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Abstract

While many recent hand pose estimation methods criti-

cally rely on a training set of labelled frames, the creation

of such a dataset is a challenging task that has been over-

looked so far. As a result, existing datasets are limited to a

few sequences and individuals, with limited accuracy, and

this prevents these methods from delivering their full poten-

tial. We propose a semi-automated method for efficiently

and accurately labeling each frame of a hand depth video

with the corresponding 3D locations of the joints: The user

is asked to provide only an estimate of the 2D reprojections

of the visible joints in some reference frames, which are au-

tomatically selected to minimize the labeling work by ef-

ficiently optimizing a sub-modular loss function. We then

exploit spatial, temporal, and appearance constraints to re-

trieve the full 3D poses of the hand over the complete se-

quence. We show that this data can be used to train a recent

state-of-the-art hand pose estimation method, leading to in-

creased accuracy.

1. Introduction

Recent work on articulated pose estimation [7, 16, 24,

26, 28] has shown that a large amount of accurate training

data makes reliable and precise estimation possible. For

human bodies, Motion Capture [7] can be used to generate

large datasets with sufficient accuracy. However, creating

accurate annotations for hand pose estimation is far more

difficult, and still an unsolved problem. Motion Capture is

not an option anymore, as it is not possible to use fiducials

to track the joints of a hand. Moreover, the human hand

has more degrees of freedom than are generally considered

for 3D body tracking, and an even larger amount of training

data is probably required.

The appearance of depth sensors has made 3D hand pose

estimation easier, but has not solved the problem of the cre-

ation of training data entirely. Despite its importance, the

creation of a training set has been overlooked so far, and

authors have had to rely on ad hoc ways that are prone

(a) (b) (c)

Figure 1: Recent hand pose datasets exhibit significant errors in

the 3D locations of the joints. (a) is from the ICVL dataset [26],

and (b) from the MSRA dataset [24]. Both datasets were annotated

by fitting a 3D hand model, which is prone to converge to a local

minimum. In contrast, (c) shows the annotations acquired with

our proposed method for the same frame as in (b). (Best viewed in

color)

to errors, as shown in Fig. 1. Complex multi-camera se-

tups [2, 23, 28, 29] together with tracking algorithms have

typically been used to create annotations. For example,

Tompson et al. [28] used a complex camera setup with

three RGBD cameras to fit a predefined 3D hand model.

Looking closely at the resulting data, it seems that the 3D

model was often manually adjusted to fit the sequences bet-

ter and in between these manually adjusted frames the fit

can be poor. Further, the dataset of [26] contains many

misplaced annotations, as discussed by [15, 25]. Although

recent datasets [24] have paid more attention to high qual-

ity annotations, they still contain annotation errors, such as

multiple annotations on a single finger, or mixing fingers.

These errors result in noisy training and test data, and make

training and evaluating uncertain. This issue was addressed

recently by [3], which shows that using a robust loss func-

tion for training rather than a least-squares one results in

better performance.

These problems can be circumvented via using synthetic

training data [19, 21, 34]. Unfortunately, this does not cap-

ture the sensor characteristics, such as noise and missing

data typical of depth sensors, nor the physical constraints

that limit the range of possible hand poses [33]. Another

common approach to creating training data is using crowd

1



Figure 2: Our method made it possible to create a fully annotated

dataset of more than 2000 frames from an egocentric viewpoint,

which is considered to be very challenging [20]. (Best viewed in

color)

source platforms, such as Amazon Mechanical Turk. In

our case, however, the annotations should be in 3D, which

makes the task very challenging if done manually, even with

a depth sensor: The sensor can only provide the depth of the

skin, not the joints themselves, and even this information is

not always available in the case of self-occlusion or miss-

ing data. Thus, this task does not lend itself to this kind of

crowd sourcing with untrained workers. Moreover, what-

ever the method, one has to recreate new data for each new

sensor.

For all of these reasons, we developed a semi-automated

approach that makes it easy to annotate sequences of ar-

ticulated poses in 3D. We ask a human annotator to pro-

vide an estimate of the 2D reprojections of the visible joints

in frames we refer to as reference frames. We propose a

method to automatically select these reference frames to

minimize the annotation effort, based on the appearances of

the frames over the whole sequence. We then use this infor-

mation to automatically infer the 3D locations of the joints

for all the frames, by exploiting appearance, temporal, and

distances constraints. If this inference fails for some frames,

the annotator can still provide additional 2D reprojections;

by running the global inference again, a single additional

annotation typically fixes many frames.

We evaluate our approach using both synthetic data and

real images. We also show that we can improve the anno-

tations of existing datasets, which yield more accurate pre-

dicted poses. As Fig. 2 shows, our approach also allows

us to provide the first fully annotated egocentric sequences,

with more than 2000 frames in total. We will make this

sequences and the full code available on our website.

2. Related Work

Complex camera setups can be used to mitigate problems

with self-occlusions. Tompson et al. [28] relied on three

RGBD cameras. They used a predefined 3D hand model

that had to be manually readjusted for each person. When

looking closely at the data, it appears that the dimensions

of the model were modified over the sequences, probably

to fit the incoming images better. This dataset was taken

from a frontal view of the user, which limits the range of

the poses. Sridhar et al. [23] used five RGB and two RGBD

cameras, and annotated only the finger tips, which is not

enough for full 3D pose estimation. [2, 29] required eight

RGB cameras to capture hand interactions, however, caus-

ing significant restrictions on hand movement within this

setup.

An alternative to these complex setups with restricted

ranges are single camera approaches. For example, Tang et

al. [26] used the method from [13] to fit a hand model to a

single depth image. Similarly, [18, 24] used a single depth

camera to fit a predefined 3D hand model. These methods

are based on frame-to-frame tracking. This requires manual

supervision, and leads to many errors if the optimization

does not converge correctly.

Very accurate training data can be generated using syn-

thetic models, as was done in [19, 21, 34] for example.

However, synthetic data does not capture the full charac-

teristics of the human hand, and sensor characteristics are

not considered. [34] added synthetic sensor noise, however,

it is difficult to model this in a general way.

There are also invasive methods for acquiring accurate

3D locations. For example, [32] used a sophisticated mag-

netic tracker but only for finger tips. [34] used a data glove,

but unfortunately data gloves are not very accurate, and

would be visible in the training images, thus biasing learn-

ing algorithms.

A different approach was proposed by Yasin et al. [35],

who matched 2D poses against a set of 3D poses obtained

from motion capture sequences, by comparing the 2D poses

with the reprojections of the 3D poses in virtual cameras.

This is an interesting approach, however, 2D pose estima-

tion is also an open research topic and still prone to errors.

For egocentric 3D hand pose annotation, Rogez et

al. [20] proposed a semi-automatic labeling method, where

a user labels the 2D locations of a few joints, and chooses

the closest 3D pose among a set of synthetic training sam-

ples. The 3D pose is then estimated from the 2D annotations

and the selected 3D training pose. The user then has to man-

ually refine the pose in 3D. This process is iterated until an

appealing result is achieved. This is a time consuming task

and thus, they only created a temporally sparse set, which

is only sufficient for testing and additional data is required

for training.

Semi-automated methods for annotating video se-

quences like ours are not new to Computer Vision. [10]

exploited object silhouettes in reference frames to predict

the object silhouettes in the remaining frames. [1] also used

manual annotations of some frames to iteratively train a 2D

object detector. [31] used annotations in manually selected

frames, to predict the annotations of the remaining ones.

Compared to these works, we propose a method for select-

ing the frames to be annotated, minimize manual work, but

more importantly, our approach provides a complex articu-

lated 3D structure from 2D annotations.



3. Creating Training Data Efficiently

Given a sequence of N depth maps {Di}
N
i=1 capturing

a hand in motion, we want to estimate the 3D joint loca-

tions for each Di with minimal effort. Our approach starts

by automatically selecting some of the depth maps we will

refer to as reference frames (Section 3.1). A user is then

asked to provide the 2D reprojections of the joints in these

reference frames, from which we infer their 3D locations

in these frames (Section 3.2). We propagate these 3D lo-

cations to the other frames (Section 3.3), and we perform

a global optimization, enforcing appearance, temporal, and

spatial constraints (Section 3.4).

3.1. Selecting the Reference Frames

A simple way to select the reference frames would be to

regularly sample the video sequence in time, and select, for

example, every tenth frame as reference frame. However,

this solution would be sub-optimal: Sometimes the fingers

move fast, and a higher sampling rate would be required,

while they can also move more slowly, requiring less man-

ual annotation. Moreover, hand motion performers tend to

move back to similar poses at wide intervals, and annotating

the same poses several times should be avoided.

Simple temporal sampling therefore does not seem to be

a good approach. Ideally, we would like to select as few ref-

erence frames as possible, while making sure that for each

frame, there is at least one reference frame that is similar

enough. This will ensure that we can match them together

and estimate the joint reprojections in the frame. Let us as-

sume that we know a distance function d(Di,Dj) that can

be used to evaluate the similarity between two depth maps

Di and Dj . Then, the reference frame selection can be for-

mulated as the following Integer Linear Problem (ILP):

argmin
{xi}N

i=1

N
∑

i

xi s.t. ∀i
∑

j∈Ei

xj ≥ 1 , (1)

with Ei = {j | d(Di,Dj) ≤ ρ} , (2)

where the xi indicate which frames are selected as reference

frames (xi = 1 if Di is selected, and 0 otherwise). Ei is the

set of indices of the frames that are similar enough to frame

i for matching, according to distance function d(·, ·), and ρ

is a threshold.

This formulation guarantees that we find the global opti-

mum. We implemented it using [4] but unfortunately, opti-

mization turned out to be intractable for real problems with

the number of frames N larger than about 103. Thus, we

turned to the suboptimal but tractable approach by optimiz-

ing:

max
R

f(R) s.t. |R| < M , (3)

where R is the set of selected reference frames, M the max-

imum number of reference frames, and f(R) is the number

Figure 3: t-SNE [30] visualization of the depth map embedding

over a sequence. Each colored dot • represents a frame, the color

encodes the temporal order. Temporal changes of the hand articu-

lations can be clearly observed from the different trajectories. The

reference frames are shown as black stars ⋆. We automatically se-

lect them so that their annotations can be propagated to the other

frames while minimizing the manual annotation effort. The se-

lected reference frames cover a maximum of other frames within a

distance ρ, based on their appearance. Note that t-SNE sometimes

moves points far apart that are close to each other in the original

space. This is why the points do not form a continuous curve even

if they correspond to consecutive frames [30]. (Best viewed on

screen)

of frames within the chosen distance ρ to at least one of

the frames in R. In this approach, if M is set too small,

some frames may not have a reference frame near them, but

we can trade off the coverage by reference frames with the

amount of annotation work. This optimization problem is a

submodular problem and it is NP-complete, but what makes

it attractive is that a simple greedy optimization was shown

to deliver a solution that is close to the globally optimal

one [14]. This greedy optimization procedure simply pro-

ceeds by adding the element e to the set R that maximizes

the difference f(e ∪ R) − f(R) as long as the number of

reference frames is smaller than M .

We define the distance function d(·, ·) on descriptors

computed for depth maps. We tried LINE-MOD [6] and

HOG [5]. However, the best results were achieved by cosine

distance between low dimensional embeddings computed

by a convolutional autoencoder1 [12]. Fig. 3 shows several

examples of reference frames selected with this method, vi-

sualized along with the depth map embedding.

3.2. Initializing the 3D Joint Locations in the Ref­
erence Frames

Once the procedure described in the previous section has

selected the reference frames, a human annotator has to la-

bel them. The annotator is only required to provide the 2D

reprojections of the joints with visibility information in each

1Please see the supplemental material for the network architecture.



reference frame, and whether these joints are closer or far-

ther from the camera than the parent joint in the hand skele-

ton tree. This can be done easily and quickly, and we use

this information to automatically recover the 3D locations

of the joints. It is useful to know the positions of con-

secutive joints in relation to the camera in order to avoid

possible mirroring ambiguities typical of articulated struc-

tures [17, 22, 27]. We refer to this information as the z-order

constraint.

To automatically recover the 3D locations of the joints,

we optimize the following constrained non-linear least

squares problem for each reference frame:

argmin
{Lr,k}K

k=1

K
∑

k=1

vr,k‖proj(Lr,k)− lr,k‖
2
2 (4)

s.t. ∀k ‖Lr,k − Lr,p(k)‖
2
2 = d2k,p(k)

∀k vr,k = 1 ⇒ Dr[lr,k] < z(Lr,k) < Dr[lr,k] + ǫ

∀k vr,k = 1 ⇒ (Lr,k − Lr,p(k))
⊤ · cr,k > 0

∀k vr,k = 0 ⇒ z(Lr,k) > Dr[lr,k]

where r is the index of the reference frame. vr,k = 1 if the

k-th joint is visible in the r-th frame, and 0 otherwise. Lr,k

is the 3D location of the k-th joint for the r-th frame. lr,k
is its 2D reprojection as provided by the human annotator.

proj(L) returns the 2D reprojection of a 3D location. p(r)
returns the index of the parent joint of the k-th joint in the

hand skeleton. dk,p(k) is the known distance between the

k-th joint and its parent p(k). Dr[lr,k] is the depth value in

Dr at location lr,k. z(L) is the depth of 3D location L. ǫ

is a threshold used to define the depth interval of the visible

joints. In practice, we use ǫ = 15mm given the physical

properties of the hand. cr,k is equal to the vector [0, 0, 1]⊤

if the k-th joint is closer to the camera than its parent in

frame r, and [0, 0,−1]⊤ otherwise. (Lr,k − Lr,p(k)) is the

vector between joint k and its parent in this frame.

Together, the terms of Eq. (4) assure that: (1) the bone

lengths of the skeleton are respected; (2) visible joints are

in range of observed depth values; (3) hidden joints are not

in front of observed depth values; and (4) depth order con-

straints of parent joints are fulfilled. We currently assume

that the lengths dk,p(k) are known. In practice, we measure

them from a depth map of the hand with open fingers and

parallel to the image plane. It may also be possible to opti-

mize these distances as they are constant over the sequences

from the same person.

We optimize this problem with SLSQP [8]. Equality

constraints are hard to optimize, so we relax them and re-

place the constraints by a term in the loss function that pe-

nalizes constraint violations. We use a simple scheduling

procedure to progressively increase the weight of this term.

This gives us a reasonable initial estimate of the 3D pose of

the hand for each reference frame.

(a) 2D annotation (b) 3D initialization (c) 3D result

Figure 4: Optimization steps for reference frames. We start with

the 2D annotations on a depth image provided by a user (a), and

backproject them to initialize their 3D location estimates. (b)

shows the same pose rendered from a different viewpoint, depict-

ing the depth initialization of the joints. We then optimize the

constrained non-linear least squares loss of Eq. (4) on these initial

3D locations. The result is shown in (c), again rendered from a dif-

ferent viewpoint, but now with better aligned 3D locations. (Best

viewed in color)

We initialize the joint depth with the measurement from

the depth sensor at the annotated 2D location. This is shown

in Fig. 4, which depicts the initialized 3D locations and the

result after optimizing the relaxation of Eq. (4).

3.3. Initializing the 3D Joint Locations in the Re­
maining Frames

The previous section described how to compute a first

estimate for the 3D locations of the joints in the reference

frames. Next, we iteratively propagate these 3D locations

from the reference frames to the remaining frames, in a way

similar to [9], as explained in this section. This gives us an

initialization for the joint locations in all the frames. The

next subsection will explain how we refine them in a global

optimization procedure.

I is used to denote the set of frames for which the 3D

locations of the joints have already been initialized. At the

beginning, I is initialized to the set of reference frames, but

each time we estimate the joints for a frame, this frame is

added to I. At each iteration, a frame ĉ not yet initialized

and its closest frame â ∈ I are selected:

[

ĉ

â

]

= argmin
c∈[1;N ]\I

a∈I

d(Dc,Da) . (5)

We use the appearance of the joints in â to predict their

3D locations {Lĉ,k}k in ĉ by minimizing:

argmin
{Lĉ,k}k

∑

k

ds(Dĉ, proj(Lĉ,k);Dâ, lâ,k)
2

s.t. ∀k ‖Lĉ,k − Lĉ,p(k)‖
2
2 = d2k,p(k) ,

(6)

where ds(D1, proj(L1);D2, l2) denotes the dissimilarity

between the patch in D1 centered on the projection

proj(L1) and the patch in D2 centered on l2. This optimiza-

tion looks for joints based on their appearances in frame â



(a) Closest reference

frame

(b) Initialization with

SIFTFlow

(c) After optimiza-

tion

Figure 5: Initialization of locations on a non-reference frame. (a)

shows the 3D locations for the closest reference frame. (b) We

propagate the 3D locations using SIFTFlow [11]. (c) 3D locations

after optimization of Eq. 6. (Best viewed in color)

while enforcing the 3D distances between the joints. We

use the Levenberg-Marquardt algorithm to solve Eq. (6), by

relaxing the hard constraint with a weighted additional term

in the loss function.

As illustrated in Fig. 5, we initialize the optimization

problem of Eq. (4) by aligning frames ĉ and â using SIFT-

Flow [11]. This maps the 2D reprojections of the joints in

frame â to 2D locations {l̃k}k in frame ĉ. We backproject

each l̃k on the depth map Dĉ to initialize Lĉ,k. If the depth

information is missing at l̃k, we use the 3D point that repro-

jects on l̃k and with the same depth as Lâ,k.

3.4. Global Optimization

The previous optimization already gives already a good

estimate for the 3D locations of the joints in all frames.

However, each frame is processed independently. We can

improve the estimates further by introducing temporal con-

straints on the 3D locations. We therefore perform a global

optimization over all the 3D locations Li,k for all the frames

by minimizing:

∑

i∈[1;N ]\R

∑

k

ds(Di, proj(Li,k);Dî, l̂i,k)
2 + (C)

λM

∑

i

∑

k

‖Li,k − Li+1,k‖
2
2 + (TC)

λP

∑

r∈R

∑

k

vr,k‖proj(Lr,k)− lr,k‖
2
2 (P)

s.t. ∀i, k ‖Li,k − Li,p(k)‖
2
2 = d2k,p(k) .

The first term (C) sums the dissimilarities of the joint ap-

pearances with those in the closest reference frame î =
argmina∈R d(Di,Da) over the non-reference frames i.

The second term (TC) is a simple 0-th order motion model

that enforces temporal smoothness of the 3D locations. The

last term (P) of the sum ensures consistency with the man-

ual 2D annotations for the reference frames. λM and λP are

weights to trade off the different terms.

This is a non-convex problem, and we use the estimates

from the previous subsection to initialize it. This prevents

the optimization from falling into bad local minimums.

This problem has 3KN unknowns for K joints and N

frames. In practice, the number of unknowns varies from

105 to 107 for the datasets we consider in the evaluation.

Fortunately, this is a sparse problem, which can be effi-

ciently optimized with the Levenberg-Marquardt algorithm.

4. Evaluation

To validate our method, we first evaluate it on a syn-

thetic dataset, which is the only way to have depth maps

with ground truth 3D locations of the joints. We then pro-

vide a qualitative evaluation on real images, and on the re-

cent MSRA dataset [24]. Finally, we show that we can use

our method to create a large dataset of egocentric annotated

frames.

4.1. Evaluation on Synthetic Data

We used the publicly available framework of [19] to gen-

erate synthetic depth images along with the corresponding

ground truth annotation. The sequence consists of 3040

frames, and shows a single hand performing various poses

and arm movements. We refer to the supplemental material

for videos.

Reference Frame Selection In Fig. 6, we plot the frac-

tion of frames for which the maximum 3D distance of their

joints to their locations in the assigned reference frame is

lower than a threshold. More formally, we plot the function

n(τ) with:

n(τ) :=
1

N

∣

∣

∣

{

i ∈ [1;N ] | max
k

‖LGT
i,k − LGT

a(i),k‖2 < τ
}
∣

∣

∣
,

(7)

where the LGT
i,k are the ground truth 3D locations for the

joints, and a(i) = argmina∈R d(Di,Da). This metric al-

lows us to check if the selection based on the visual appear-

ance using distance d(·, ·) also retrieves reference frames

that are close in 3D. This is an important factor for the rest

of the method, as the propagation step will perform better if

a frame is not too far away from the closest reference frame.

We use ρ = 0.1, which we obtained by cross-validation,

however, the reference frame selection is not very sensitive

to the exact value.

We compare our selection with a straightforward selec-

tion based on regular temporal sampling using the same

number of reference frames. According to this metric, our

method is significantly better, and it actually yields more

accurate 3D annotations: Using our proposed selection, the

average error is 5.53 mm, compared to 6.45 mm when tak-

ing equitemporal samples. Additionally, the required num-

ber of manual reannotations is much higher. Our method re-

quired 133 additional 2D locations, compared to 276 man-

ual interventions for the equitemporal selection.
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Figure 6: Evaluation of the reference frame selection method on

the synthetic sequence. We plot the metric n(τ) of Eq. (7) for our

selection of 304 reference frames, and the same number of ref-

erence frames sampled regularly in time. With our method, the

non-reference frames are closer in 3D to the reference frames. For

the oracle, we assume the pose given, and apply the submodular

optimization on the Euclidean pose distances. The average pose

distance of our proposed selection is only 0.5 mm worse than the

oracle. For this sequence, the number of frames is about 103, thus

solving the ILP is still feasible. The approximation using our sub-

modular optimization is close to the optimal ILP solution, which

on average is only 1 mm better. (Best viewed in color)

Reference Frame Initialization Table 1 provides the ac-

curacy of the initialization of the 3D joint locations for the

reference frames, and evaluates the influence of the differ-

ent terms in Eq. (4). We first use the perfect 2D locations

of the joints from ground truth. When only minimizing the

2D reprojection errors with the 3D distance constraints, the

error is quite large. Adding the visibility constraint signifi-

cantly improves the accuracy, but the maximum error is still

large. By adding the z-order term, depth ambiguities due to

mirroring can be resolved, and the errors get much smaller.

In practice, the 2D locations of the joints provided by a

human annotator are noisy. Thus, we evaluated the robust-

ness of our algorithm by adding Gaussian noise with zero

mean and a standard deviation of 3 pixels to the 2D loca-

tions. For reference, the width of the fingers in the depth

image is around 25 pixels. We show the average errors in

Table 1 after 10 random runs. The errors are only 0.7 mm

larger than without noise, which shows the robustness of our

method to noisy annotations. Interestingly, the median er-

ror is lower with noisy initialization, which can be attributed

to the non-convex optimization. Due to noise, the conver-

gence can lead to different local minima, thus improving

some joint estimates, but significantly worsening others.

Method Visible joints All joints

Avg. / median Avg. / median

2D locations 12.86 / 8.96 mm 19.98 / 13.29 mm

2D & visibility 3.94 / 3.18 mm 6.20 / 3.41 mm

2D & vis & z-order 2.97 / 2.93 mm 3.65 / 2.98 mm

All + 2D noise
3.70± 0.71mm /

2.59± 0.21mm

4.29± 0.63mm /

2.56± 0.23mm

Table 1: Accuracy of reference frame initialization on the syn-

thetic sequence. We provide the average and the median Euclidean

joint error over all joints. The highest accuracy can be achieved

by combining all of our proposed clues: 2D reprojection errors,

visibility, and z-order. The last row shows the robustness of our

method to noise, after adding Gaussian noise to the 2D locations.

Method Avg. / median error

Closest reference 11.50 / 5.58 mm

Aligned with SIFTFlow 11.40 / 5.40 mm

Frame optimization 5.76 / 4.34 mm

Global optimization 5.53 / 4.23 mm

Table 2: Accuracy of the different stages on the synthetic se-

quence. We report the average and median Euclidean 3D joint

errors. We use the 3D locations of the reference frame to initialize

the remaining frames. The first row shows the accuracy if the 3D

locations of the closest reference frame are used. The next row

shows the contribution of the alignment with SIFTFlow, and the

further optimization on the 3D locations. The last row denotes the

accuracy after the global optimization. The gain in accuracy with

SIFTFlow is small, as it only provides an offset in 2D, but it is

useful to make the correlation term contribute properly.

3D Location Propagation and Global Optimization We

evaluate the contributions of the different optimization steps

in Table 2. We implement ds(·) as normalized cross-

correlation with a patch size of 25 pixels. A cross-validation

among different correlation methods and different patch

sizes has shown that our method is not sensitive to this

choice. Further, we use λM = 1 and λP = 100. The

choice of these values is not crucial for a good result, as

long as λP > λM to emphasize the reprojections on the 2D

annotations.

If the deviation of the 2D location of a joint gets too

large, i.e. the 2D location is more than 5 pixels away from

the ground truth location, manual intervention is required.

For the synthetic dataset, it was required to readjust the 2D

locations of 133 joints in 79 frames, or 0.06% of the total

number of joints. Fig. 7 gives a more exhaustive evaluation

of the influence of the chosen number of reference frames.

We can obtain a very good accuracy by annotating only a

small percentage of the reference frames and correcting an

even smaller percentage of joints.
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Figure 7: Accuracy versus the number of reference frames on the

synthetic sequence. We plot the average 3D joint error and the

number of required additional annotations over the number of the

initially selected reference frames. The best result can be achieved,

when providing manual annotations for all frames, however, more

reference frames require more annotation work, and for larger se-

quences this can be infeasible, i.e. providing manual annotations

for about 23k joints for this sequence. When decreasing the num-

ber of initial reference frames, the additional annotations of indi-

vidual joints during the process increases, but only in the hundreds.

Using e.g. 3% of all frames as reference frames requires annotat-

ing only 700 joint locations and revising another 250, while still

retaining an average 3D annotation error of only 6.5 mm. (Best

viewed in color)

4.2. Evaluation on Real Data

To also evaluate real data, we tested our method on a cal-

ibrated camera setup consisting of a depth cameras and an

RGB camera capturing the hand from two different perspec-

tives. We create 3D annotations using the depth camera and

project them into the RGB camera. We can then visually

check the projections of the annotations. Fig. 8 shows one

example: The joint locations project nearby the real joint lo-

cations, which indicates that not only the image coordinates

are correct, but also the depth. We refer to the supplemental

material for the full sequence.

4.3. Application to the MSRA Dataset

We applied our approach to the MSRA dataset [24],

which is currently the largest dataset for hand pose estima-

tion from single depth images. The authors used a state-of-

the-art 3D model-based method [18] to obtain the annota-

tions. As discussed earlier, these annotations are not per-

fect. We used our method to select 10% of the frames (849

out of 8499 for the first subject) as reference frames and

manually provided the 2D locations, visibility, and z-order

of the joints for these reference frames. It took on aver-

(a) Depth camera (b) Projected into RGB camera

Figure 8: Sample frames of our two camera setup. We capture

hand articulations from a depth and an RGB camera and apply our

method on the depth camera to obtain 3D annotations. These an-

notations are shown in (a). To evaluate the accuracy, we project the

estimated 3D annotations into the RGB camera, which is shown in

(b). The full sequence is provided as supplemental material. (Best

viewed in color)

age 45 s per frame for a non-trained annotator to provide

this information. We further show a qualitative comparison,

and that the higher annotation accuracy leads to better pose

estimates, when training a state-of-the-art 3D hand pose es-

timator [15].

Qualitative Comparison As “real” ground truth is not

available, a direct evaluation is not possible. Fig. 9 com-

pares different frames for which the distances between the

annotations are large. Our annotations appear systemati-

cally better. This strongly suggests that our annotations are

more accurate over the sequence. We provide a video se-

quence that compares the two annotations as a supplemental

material.

Higher Annotation Accuracy Leads to Better Pose Esti-

mators We further show that better annotations improve

the accuracy of state-of-the-art 3D hand pose estimation

methods. We train the method of [15] with the original an-

notations and compare it with the estimator trained using

the annotations we obtained with our method. For the eval-

uation, we perform 10-fold cross validation, because no ex-

plicit test set is specified [24]. The results of this experiment

are shown in Fig. 10. The estimator trained with our anno-

tations converges faster, but to similar average joint errors

in the end. This indicates that training is easier when the

annotations are better. Otherwise, the estimator may focus

on difficult, possibly wrongly annotated samples. The re-

sults clearly show that accurate training data is necessary to

perform accurate inference. The estimator achieves test set

errors of 5.58± 0.56mm using our annotations for training

and testing, and 6.41 ± 2.05mm using the provided anno-

tations. When we train the pose estimator on the provided

annotations but evaluate it on our own annotations, the er-

ror is 13.23±6.98mm, which indicates discrepancy among

the annotations. However, the visual comparison — which

is the best that can be done on real data — shows that our

annotations are more accurate.



(a) Frame 970 (b) Frame 1635 (c) Frame 3626 (d) Frame 8495

Figure 9: Qualitative comparison of the annotations obtained using our method (left image) and the annotations of [24] (right image) on

the MSRA dataset. We selected several frames with large differences between the two annotations. Note that the shown sample frames are

not manually annotated reference frames. (Best viewed in color)
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Figure 10: Training and testing a 3D hand pose estimator with

different annotations for the MSRA dataset. We train a state-of-

the-art 3D hand pose estimator [15] with the provided annotations

and with our revised annotations. We then compare the predicted

annotations on a test set. The predictions with our annotations are

on the left side. It shows that the estimator learns the incorrect

annotations, which leads to inaccurate locations for the test sam-

ples. Using our more accurate annotations leads to more accurate

results. In (a) note the annotation of the thumb, in (b) the annota-

tions of the pinky and ring fingers, and in (c) the articulation of the

index finger. (Best viewed on screen)

4.4. New Egocentric Dataset

Egocentric 3D hand pose estimation is an appealing fea-

ture for different Augmented Reality or human computer in-

teraction applications. Creating datasets for this task is very

difficult [20]. Egocentric views show severe self-occlusions

as fingers are often occluded by the hand and egocentric

cameras have a limited field-of-view. Both facts result in a

less reliable tracking. Even with manual initialization, fin-

gers are frequently occluded and the hand can move outside

the camera view frustum.

We provide a new dataset consisting of more than 2000

frames of several egocentric sequences, each starting and

ending with a neutral hand pose and showing a user per-

forming a single or various hand articulations per sequence.

We annotated the dataset using our method. In contrast,

Method Avg. / median error

Oberweger et al. [15] 24.58± 16.08 / 19.53 mm

Supančič et al. [25] 33.09± 21.66 / 26.20 mm

Oracle 20.20± 10.92 / 19.47 mm

Table 3: Average accuracy on the egocentric hand dataset with 5-

fold cross validations. We apply two state-of-the-art methods to

the dataset and report the Euclidean 3D joint errors. For the orcle,

we calculate the distance to the nearest sample in the training set.

the 3D model-based implementation of [28] often failed by

converging to different local minima, and thus resulted in

time consuming fiddling with the model parameters.

We establish a baseline on this dataset, by running two

state-of-the-art methods: (1) the method of Oberweger et

al. [15], which was shown to be among the best meth-

ods for third person hand pose estimation [25], and (2) the

method of Supančič et al. [25], which was initially pro-

posed for hand pose estimation, but especially for hand

object interaction in egocentric views. We perform 5-fold

cross-validation and report the average and standard devi-

ation over the different folds. We report the results in Ta-

ble 3. The method of Supančič has larger errors, mostly

due to flipping ambiguities. For the oracle, we assume the

3D poses known, and return the pose with the smallest Eu-

clidean distance from the training set.

5. Conclusion

Given the recent developments in Deep Learning, the

creation of training data may now be the main bottleneck

in practical applications of Machine Learning for hand pose

estimation. Our method brings a much needed solution to

the creation of accurate 3D annotations of hand poses. It

avoids the need for motion capture systems, which are cum-

bersome and cannot always be used, and does not require

complex camera setups. Moreover, it could also be applied

to any other articulated structures, such as human bodies.
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