to know here, and therefore gener-

ally leads to less stable pose estimate. A way to exploit

our knowledge of the intrinsic parameters is to clamp the

retrieved values to the known ones, but the accuracy still

remains low.

Finally, among many other iterative methods, Lu et

al.’s [20] is one of the fastest and most accurate. It min-

imizes an error expressed in 3D space, unlike many ear-

lier methods that attempt to minimize reprojection residu-

als. The main difficulty is to impose the orthonormality of

the rotation matrix. It is done by optimizing alternatively

on the translation vector and the rotation matrix. In prac-

tice, the algorithm tends to converge fast but can get stuck

in an inappropriate local minimum if incorrectly initialized.

Our experiments show our method is slightly less accurate

than Lu et al.’s when it find the correct minimum, but also

that it is faster and more stable.

3. Our Approach to the PnP Problem
Let us assume we are given a set of n reference points

whose 3D coordinates are known in the world coordinate

system and whose 2D image projections are also known.

As most of the proposed solutions to the PnP Problem, we

aim at retrieving their coordinates in the camera coordinate

system. It is then easy and standard to retrieve the orienta-

tion and translation as the Euclidean motion that aligns both

sets of coordinates [15, 3, 29].

Most existing approaches attempt to solve for the depths

of the reference points in the camera coordinate system. By

contrast, we express their coordinates as a weighted sum of

virtual control points. We need 4 non-coplanar such con-

trol points for general configurations, and only 3 for planar

configurations. Given this formulation, the coordinates of

the control points in the camera coordinate system become

the unknown of our problem. For large n’s, this is a much

smaller number of unknowns that the n depth values that

traditional approaches have to deal with and is key to our

efficient implementation.
The solution of our problem can be expressed as a vector

that lies in the kernel of a matrix of size 2n× 12 or 2n× 9.

We denote this matrix as M and can be easily computed

from the 3D world coordinates of the reference points and

their 2D image projections. More precisely, it is a weighted

sum of the null eigenvectors of M. Given that the correct

linear combination is the one that yields 3D camera coordi-

nates for the control points that preserve their distances, we

can find the appropriate weights by solving small systems of

quadratic equations, which can be done at a negligible com-

putational cost. In fact, for n sufficiently large—about 15 in

our implementation—the most expensive part of this whole

computation is that of the matrix M⊤M, which grows lin-

early with n.
In the remainder of this section, we first discuss our pa-

rameterization in terms of control points in the generic non-

planar case. We then derive the matrix M in whose kernel

the solution must lie and introduce the quadratic constraints

required to find the proper combination of eigenvectors. Fi-

nally, we show that this approach also applies to the planar

case.

3.1. Parameterization in the General Case
Let the reference points, that is, the n points whose 3D

coordinates are known in the world coordinate system, be

pi, i = 1, . . . , n .

Similarly, let the 4 control points we use to express their

world coordinates be

cj , j = 1, . . . , 4 .

When necessary, we will specify that the point coordinates

are expressed in the world coordinate system by using the
w superscript, and in the camera coordinate system by us-

ing the c superscript. We express each reference point as a

weighted sum of the control points

pw
i =

4∑

j=1

αijc
w
j , with

4∑

j=1

αij = 1 , (1)

where the αij are homogeneous barycentric coordinates.

They are uniquely defined and can easily be estimated. The

same relation holds in the camera coordinate system and we

can also write

pc
i =

4∑

j=1

αijc
c
j . (2)

In theory the control points can be chosen arbitrarily.

However, in practice, we have found that the stability of

our method is increased by taking the centroid of the refer-

ence points as one of the control point, and select the rest in

such a way that they form a basis aligned with the principal

directions of the data. This is normal because it amounts to

conditioning the linear system of equations that are intro-

duced below using a normalization technique very close to

the one recommended for the classic DLT algorithm [12].



3.2. The Solution as Weighted Sum of Eigenvectors
We now derive the matrix M in whose kernel the so-

lution must lie given that the 2D projections of the refer-

ence points are known. Let A be the camera internal cal-

ibration matrix and {ui}i=1,...,n the 2D projections of the

{pi}i=1,...,n reference points. We have

∀i , wi

[
ui

1

]
= Apc

i = A

4∑

j=1

αijc
c
j , (3)

where the wi are scalar projective parameters. We now ex-

pand this expression by considering the specific 3D coordi-

nates
[
xc

j , y
c
j , z

c
j

]⊤
of each cc

j control point, the 2D coor-

dinates [ui, vi]
⊤

of the ui projections, and the fu, fv focal

length coefficients and the (uc, vc) principal point that ap-

pear in the A matrix. Eq. 3 then becomes

∀i , wi




ui

vi

1


 =




fu 0 uc

0 fv vc

0 0 1




4∑

j=1

αij




xc
j

yc
j

zc
j


 . (4)

The unknown parameters of this linear system are the 12

control point coordinates
{
(xc

j , y
c
j , z

c
j )

}
j=1,...,4

and the n

projective parameters {wi}i=1,...,n. The last row of Eq. 4

implies that wi =
∑4

j=1 αijz
c
j . Substituting this expression

in the first two rows yields two linear equations for each

reference point:
4∑

j=1

αijfuxc
j + αij(uc − ui)z

c
j = 0 , (5)

4∑

j=1

αijfvy
c
j + αij(vc − vi)z

c
j = 0 . (6)

Note that the wi projective parameter does not appear any-

more in those equations. Hence, by concatenating them for

all n reference points, we generate a linear system of the

form
Mx = 0 , (7)

where x =
[
cc
1
⊤, cc

2
⊤, cc

3
⊤, cc

4
⊤

]⊤
is a 12-vector made of

the unknowns, and M is a 2n × 12 matrix, generated by

arranging the coefficients of Eqs. 5 and 6 for each reference

point. Unlike in the case of DLT, we do not have to normal-

ize the 2D projections since Eqs. 5 and 6 do not involve the

image referential system.

The solution therefore belongs to the null space, or ker-

nel, of M, and can be expressed as

x =
N∑

i=1

βivi (8)

where the set vi are the columns of the right-singular vec-

tors of M corresponding to the N null singular values of

M. They can be found efficiently as the null eigenvectors

of matrix M⊤M, which is of small constant (12× 12) size.

Computing the product M⊤M has O(n) complexity, and

is the most time consuming step in our method when n is

sufficiently large, about 15 in our implementation.
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Figure 2. Effective number N of null singular values in M. Each

vertical bar represents the distributions of N for a total of 300
experiments. On the left, we plot the results for a fixed image

noise of σ = 10 pixels and an increasing number of reference

points, and the results on the right correspond to a fixed n = 6
number of reference points and increasing level of noise in the 2D

projections.

3.3. Choosing the Right Linear Combination

Given that the solution can be expressed as a linear

combination of the null eigenvectors of M⊤M, finding

it amounts to computing the appropriate values for the

{βi}i=1,...,N coefficients of Eq. 8. Note that this approach

applies even when the system of Eq. 7 is under-constrained,

for example because the number of input correspondences

is 4 or 5, yielding to only 8 or 10 equations, which is less

than the number of unknowns.

In theory, given perfect data from at least six points, the

dimension N of the null-space of M⊤M, should be exactly

one because of the scale ambiguity. However, in the pres-

ence of noise, M⊤M has no eigenvalue that is strictly zero

but may have several that are very small.

In this section, we therefore show that the fact that

the distances between control points must be preserved

can be expressed in terms of a small number of quadratic

equations, which can be efficiently solved to compute

{βi}i=1,...,N for N = 1, 2, 3 and 4. The techniques we

describe here could be extended to the case N >= 5 but we

have not found it necessary to do so in any of our experi-

ments on real and synthetic data.

In practice, instead of trying to pick a value of N which

would be error-prone if several eigenvalues had similar

magnitudes, we compute solutions for all four values of N
and keep the one that yields the smallest reprojection error

res =
∑

i

dist2(A[R|t]

[
cw

i

1

]
,ui) , (9)

where dist(m̃,n) is the 2D distance between point m ex-

pressed in homogeneous coordinates, and point n. This

improves robustness without any noticeable computational

penalty because the most expensive operation is the com-

putation of M⊤M, which is done only once, and not the

solving of a few quadratic equations. The distribution of

values of N estimated in this way is depicted by Fig. 2.

We now turn to the description of the quadratic con-

straints we introduce for N = 1, 2, 3 and 4.



Case N = 1: We simply have x = βv. We solve for

β by writing that the distances between control points as

retrieved in the camera coordinate system should be equal

to the ones computed in the world coordinate system when

using the given 3D coordinates.

Let v[i] be the sub-vector of v that corresponds to the

coordinates of the control point cc
i . For example, v[1] will

represent the vectors made of the three first elements of v.

Maintaining the distance between pairs of control points

(ci, cj) implies that

‖βv[i] − βv[j]‖2 = ‖cw
i − cw

j ‖
2 . (10)

The distances ‖cw
i − cw

j ‖ are known and β computed in

closed-form as

β =

∑
{i,j}∈[1;4] ‖v

[i] − v[j]‖ · ‖cw
i − cw

j ‖∑
{i,j}∈[1;4] ‖v

[i] − v[j]‖2
. (11)

Case N = 2: We now have x = β1v1 + β2v2, and our
distance constraints become

‖(β1v
[i]
1 + β2v

[i]
2 )− (β1v

[j]
1 + β2v

[j]
2 )‖2 = ‖cw

i − c
w
j ‖

2
. (12)

β1 and β2 only appear in the quadratic terms and we

solve for them using a technique called “linearization”

in cryptography, which was employed by [2] to estimate

the point depths. It involves solving a linear system in

[β11, β12, β22]
⊤ where β11 = β2

1 , β12 = β1β2, β22 = β2
2 .

Since we have four control points, we can generate a lin-

ear system of six equations in the βab
2:

Lβ = ρ , (13)

where L is a 6 × 3 matrix formed with the elements

of v1 and v2, ρ is a 6-vector with the squared distances

‖cw
i − cw

j ‖
2, and β = [β11, β12, β22]

⊤ is the vector of un-

knowns. We solve this system using the pseudoinverse of

L and choose the signs fo the βa so that all the pc
i have

positive z coordinates.

This yields β1 and β2 values that can be further refined

by using the formula of Eq. 11 to estimate a common scale

β so that cc
i = β(β1v

[i]
1 +β2v

[i]
2 ). Because solving Eq. 13 is

an indirect computation, the least-squares solution of Eq. 11

is more accurate in the presence of noise.

Case N = 3: As in the N = 2 case, we use the six

constraints of Eq. 12. This yields again a linear system

Lβ = ρ, although with different dimensionalities. Now L

is a square 6× 6 matrix formed with the elements of v1, v2

and v3. The number of unknowns is extended to six, being

β = [β11, β12, β13, β22, β23, β33]
⊤. We follow the same

procedure as before, except that we now use the inverse of

L instead of its pseudo-inverse.

2We use the indices a and b for the β’s in order to differentiate from

the indices i and j used for the 3D points.

Case N = 4: We now have four βa unknowns and, in

theory, the six distance constraints we have been using so

far should still suffice. Unfortunately, the linearization pro-

cedure treats all 10 products βab = βaβb as unknowns and

there are not enough constraints anymore. We solve this

problem using a relinearization technique [16] whose prin-

ciple is the same as the one we use to determine the control

points coordinates.

The solution for the βab is in the null space of a first

homogeneous linear system made from the original con-

straints. The correct coefficients are found by introduc-

ing new quadratic equations and solving them again by lin-

earization, hence the name “relinearization”. These new

quadratic equations are derived from the fact that we have,

by commutativity of the multiplication

βabβcd = βaβbβcβd = βa′b′βc′d′ , (14)

where {a′, b′, c′, d′} represents any permutation of the inte-

gers {a, b, c, d}.

3.4. The Planar Case
In the planar case, that is, when the moment matrix of

the reference points has one very small eigenvalue, we need

only three control points. The dimensionality of M and its

eigenvectors vi are reduced, but the above equations remain

mostly valid. The main difference is that the number of

quadratic constraints drops from 6 to 3. As a consequence,

we need use of the relinearization technique introduced in

the N = 4 case of the previous section for N ≥ 3.

4. Results
We compare the accuracy and speed of our approach

against that of state-of-the-art ones, both on simulated and

real image data.

4.1. Synthetic Experiments
We produced synthetic 3D-to-2D correspondences in a

640 × 480 image acquired using a virtual calibrated cam-

era with an effective focal length of fu = fv = 800 and a

principal point at (uc, vc) = (320, 240). We generated dif-

ferent sets for the input data. For the centered data, the 3D

reference points were uniformly distributed into the x,y,z
interval [−2, 2] × [−2, 2] × [4, 8]. For the uncentered data,

the ranges were modified to [1, 2] × [1, 2] × [4, 8]. We also

added Gaussian noise to the corresponding 2D point coor-

dinates, and considered a percentage of outliers, for which

the 2D coordinate was randomly selected within the whole

image.

Given the true camera rotation Rtrue and translation

ttrue, we computed the relative error of the estimated ro-

tation R by Erot(%) = ‖qtrue − q‖/‖q‖, where q and

qtrue are the normalized quaternions corresponding to the

rotation matrices. Similarly, the relative error of the esti-

mated translation t is determined by Etrans(%) = ‖ttrue−
t‖/‖t‖.
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Figure 3. Non Planar case. Mean and median rotation and translation errors for different experiments.

All the plots discussed in this section were created by

running 300 independent MATLAB simulations. To esti-

mate running times, we ran the code 100 time for each ex-

ample and recorded the average run time.

4.1.1 The Non-Planar Case

For the non-planar case, we compared the accuracy and run-

ning times of our algorithm, which we denote as EPnP, to:

AD, the non-iterative method of Ansar and Daniilidis [2];

Clamped DLT, the DLT algorithm after clamping the inter-

nal parameters with their known values; LHM, the Lu et

al.’s [20] iterative method initialized with a weak perspec-

tive assumption; EPnP+LHM, Lu et al.’s algorithm initial-

ized with the output of our algorithm.

On Fig. 1, we plot the rotational errors produced by the

three non-iterative algorithms, and the two iterative ones as

a function of noise when using n = 6 points. We use the

boxplot representation3, where each column depicts the dis-

3The boxplot representation consists of a box denoting the first Q1 and

tribution of the errors for the 300 different simulations. A

concise way to summarize the boxplot results is to plot both

the mean and median results for all simulations: The differ-

ence between the mean and the median mainly comes from

the high errors represented as red crosses in the boxplots;

the greater it is the less stable the method. This is shown in

Fig. 3a, where in addition to the rotation error we also plot

the translation error. Our method is consistently more accu-

rate and stable than the other non-iterative ones, especially

for large amounts of noise. It is only slightly less accu-

rate than the LHM iterative algorithm. In fact, as shown in

Fig. 3b, it ever performs better when instead of using well

spread data as in the previous case, we simulate data that

covers only a small fraction of the image.

In Fig. 3c, we plot the errors as a function of the num-

ber of reference points, when the noise is fixed to σ = 5.

third Q3 quartiles, a horizontal line indicating the median, and a dashed

vertical line representing the data extent taken to be Q3 + 1.5(Q3−Q1).

The red crosses denote points lying outside of this range.
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Figure 4. Median error as a function of required amount of com-

putation, itself a function of the number of points being used, for

our approach and the iterative method of Lu et al. [Lu00].

Again, our method performs better than the other non-

iterative techniques and very nearly as well as LHM. It even

represents a more stable solution when dealing with the un-

centered data of Fig. 3d and data which includes outliers, as

in Fig. 3e. Note that in all the cases where LHM does not

converge perfectly, the combination EPnP+LHM provides

accurate results. In the last two graphs, we did not com-

pare the performance of AD, because this algorithm does

not normalize the 2D coordinates, and hence, cannot deal

well with uncentered data.

As shown in the bottom-right side of Fig. 1, the computa-

tional cost of our method grows linearly with the number of

correspondences and remains much lower than all the oth-

ers. It even compares favorably to clamped DLT, which is

known to be fast. As shown, in Fig. 4, EPnP requires about

a tenth of the time required by LHM to achieve similar ac-

curacy levels. Although the difference becomes evident for

a large number of reference points, it is significant even for

small numbers. For instance, for n = 6 points, our algo-

rithm is about 10 times faster than LHM, and about 200
times faster than AD.

4.1.2 The Planar Case

Schweighofer and Pinz [24] prove that when the reference

points lie on a plane, camera pose suffers from an ambiguity

that results in significant instability. They propose a new

algorithm for resolving it and refine the solution using Lu et

al. [20]’s method. Hereafter, we will refer to this combined

algorithm as SP+LHM, which we will compare against to

our method, AD, and LHM. We omit Clamped DLT because

it is not applicable in the planar case.

Fig. 5 depicts the errors as a function of the image noise,

when n = 10 and for reference points lying on a plane with

tilt of either 0 or 30 degrees. To obtain a fair comparison

we present the results as was done in [24] and the errors

are only averaged among those solutions not affected by the

pose ambiguity. We also report the percentage of solutions

which are considered as outliers. When the points are lying

on a frontoparallel plane, there is no pose ambiguity and

all the methods have a similar accuracy, with no outliers, as

shown by the two left-most graphs of Fig. 5. The pose am-

biguity problem appears only for inclined planes, as shown

by the other three graphs of Fig. 5. Note that for AD, the

number of outliers is really large, and even the errors for the

inliers are considerable. EPnP and LHM produce a much

reduced number of outliers and similar results accuracy for

the inliers. As before, the SP+LHM method computes the

correct pose for almost all the cases. Note that we did not

plot the errors for LHM, because when considering only the

correct poses, it is the same as SP+LHM.

As in the non-planar case, the EPnP solution proposed

here is much faster than the others. For example for n = 10
and a tilt of 30o, our solution is about 200 times faster than

AD, 30 times faster than LHM, even though the MATLAB

code for the latter is not optimized.

4.2. Real Images

We tested our algorithm on noisy correspondences, that

may include erroneous ones, obtained on real images with

our implementation of the keypoint recognition method

of [18]. We trained the method on a calibrated reference im-

age of a textured box of known dimensions, using the model

depicted by Fig. 6-left. At run time, the method generates

about 200 correspondences per image. To filter out the er-

roneous ones, we use RANSAC on small subsets made of

7 correspondences from which we estimate the pose using

our PnP method. This is effective because, even though our

algorithm is designed to work with a large number of corre-

spondences, it is also faster than other algorithms for small

numbers of points, as discussed above. Furthermore, once

the set of inliers has been selected, we use all of them to re-

fine the camera pose. This gives a new set of inliers and the

estimation is iterated until no additional inliers are found.

Fig. 6-right shows two different frames of the sequence. In

the corner of each frame, we display the reference image

and the correspondences between the points which are con-

sidered as inliers.

5. Conclusion
We have proposed an O(n) non-iterative solution to the

PnP problem that is faster and more accurate than the best

current techniques. It is only slightly less accurate than one

the most recent iterative ones [20] but much faster and more

stable. Furthermore, our approach can be profitably be used

to initialize the iterative algorithm.

Our central idea—expressing the 3D points as a

weighted sum of four virtual control points and solving in

terms of their coordinates—is very generic. We demon-

strated it in the context of the PnP problem but it is poten-

tially applicable to problems ranging from the estimation

of the Essential matrix from a large number of points for

Structure-from-Motion applications [27] to shape recovery

of deformable surfaces. The latter is particularly promising

because there have been many approaches to parameteriz-

ing such surfaces using control points [25, 4], which would

fit perfectly into our framework and allow us to recover not

only pose but also shape. This is what we will focus on in

future research.
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Figure 5. Planar case. Errors as a function of the image noise when using n = 6 reference points. For Tilt=0o, there are no pose ambiguities

and the results represent the mean over all the experiments. For Tilt=30o, the errors are only averaged among the solutions not affected by

the pose ambiguity. The right-most figure represents the number of solutions considered as outliers, which are defined as those for which

the average error in the estimated 3D position of the reference points is larger than a threshold.

Reference Image Pose in frame #25 Pose in frame #89

Figure 6. Real images. Left. Calibrated reference image. Right.

Reprojection of the model of the box on two video frames. The

camera pose has been computed using the set of correspondences

depicted by the thin blue lines.
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