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Abstract

DeepPrior [18] is a simple approach based on Deep

Learning that predicts the joint 3D locations of a hand

given a depth map. Since its publication early 2015, it has

been outperformed by several impressive works. Here we

show that with simple improvements: adding ResNet layers,

data augmentation, and better initial hand localization, we

achieve better or similar performance than more sophisti-

cated recent methods on the three main benchmarks (NYU,

ICVL, MSRA) while keeping the simplicity of the original

method. Our new implementation is available at https:

//github.com/moberweger/deep-prior-pp.

1. Introduction

Accurate hand pose estimation is an important require-

ment for many Human Computer Interaction or Augmented

Reality tasks, and has attracted lots of attention in the Com-

puter Vision research community [9, 10, 16, 20, 21, 34, 36,

43]. Even with 3D sensors such as structured-light or time-

of-flight sensors, it is still very challenging, as the hand has

many degrees of freedom, and exhibits self-similarity and

self-occlusions in images.

One popular method for 3D hand pose estimation is

DeepPrior, introduced by [18]. DeepPrior is a Deep

Network-based approach that uses a single depth image as

input and directly predicts the 3D joint locations of the hand

skeleton. The key idea in DeepPrior is to explicitly integrate

a prior on 3D hand poses computed by Principal Compo-

nent Analysis (PCA) directly into a Convolutional Neural

Network. This offers a simple, yet accurate and fast method

for 3D hand pose estimation.

Since the publication of the original paper, there has been

tremendous advances in the field of Machine Learning and

Deep Neural Networks. We leverage recent progress in this

field and update the original approach. Thus we call the

resulting approach DeepPrior++. Specifically:

• we updated the model architecture to make the model

more powerful by introducing a Residual Network [7]

for extracting feature maps;

• we improved the initial hand localization method. This

step in DeepPrior was based on a heuristics. Here we

use a trained method;

• we improved the training procedure to leverage more

information from the available data.

We released the code of our improvements at https://

github.com/moberweger/deep-prior-pp with

the hope that it will be useful for the community.

In the following, we shortly review the original Deep-

Prior approach in Section 3, then introduce our modifica-

tions in Section 4. The modifications are evaluated in Sec-

tion 5 with a comparison to state-of-the-art methods on pub-

lic benchmark datasets.

2. Related Work

There is a significant amount of early work that deals

with hand pose estimation, and we refer to [3] for an

overview. In 2015, an evaluation of several works on bench-

mark datasets [30] has shown that DeepPrior performed

state-of-the-art in terms of accuracy and speed. There have

been tremendous advances since then, and here we shortly

review related works. We compare against all the works

that report results using the commonly used error metrics

on at least one of the three major benchmark datasets, i.e.

NYU [40], MSRA [28], and ICVL [34]. They are marked

in this section with a star ∗.

Many recent approaches exploit the hierarchy of the

hand kinematic tree. [35]∗ proceeds along the skeleton tree

and predicts the positions of the child joints within the tree.

Similarly, [44] (Lie-X)∗ predicts updates along the skele-

ton tree that correct an initial pose and use Lie-algebra to

constrain these updates. Sun et al. [28] (HPR)∗ estimate

the joint locations in normalized coordinate frames for each

finger, and [25] uses a separate regressor for each finger

to predict spatial and temporal features that are combined

in a nearest-neighbor formulation. [46] introduces a spa-

tial attention mechanism that specializes on each joint and

an additional optimization step to enforce kinematic con-

straints. [14] splits the hand into smaller sub-regions along
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the kinematic tree. [45]∗ predicts a gesture class for each

pose and trains a separate pose regressor for each class. All

these approaches require multiple predictors, one for each

joint or finger, and often additional regressors for different

iterations of the algorithms. Thus the number of regression

models ranges from tens to more than 50 different models

that have to be trained and evaluated.

To overcome this shortcoming, there are several works

that integrate the kinematic hierarchy into a single CNN

structure. Guo et al. [6] (REN)∗ train an ensemble of sub-

networks for different spatial regions of input features, and

Madadi et al. [15]∗ use a tree-shaped CNN architecture that

predicts different parts of the kinematic tree. However, this

requires a specifically designed CNN architecture depend-

ing on the annotation.

Different data representations of the input depth image

were also proposed. Deng et al. [2] (Hand3D)∗ convert the

depth image to a 3D volume and use a 3D CNN to predict

joint locations. However, 3D networks show a low compu-

tational efficiency [23]. Differently, [42]∗ uses surface nor-

mals instead of the depth image, but surface normals are not

readily accessible from current depth sensors and thus in-

troduce an additional computational overhead. Neverova et

al. [17]∗ combine a segmentation of the hand parts with a

regression of joint locations, but the segmentation is sensi-

tive to the sensor noise.

Instead of predicting the 3D joint locations directly,

[40]∗ proposed an approach to predict 2D heatmaps for the

different joints. [5]∗ extended this work and use multiple

CNNs to predict heatmaps from different reprojections of

the depth image, which requires a separate CNN for each

reprojection. Also, these approaches require complex post-

processing to fit a kinematic model to the heatmaps.

A probabilistic framework was proposed by Boucha-

court et al. [1] (DISCO)∗, who use a network to learn the

posterior distribution of hand poses and one can sample

from this distribution. However, it is unclear how to com-

bine these samples in practice. Wan et al. [41] (Crossing

Nets)∗ use two generative networks, one for the hand pose

and one for the depth image, and learn a shared mapping be-

tween these two networks, which involves training several

networks in a complex procedure.

Oberweger et al. [19] (Feedback)∗ learn a CNN to syn-

thesize depth image of a hand and use the synthesized depth

image to predict updates for an initial hand pose. Again, this

requires training three different networks.

Zhou et al. [48] (DeepModel)∗ integrate a hand model

into a CNN, by introducing an additional layer that enforces

the physical constraints of a 3D hand model, where the con-

straints have to be manually defined beforehand.

Fourure et al. [4] (JTSC)∗ exploit different annotations

from different datasets by introducing a shared representa-

tion, which is an interesting idea for harvesting more train-

ing samples, but has shortcomings when dealing with sensor

characteristics.

Zhang et al. [47]∗ formulate pose estimation as a multi-

variate regression problem that, however, requires solving a

complex optimization problem during runtime.

There are also generative model-based approaches that

recently raised much attention. Although being very ac-

curate, the works of [12]∗, [26], [32]∗, [37]∗ require a 3D

model of the hand, which should be adjusted to the users’

hand [26],[33]∗, and run a complex optimization during in-

ference.

Comparing to these recent approaches, our method is

easier and faster to train, has a simpler architecture, is more

accurate, and runs at a comparable speed, i.e. realtime.

3. Original DeepPrior

In this section, we briefly review the original DeepPrior

method. More details can be found in [18].

DeepPrior aims at estimating the 3D hand joint locations

from a single depth image. It requires a set of depth images

labeled with the 3D joint locations for training.

To simplify the regression task, DeepPrior first performs

a 3D detection of the hand. It then estimates a coarse 3D

bounding box containing the hand. Following [34], Deep-

Prior assumes the hand is the closest object to the camera,

and extracts a fixed-size cube centered on the center of mass

of this object from the depth map. It then resizes the ex-

tracted cube to a 128×128 patch of depth values normalized

to [−1, 1].

Points for which the depth is not available—which may

happen with structured light sensors for example—or are

deeper than the back face of the cube, are assigned a depth

of 1. This normalization is important for the learning stage

in order to be invariant to different distances from the hand

to the camera.

Given the physical constraints over the hand, there are

strong correlation between the different 3D joint locations.

Instead of directly predicting the 3D joint locations, Deep-

Prior therefore predicts the parameters of the pose in a lower

dimensional space. As this enforces constraints of the hand

pose, this improves the reliability of the predictions.

As shown in Figure 1, DeepPrior implements the pose

prior into the network structure by initializing the weights

of the last layer with the major components from a PCA of

the 3D hand pose data. Then, the full network is trained

using standard back-propagation.

4. DeepPrior++

In this section, we describe our changes to enhance the

original DeepPrior approach: improved training data aug-

mentation, better hand localization, and a more powerful
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Figure 1: The network architecture for the original Deep-

Prior. C denotes a convolutional layer with the number of

filters and the filter size inscribed, FC a fully-connected

layer with the number of neurons, and P a max-pooling

layer with the pooling size. The shown Multi-layer Network

can be an arbitrary Neural Network, with an additional layer

for the prior. It introduces a pose prior by pre-computing the

weights of the last layer from a PCA applied to the 3D hand

pose data.

network architecture. For implementation level details we

refer to the code.

4.1. Improved Training Data Augmentation

Since our approach is data-driven, we aim at leveraging

as much information as possible from the available data.

There have been many different augmentation methods used

in literature [13, 40], such as scaling, flipping, mirroring,

rotating, etc. In this work we use depth images, which give

rise to specific data augmentation methods. Specifically, we

use rotation, scaling, and translation, as well as different

combinations of them.

Rotation: The hand can be rotated easily around the fore-

arm. This rotation can be approximated by simple in-plane

rotation of the depth images. We use random in-plane ro-

tations of the image, and change the 3D annotations ac-

cordingly by projecting the 3D annotations onto the 2D im-

age, applying the same in-plane rotation, and projecting the

2D annotations back to 3D coordinates. The rotation an-

gle is sampled from a uniform distribution with the interval

[−180◦, 180◦].

Scaling: The MSRA [28] and NYU [40] datasets contain

different persons, with different hand size and shape. Al-

though DeepPrior is not explicitly invariant to scale, we can

train the network to be invariant to hand size by varying the

size of the crop in the training data. Therefore, we scale

the 3D bounding box for the crop from the depth image by

a random factor sampled from a normal distribution with

mean of 1 and variance of 0.02. This changes the appear-

ance of the hand size in the cropped cube, and we scale the

3D joint locations according to the random factor.

Translation: Since the hand 3D localization is not per-

fect, we augment the training set by adding random 3D off-

sets to the hand 3D location, and center the crops from the

depth images on these 3D locations. We sample the random

offsets from a normal distribution with a variance of 5mm,

which is comparable to the error of the hand 3D detector we

use. We also modify the 3D annotations according to this

offset.

Online Augmentation: The augmentation is performed

online during training and thus the network sees different

samples at each epoch. This leads to more than 10M dif-

ferent samples in total. The augmentation helps to prevent

overfitting and to be more robust to deviations of the hand

from the training set. Although the samples are correlated,

it significantly helps at test time, as we show in the experi-

ments.

Robust Prior: Similarly, we also improve the prior,

which is obtained by applying PCA to the 3D hand poses.

We sample 1M poses, by randomly using rotation, scaling,

and translation of the original poses in 3D. We use this aug-

mented 3D pose set for calculating the prior.

4.2. Refined Hand Localization

The original DeepPrior used a very simple hand detec-

tion. It was based on the center of mass of the depth seg-

mentation of the hand. Therefore, the hand was segmented

using depth-thresholding, and the 3D center of mass was

calculated. Then, a 3D bounding box was extracted around

the center of mass.

DeepPrior++ still uses this method but introduces a re-

finement step that significantly improves the final accuracy.

This refinement step relies on a regression CNN. This CNN

is applied to the 3D bounding box centered on the center of

mass, and is trained to predict the location of the Metacar-

pophalangeal (MCP) joint of the middle finger, which we

use as referential. We also use augmented training data to

train this CNN as described in Section 4.1.

For real-time applications, instead of extracting the cen-

ter of mass from each frame, we apply this regression CNN

to the hand location for the previous frame. This remains

accurate while being faster.

4.3. More Powerful Network Architecture

Residual Networks. Since the introduction of DeepPrior,

there has been much research on better deep architec-

tures [8, 24, 31], and the Residual Network (ResNet) archi-

tecture [8] appears to be one of the best performing models.
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Figure 2: Our ResNet architecture. C denotes a convolu-

tional layer with the number of filters and the filter size in-

scribed, FC a fully-connected layer with the number of neu-

rons, D a Dropout layer with the probability of dropping a

neuron, R a residual module with the number of filters and

filter size, and P a max-pooling layer with the pooling re-

gion size. The hand crop from the depth image is fed to the

ResNet that predicts the final 3D hand pose.

Our model is similar to the 50-layer ResNet model of [8].

Since ResNet was originally proposed for image classifica-

tion, we adapt the architecture to fit our regression problem.

Most importantly, we remove the global average pooling,

and add two fully-connected layers. The input to the net-

work is 128× 128 pixel, with values normalized to [−1, 1].
The adapted ResNet model is shown in Figure 2. The net-

work contains an initial convolution layer with 64 filters and

2× 2 max-pooling. This convolutional layer is followed by

four residual modules, each with a stride of 2× 2, and with

{64, 128, 256, 256} filters.

The much simpler model used for refining the hand lo-

calization is shown in Fig. 3. It consists of three convo-

lutional layers with max-pooling, and two fully-connected

layers with Dropout.

We optimize the network parameters using the gradi-

ent descent algorithm ADAM [11] with standard hyper-

parameters and a learning rate of 0.0001, and train for 100

epochs.

Regularization using Dropout. The ResNet model can

overfit, and we experienced this behavior especially on

datasets with small hand pose variation [34]. Therefore, we

introduce Dropout [27] to the model, which was shown to

provide an effective way of regularizing a neural network.

We apply binary Dropout with a dropout rate of 0.3 on both

fully-connected layers after the residual modules. This en-

ables training high capacity ResNet models while avoiding

overfitting and achieving highly accurate predictions.

5. Evaluation

We evaluate our DeepPrior++ approach on three pub-

lic benchmark datasets for hand pose estimation: the

NYU dataset [40], the ICVL dataset [34], and the MSRA

dataset [28]. For the comparison with other methods, we
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Figure 3: The network architecture used for refining hand

localization. As in Fig. 2, C denotes a convolutional layer,

FC a fully-connected layer, D a Dropout layer, and P a max-

pooling layer. The initial hand crop from the depth image

is fed to the network that predicts an offset to correct an

inaccurate hand localization.

focus here on works that were published after the origi-

nal DeepPrior paper. There are different evaluation metrics

used in the literature for hand pose estimation, and we re-

port the numbers stated in the papers or measured from the

graphs if provided, and/or plot the relevant graphs for com-

parison.

For all experiments, we report the results for a 30-

dimensional PCA prior. By using an efficient implemen-

tation for data augmentation, the training time is the same

for all experiments, approximately 10 hours on a computer

with an Intel i7 with 3.2GHz and 64GB of RAM, and an

nVidia GTX 980 Ti graphics card.

5.1. Evaluation Metrics

We use two different metrics to evaluate the accuracy:

• First, we evaluate the accuracy of the 3D hand pose es-

timation as average 3D joint error. This is established

as the most commonly used metric in literature, and

allows comparison with many other works due to sim-

plicity of evaluation.

• As a second, more challenging metric, we plot the frac-

tion of frames where all predicted joints are below a

given maximum Euclidean distance from the ground

truth [38].

5.2. NYU Dataset

The NYU dataset [40] contains over 72k training and 8k

test frames of multi-view RGB-D data. The dataset was

captured using a structured light-based sensor. Thus, the

depth maps show missing values as well as noisy outlines,

which makes the dataset very challenging. For our exper-

iments we use only the depth data from a single camera.

The dataset has accurate annotations and exhibits a high

variability of different poses. The training set contains sam-

ples from a single user and the test set samples from two

different users. We follow the established evaluation proto-

col [18, 40] and use the 14 joints for calculating the metrics.



Our results are shown in Table 1 together with a com-

parison to current state-of-the-art methods. We compare

DeepPrior++ to several related methods, and it significantly

outperforms the other methods.

Method Average 3D error

Oberweger et al. [18] (DeepPrior) 19.8mm

Oberweger et al. [19] (Feedback) 16.2mm

Deng et al. [2] (Hand3D) 17.6mm

Guo et al. [6] (REN) 13.4mm

Bouchacourt et al. [1] (DISCO) 20.7mm

Zhou et al. [48] (DeepModel) 16.9mm

Xu et al. [44] (Lie-X) 14.5mm

Neverova et al. [17] 14.9mm

Wan et al. [41] (Crossing Nets) 15.5mm

Fourure et al. [4] (JTSC) 16.8mm

Zhang et al. [47] 18.3mm

Madadi et al. [15] 15.6mm

This work (DeepPrior++) 12.3mm

Table 1: Comparison with state-of-the-art on the NYU

dataset [40]. We report the average 3D error in mm. Deep-

Prior++ significantly performs better than all other methods

for this dataset.

In Figure 4 we compare our method with other discrim-

inative approaches. Although Supancic et al. [30] report a

very accurate results for a fraction of the frames, our ap-

proach significantly performs better for the majority of the

frames.

In Figure 5 we compare state-of-the-art methods using

a different evaluation protocol, i.e. we follow the protocol

of [32, 37], who evaluate the first 2400 frames of the test set.

Also for this protocol, we significantly outperform the state-

of-the-art method of Taylor et al. [37]. Note that [32, 33, 37]

require a, possibly user-specific, 3D hand model, whereas

our method only uses training data without any 3D model.

5.3. ICVL Dataset

The ICVL dataset [34] comprises a training set of over

180k depth frames showing various hand poses. The test

set contains two sequences with each approximately 700

frames. The dataset is recorded using a time-of-flight

camera and has 16 annotated joints. The depth images

have a high quality with hardly any missing depth values,

and sharp outlines with little noise. Although the authors

provide different artificially rotated training samples, we

start from the genuine 22k frames only and apply the data

augmentation as described in Section 4.1. However, the

pose variability of this dataset is limited compared to other

datasets [28, 40], and annotations are rather inaccurate as

discussed in [18, 30].
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Figure 4: Comparison with state-of-the-art discriminative

methods on the NYU dataset [40]. We plot the fraction of

frames where all joints are within a maximum distance from

the ground truth. A larger area under the curve indicates

better results. Our proposed approach performs best among

other discriminative methods. (Best viewed in color)
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methods on the NYU dataset [40]. We plot the fraction

of frames where the average joint error per frame is within
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protocol of [32, 37]. A larger area under the curve indi-

cates better results. Our proposed approach even outper-

forms model-based approaches on this dataset, with more

than 90% of the frames with an error smaller than 10mm.

(Best viewed in color)

We show a comparison to different state-of-the-art meth-

ods in Table 2. Again, our method shows state-of-the-art ac-



curacy. However, the gap to other methods is much smaller.

This may be attributed to the fact that the dataset is much

easier, with smaller pose variations [30], and due to errors

in the annotations for the evaluation [18, 30].

Method Average 3D error

Oberweger et al. [18] (DeepPrior) 10.4mm

Deng et al. [2] (Hand3D) 10.9mm

Tang et al. [34] (LRF) 12.6mm

Wan et al. [42] 8.2mm

Zhou et al. [48] (DeepModel) 11.3mm

Sun et al. [28] (HPR) 9.9mm

Wan et al. [41] (Crossing Nets) 10.2mm

Fourure et al. [4] (JTSC) 9.2mm

Krejov et al. [12] (CDO) 10.5mm

This work (DeepPrior++) 8.1mm

Table 2: Comparison with state-of-the-art on the ICVL

dataset [34]. We report the average 3D error in mm.

In Figure 6 we compare DeepPrior++ to other methods

on the ICVL dataset [34]. Our approach performs simi-

lar to the works of Guo et al. [6], Wan et al. [42], and

Tang et al. [35], all achieving state-of-the-art accuracy on

this dataset. This might be an indication that the perfor-

mance on the dataset is saturating, and the remaining error

is due to the annotation uncertainty. This empirical find-

ing is similar to the discussion in [30]. Although Tang et

al. [35] performs slightly better in some parts of the curve

in Figure 6, our approach performs significantly better on

the NYU dataset, as shown in Figure 5.

5.4. MSRA Dataset

The MSRA dataset [28] contains about 76k depth

frames. It was captured using a time-of-flight camera. The

dataset comprises sequences from 9 different subjects. We

follow the common evaluation protocol [5, 29, 41] and per-

form a leave-one-out cross-validation: We train on 8 dif-

ferent subjects and evaluate on the remaining subject. We

repeat this procedure for each subject and report the average

errors over the different runs.

A comparison of the average 3D error is shown in Ta-

ble 3. Again, DeepPrior++ outperforms the existing meth-

ods by a large margin of 3mm. In Figure 7, DeepPrior++

also outperforms all other methods on the plotted metric,

which shows that it is also able to handle different users’

hands.

5.5. Ablation Experiments

We performed additional experiments to show the contri-

butions of our modifications. We evaluate the modifications
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Figure 6: Comparison with state-of-the-art on the ICVL

dataset [34]. We plot the fraction of frames where all joints

are within a maximum distance from the ground truth. Sev-

eral works show a similar error curve, which can be an in-

dicator for saturating performance for this dataset. (Best

viewed in color)

Method Average 3D error

Ge et al. [5] 13.2mm

Sun et al. [28] (HPR) 15.2mm

Wan et al. [41] (CrossingNets) 12.2mm

Yang et al. [45] 13.7mm

This work (DeepPrior++) 9.5mm

Table 3: Comparison with state-of-the-art on the MSRA

dataset [28]. We report the average 3D error in mm. Deep-

Prior++ significantly performs better than all other methods

for this dataset.

on the NYU dataset [40], since it has the most accurate an-

notations, with diverse poses, and two different users for

evaluation.

5.5.1 Training Data Augmentation

In order to evaluate the contribution of the training proce-

dure, we tested the different data augmentation schemes.

The results are shown in Table 4. Using data augmentation

results in an increase in accuracy over 7mm. Most impor-

tantly, augmenting the hand translation accounts for errors

in the hand detection part, and augmenting the rotation ac-

counts for rotated hand poses, thus effectively enlarging the

training poses.

Although augmenting the scale only does not help as
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much as augmenting translation or rotation on the NYU

dataset, it can help in cases where the size of the users’ hand

is not accurately determined, i.e. a new user in a practical

application. Interestingly, computing the prior from aug-

mented the 3D hand poses is very important as well. If the

data is augmented, but the prior is computed from the orig-

inal 3D hand poses, the accuracy is worse compared to no

data augmentation, since the prior is not expressive enough

to capture the variances of the augmented hand poses.

5.5.2 Hand Localization

Further, we evaluate the influence of the hand localization

on the final 3D joint error. For this experiment, we use the

ResNet architecture and all data augmentation. The results

are shown in Table 5. The highest accuracy can be achieved

using the ground truth location of the hand, which is not fea-

sible in practice, since real detectors do not provide perfect

hand localization. This indicates, that there is still room for

improvement by using a more accurate 3D hand localization

method.

Starting with the very simple center of mass localiza-

tion and by refining the estimated center of mass localiza-

tion, this step decreases the 3D localization error by almost

20mm. This in turn improves further the final average 3D

pose error by over 1mm.

Augmentation Average 3D error

No augmentation 19.9mm

Translation (T) 14.7mm

Rotation (R) 13.8mm

Scale (S) 17.1mm

All (R+T+S) 12.3mm

All (R+T+S) & no prior aug. 21.7mm

Table 4: Effects of the new training procedure on the NYU

dataset [40]. By using different data augmentation methods,

the accuracy can be significantly increased. In the first row

we do not use any data augmentation. In the last row we

apply augmentation on the training data, but not for com-

puting the pose prior, showing the importance of having a

good pose prior.

Localization Avg. 3D pose error Loc. 3D error

CoM 13.8mm 28.1mm

Refined CoM 12.3mm 8.6mm

Ground truth 10.8mm 0.0mm

Table 5: Impact of hand localization accuracy on NYU

dataset [40]. The ground truth localization gives the lowest

3D pose error, but this localization is not applicable in prac-

tice. Our refinement of the commonly used center of mass

localization (CoM) improves the accuracy by over 1mm.

5.5.3 Network Architecture

We evaluate the impact of the different network architec-

tures in Table 6. We use the refined hand localization and

all data augmentation for training both networks. The im-

proved training procedure and better localization already

improve the results for the original architecture by more

than 3mm (19.8mm from [18]). Using the proposed ResNet

architecture, the accuracy can be improved by another 4mm

on average, due to the higher capacity of the model.

The ResNet architecture is slower than the original im-

plementation, however it is still able to run at over 30fps on

a single GPU, making it applicable to realtime applications.

5.6. Qualitative Evaluation

We show several qualitative results in Figure 8, where we

compare to the original DeepPrior [18]. In general, Deep-

Prior++ provides significantly better results compared to the

original DeepPrior, especially on highly articulated poses.

This can be attributed to the data augmentation and better

localization, but also to the more powerful CNN structure,

which enables the CNN to learn highly accurate poses for

complex articulations.
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Figure 8: Qualitative comparison between DeepPrior and DeepPrior++ on the NYU dataset [40]. We show the inferred 3D

joint locations projected on the depth images. Ground truth is shown in blue, the predicted poses in red. The results provided

by DeepPrior++ are significantly better than the results from the original DeepPrior, especially on complex poses. (Best

viewed in color)

Architecture Average 3D error fps

Original [18] 16.6mm 100

Original with more filters 13.7mm 80

ResNet 12.3mm 30

Table 6: Impact of network architecture on the NYU

dataset [40]. The more recent ResNet architecture performs

significantly better than the original network architecture,

even when using the same number of filters as ResNet for

the Original architecture (Original with more filters). Most

importantly, we can still maintain realtime performance

with 30fps in our hand tracking application.

6. Discussion and Conclusion

Since the publication of DeepPrior, other works on pose

estimation introduced a pose prior in a Deep Learning

framework, showing the importance of such prior:

• [22] proposed to replace the linear transformation

computed by the PCA by an encoder. This encoder is

trained first, together with a decoder, to predict a com-

pact representation of the pose. As the decoder has

a more complex form, it brings some improvement in

accuracy.

• [39] considers human pose estimation and also uses

an auto-encoder, but to compute a pose embedding of

larger dimensions than the original pose, which ap-

pears to significantly improves the accuracy in the case

of body pose estimation.

• [49] learns a pose prior for estimating the 3D hand

joint locations from 2D heatmaps by factorizing the

prior into canonical coordinates and a relative motion,

while our prior learned with PCA does not distinguish

between the two.

Maybe a high-level conclusion of the work presented in

this paper is that our community should be careful when

comparing approaches: By paying attention to its different

steps, we were able to make DeepPrior++ perform signifi-

cantly better than the original DeepPrior and performs sim-

ilarly or better than more recent works, while the key ideas

are the same for the two methods.
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