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Generalized Feedback Loop for
Joint Hand-Object Pose Estimation

Markus Oberweger, Paul Wohlhart, and Vincent Lepetit

Abstract—We propose an approach to estimating the 3D pose of a hand, possibly handling an object, given a depth image. We show
that we can correct the mistakes made by a Convolutional Neural Network trained to predict an estimate of the 3D pose by using a
feedback loop. The components of this feedback loop are also Deep Networks, optimized using training data. This approach can be
generalized to a hand interacting with an object. Therefore, we jointly estimate the 3D pose of the hand and the 3D pose of the object.
Our approach performs en-par with state-of-the-art methods for 3D hand pose estimation, and outperforms state-of-the-art methods for
joint hand-object pose estimation when using depth images only. Also, our approach is efficient as our implementation runs in real-time

on a single GPU.

Index Terms—3D hand pose estimation, 3D object pose estimation, feedback loop, hand-object manipulation.

1 INTRODUCTION

CCURATE hand pose estimation is an important re-
A quirement for many Human Computer Interaction or
Augmented Reality tasks [1], and has been steadily regain-
ing ground as a focus of research interest in the past few
years [2], [3], [4], 5, 6], [7], [8], [9], probably because of
the emergence of 3D sensors. Despite 3D sensors, however,
it is still a very challenging problem, because of the vast
range of potential freedoms it involves, and because images
of hands exhibit self-similarity and self-occlusions, and in
case of object manipulation occlusions by the object.

A popular approach is to use a discriminative method
to predict the position of the joints [10], [11], [12], [13],
[14], [15], [16], because they are now robust and fast. To
refine the pose further, they are often used to initialize an
optimization where a 3D model of the hand is fit to the
input depth data [5], [6], [17], [18], [19], [20], [21], [22]. Such
an optimization remains complex and typically requires the
maintaining of multiple hypotheses [5], [6], [23]. It also relies
on a criterion to evaluate how well the 3D model fits to the
input data, and designing such a criterion is not a simple
and straightforward task [17], [18]], [21], [24], [25].

In this paper, we first show how we can get rid of the
3D model of the hand altogether and build instead upon
work that learns to generate images from training data [26].
Creating an anatomically accurate 3D model of the hand
is very difficult since the hand contains numerous muscles,
soft tissue, etc., which influence the shape of the hand [24],
[25], [27], [28]. We think that our approach could also be
applied to other problems where acquiring a 3D model is
very difficult.
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Fig. 1. Overview of our approach for hand pose estimation. First, we
localize the hand in the camera frame (0) and crop a patch around the
hand location. Then, we use a first CNN () to predict an initial estimate
of the 3D pose given an input depth image of the hand. The pose is
used to synthesize a depth image @), which is used together with the
input depth image to derive a pose update (3). The update is applied to
the pose and the process is iterated. In this work, we follow this general
approach and further show how to extend it to joint hand-object pose
estimation.

Camera Frame

We then introduce a method that learns to provide up-
dates for improving the current estimate of the pose, given
the input depth image and the image generated for this
pose estimate as shown in Fig. [I} By iterating this method
a number of times, we can correct the mistakes of an initial
estimate provided by a simple discriminative method. All
the components are implemented as Deep Networks with
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simple architectures.

Not only is it interesting to see that all the components
needed for hand registration that used to require careful
design can be learned instead, but we will also show that
our approach has en-par performance compared to the state-
of-the-art methods. It is also very efficient and runs in real-
time on a single GPU.

This method was originally published in [29]. Here, we
also show how to generalize our feedback loop to the chal-
lenging task of jointly estimating the 3D poses of a hand and
an object, while the hand interacts with the object. This is
inherently challenging, since the object introduce additional
occlusions, and enlarge the joint configuration space. In such
a case, we first estimate an initial poses for the hand and
the object separately, and then fuse these initial predictions
within our feedback framework to increase accuracy of the
two poses. For this complex problem, our novel approach
works on each frame independently, and does not require
a good initialization as current tracking-based approaches
do [30]], [31], while still outperforming the state-of-the-art
when using depth images only.

Our approach is related to generative approaches [32],
in particular [33] which also features a feedback loop rem-
iniscent of ours. However, our approach is deterministic
and does not require an optimization based on distribution
sampling, on which generative approaches generally rely,
but which tends to be inefficient.

In the remainder of the paper, we first give a short review
of related work in Section [2l We describe our approach for
hands in isolation in Section [3} introduce the extension for
hands and objects in Section |4 Finally, we evaluate our
method for hand pose estimation in Section |5 and for joint
hand-object pose estimation in Section [6}

2 RELATED WORK

Hand pose estimation is a frequently visited problem in
Computer Vision, and is the subject of a plethora of pub-
lished work. We refer to [1] for an overview of earlier work,
and here we will discuss only more recent work, which can
be divided into two types of approaches.

2.1 Discriminative Methods

The first type of approaches is based on discriminative mod-
els that aim at directly predicting the joint locations from
RGB or RGB-D images. Some recent works, including [2],
[31, 17], [8], [34] use different approaches with Random
Forests, but are restricted to static gestures, showing diffi-
culties with occluded joints, or causing high inaccuracies at
finger tips. These problems have been addressed by more
recent works [10], [11]], [12], [13], [14], [15], [16], [35], [36l,
[37] that use Convolutional Neural Networks, nevertheless
they are still not as accurate as generative methods that we
discuss next.

2.2 Generative Methods

Our approach is more related to the second type, which
covers generative, model-based methods. The works of this
type are developed from four generic building blocks: (1) a
hand model, (2) a similarity function that measures the fit
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of the observed image to the model, (3) an optimization al-
gorithm that maximizes the similarity function with respect
to the model parameters, and (4) an initial pose from which
the optimization starts.

For the hand model, different hand-crafted models were
proposed. The choice of a simple model is important for
maintaining real-time capabilities, and representing a trade-
off between speed and accuracy as a response to a po-
tentially high degree of model abstraction. Different hand-
crafted geometrical approximations for hand models were
proposed. For example, [6] uses a hand model consisting
of spheres, [5] adds cylinders, ellipsoids, and cones. [21]
models the hand from a Sum of Gaussians. More holistic
hand representations are used by [17], [20], [22], with a
linear blend skinning model of the hand that is rendered
as depth image. [9] increases the matching quality by using
depth images that resemble the same noise pattern as the
depth sensor. [18] uses a fully shaded and textured triangle
mesh controlled by a skeleton.

Different modalities were proposed for the similarity
function, which are coupled to the used model. The modal-
ities include, e.g., depth values [4], [6], [23], salient points,
edges, color [18], or combinations of these [5], [[17], [21], [22].

The optimization of the similarity function is a critical
part, as the high dimensional pose space is prone to local
minima. Thus, Particle Swarm Optimization is often used
to handle the high dimensionality of the pose vector [5],
[6], [20], [23]]. Differently, [17], [18]], [21] use gradient-based
methods to optimize the pose, while [4] uses dynamics
simulation. Due to the high computation time of these
optimization methods, which have to be solved for every
frame, [9] does not optimize the pose but only evaluates the
similarity function for several proposals to select the best fit.
Recent works aim at handcrafting a differentiable similarity
function, which tightly integrates the hand model to achieve
accurate and fast results [24], [25].

In order to kick-start optimization, [21] uses a discrimi-
native part-based pose initialization, and [6]] uses finger tips
only. [9] predicts candidate poses using a Hough Forest.
[18] requires predefined hand color and position, and [5]
relies on a manual initialization. Furthermore, tracking-
based methods use the pose of the last frame [4], [5], [22],
[30], which can be problematic if the difference between
frames is too large, due to fast motion or low frame rates.

Our approach differs from previous works in the first
three building blocks. We do not use a deformable CAD
model of the hand. Instead, we learn from registered depth
images to generate realistic depth images of hands, similar
to work on inverse graphics networks [26], [38], and other
recent work on generating images [39], [40]. This approach
is very convenient, since deforming correctly and rendering
a CAD model of the hand in a realistic manner requires a
significant input of engineering work. Most importantly, it
does not require additional training data.

In addition, we do not use a hand-crafted similarity
function and an optimization algorithm. We learn rather
to predict updates that improve the current estimate of
the hand pose from training data, given the input depth
image and a generated image for this estimate. Again, this
approach is very convenient, since it means we do not
need to design the similarity function and the optimization
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algorithm, neither of which is a simple task.

[41] relies on a given black-box image synthesizer to
provide synthetic samples on which the regression network
can be trained. It then learns a network to substitute the
black-box graphics model, which can ultimately be used
to update the pose parameters to generate an image that
most resembles the input. In contrast, we learn the generator
model directly from training data, without the need for
a black-box image synthesizer. Moreover, we will show
that the optimization is prone to output infeasible poses or
get stuck in local minima and therefore introduce a better
approach to improve the pose.

[42] uses an auto-encoder to compute an embedding
from the 3D hand pose, and feed the embedding vector to an
image synthesizer that outputs a depth image of the hand.
This setup is used to synthesize additional training data for
training a pose predictor, but in their setup they only aim
at generating synthesized images as close as possible to the
real images to train a discriminative predictor.

2.3 Feedback

Since we learn to generate images of the hand, our approach
is also related to generative approaches, in particular [33],
which uses a feedback loop with an updater mechanism
akin to ours. It predicts updates for the position from which
a patch is cropped from an image, such that the patch fits
best to the output of a generative model. However, this step
does not predict the full set of parameters. The hidden states
of the model are found by a costly sampling process.

[43] proposed an approach related to ours, which also
relies on iteratively refining the 2D joint locations for human
pose estimation. They use an initial estimate of the 2D joint
locations to generate a heatmap with the joint locations.
These heatmaps are stacked to the input image and an
update is predicted, which, however, does not handle oc-
clusions well. This process is then iterated a few times. In
contrast to our work, their approach only works for 2D im-
ages due to limitations of the feedback. Also, their training
strategy is different, and requires a predefined absolute step
size and predefined update directions, which can be hard
to learn. In contrast, we use latent update directions with a
relative step size.

[44] introduced Feedback Networks for general purpose
iterative prediction. They formulate the feedback as a re-
current shared operation where a hidden state is passed
on to the next iteration. At each iteration, they predict an
absolute output and not an update, which is more difficult.
Also, their approach does not use any feedback in the input
or output space, so their notion of “feedback” is only an
internal structure of the predictor.

Since the introduction of our feedback method [29], it
was successfully applied to other fields, such as 3D object
pose estimation. [45] predicts updates on 2D object loca-
tions. Similarly, [46] uses a CAD rendering of an object
together with the input image to predict an update for the
rendered CAD pose to better resemble the object pose in the
input image.

2.4 Joint Hand-Object Pose Estimation

The approaches for hand pose estimation discussed so far
can only handle minor occlusion, and in practice the accu-
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racy decreases with the degree of occlusion. To specifically
account for occlusions, different approaches try to learn an
invariance by using images of a hand with an interacting
object for training [36], [47] to simulate occlusions, by re-
moving the object for estimating the hand pose [48], or by
using temporal information to recover from occlusions [49].

Similar to hands in isolation, accurate methods are avail-
able for object pose estimation without occlusions [45], [50].
However, for our problem of joint hand-object pose estima-
tion, object pose methods are required that are specifically
robust to partial occlusion. Keypoint-based methods [51],
[52] perform well with occlusions, but only on textured
objects, and [53] requires discriminative color and features.
In order to handle clutter and occlusions, local patch-
based methods [54], [55], voting-based methods [56], or
segmentation-based methods [57] have shown robustness to
clutter and occlusions. However, they only consider objects,
and it is not clear how to integrate a hand in these methods.

The problem of hand and object pose estimation is much
harder than considering hands or objects in isolation. A
straightforward approach of combining methods of both
sides does not lead to good results, since the physical
constraints and visual occlusions between hand and object
are not considered. Several works considered tracking of
two hands simultaneously, however, they require hands to
be well-separated [27], [58], multiple-views [5], work at non-
interactive framerates [59]], or accurate segmentation [60],
[61]. For handling unknown objects, [62], [63] use an ICP-
like object tracking that creates a model of the object on
the fly. However, once it looses the temporal tracking,
it fails completely. [31] uses a model-based approach for
tracking hand-hand and hand-object poses. Similarly, [30]
performs model-based tracking of hand and object jointly,
but requires a model for the hand and the object. Similar
tracking-based approaches where proposed by [64], who
consider tracking multiple hands and objects jointly at non-
interactive framerates, and by [5], who track a single hand
interacting with an object but require several cameras for
handling the occlusions. These tracking-based approaches
require a good initialization for each frame and are inher-
ently prone to drifting over time. In contrast to these hand-
object pose estimation methods, our approach only requires
a single depth camera, works without initialization, without
temporal tracking, and does not drift over time since we
process each frame independently.

3 METHOD

In this section, we will first give an overview of our method.
We then describe in detail the different components of our
method: A discriminative approach to predict a first pose
estimate, a method able to generate realistic depth images
of the hand, and a learning-based method to refine the initial
pose estimate using the generated depth images.

3.1 Hand Pose Estimation

Our objective is to estimate the pose p of a hand in the
form of the 3D locations of its joints p = {j;};_; with
Ji = (zi,vi,2;) from a single depth image D. In practice,
J = 14 for the dataset we use. We assume that a training
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Fig. 2. Samples generated by the synthesizer CNN for different poses
from the test set. Top: Ground truth depth image. Middle: Synthesized
depth image using our learned hand model. Bottom: Color-coded, pixel-
wise difference between the depth images. Red represents large errors,
blue represents small errors. The synthesizer CNN is able to render
convincing depth images for a very large range of poses. The largest
errors are located near the occluding contours of the hand, which are
noisy in the ground truth images.

(a) (b) () (d)

Fig. 3. Synthesized images for physically impossible poses. Note the
colors that indicate different fingers. (a) shows a feasible pose with
its synthesized image. (b) shows the synthesized image for the same
pose after swapping the ring and middle finger positions. In (c) the ring
and middle finger are flipped downwards, and in (d) the wrist joints are
flipped upwards.

set T = {(D;,pi)}Y, of depth images labeled with the
corresponding 3D joint locations is available.

As explained in the introduction, we first train a pre-
dictor CNN to predict an initial pose estimate p(*) in a
discriminative manner given an input depth image Dinput
centered around the hand location:

p© = pred(Dinput) - )

We use a Convolutional Neural Network (CNN) to imple-
ment the pred(.) function with a standard architecture. More
details will be given in Section

In practice, p(?) is never perfect, and following the mo-
tivation provided in the introduction, we introduce a hand
model learned from the training data. As shown in Fig.
this model can synthesize the depth image corresponding
to a given pose p, and we will refer to this model as the
synthesizer CNN:

Dsynth = Synth(P) . (2)

We also use a Deep Network to implement the synthesizer.

4

A straightforward way of using this synthesizer would
consist in estimating the hand pose p by minimizing the
squared loss between the input image and the synthetic one:

P = arg min|| Dinpue — synth(p)||® . €))
P

This is a non-linear least-squares problem, which can po-
tentially be solved iteratively using p(®) as initial estimate.
However, the objective function of Eq. exhibits many
local minima. Moreover, during the optimization of Eq. @,
p can take values that correspond to physically infeasible
poses. For such values, the output synth(p) of the synthe-
sizer CNN is unpredictable as depicted in Fig. |3} and this is
likely to make the optimization of Eq. (B) diverge or be stuck
in a local minimum, as we will show in the experiments in
Section

We therefore introduce a third function that we call the
updater(., .). It learns to predict updates, which are applied
to the pose estimate to improve it, given the input image
Dinput and the image synth(p) produced by the synthesizer
CNN:

pUtY « @ 4+ updater(Dipur, synth(p™)) . (4)

We iterate this update several times to improve the initial
pose estimate. Again, the updater(.,.) function is imple-
mented as a Deep Network.

We detail below how we implement and train the
pred(.), synth(.), and updater(., .) functions.

3.2 Learning the Localizer Function loc(.)

In practice, we require an input depth image centered on
the hand location. In our original paper [29], we relied on a
common heuristic that uses the center-of-mass for localizing
the hand [7]], [35]. In this work, we improve this heuristic
by introducing the localizer CNN loc(.). We still use the
center-of-mass for the initial localization from the depth
camera frame, but apply an additional refinement step that
improves the final accuracy [11], [36]. This refinement step
relies on the localizer CNN. The CNN is applied to the 3D
bounding box centered on the center-of-mass, and is trained
to predict the location of the Metacarpophalangeal (MCP)
joint of the middle finger, which we use as referential. The
localizer CNN has a simple network architecture, which is
shown in Fig.

We train the localizer CNN, parametrized by ¢, by
optimizing the cost function:

¢=argmin Y |[locy(D) 1> . )
(D,p)eT

1 denotes the offset in image coordinates and depth between
the center-of-mass and the MCP of the hand. For inference,
we crop a depth image from the depth camera frame cen-
tered on the center-of-mass, then predict the MCP location
by applying loc(.) to this crop, and finally crop again from
the depth camera frame using the predicted location.

We crop the training depth images and the original input
depth images around the locations provided by locg(.) for
these images: D in Egs. (6), (7), (8), (10), 1), therefore
denotes a training depth image after cropping, and Dinput
the original input depth image after cropping.
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Fig. 4. Network architecture of the localizer CNN. All layers have
rectified-linear units, except the last layer which has linear units. C
denotes a convolutional layer with the number of filters and the filter
size inscribed, FC a fully connected layer with the number of neurons,
and P a max-pooling layer with the window size. The initial hand crop
from the depth image is fed to the network that predicts the location of
the MCP of the hand to correct an inaccurate hand localization.
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Fig. 5. Network architecture of the predictor CNN used for initial pose
prediction. C denotes a convolutional layer with the number of filters and
the filter size inscribed, FC a fully-connected layer with the number of
neurons, D a Dropout layer [65] with the probability of dropping a neuron,
R a residual module [66] with the number of filters and filter size, and P
a max-pooling layer with the window size. The cropped depth image is
fed to the ResNet that predicts the 3D hand pose. The last layer is a
bottleneck layer with 30 neurons that incorporates the pose prior. [11]
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3.3 Learning the Predictor Function pred(.)

The predictor CNN pred(.) is implemented as a neural
network. For our experiments with hands in isolation, we
use DeepPrior++ [11] as initialization with the architecture
shown in Fig. (). In the spirit of [11], [35], we use a prior
on the 3D hand pose, which is integrated into the predictor
CNN of the hand. We rely on a simple linear prior P(.),
obtained by a PCA of the 3D hand poses [35]. Thus, pred(.)
predicts the parameters of the pose prior instead of the 3D
joint locations, which are obtained by applying the inverse
prior to the estimated parameters. The predictor CNN is
parametrized by ®, which is obtained by minimizing

§—agmin 3 [P (predy(D) —pl® . (©)
(D,p)eT

3.4 Learning the Synthesizer Function synth(.)

We also use a neural network to implement the synthesizer
CNN synth(.), and we train it using the set 7 of annotated
training pairs. The network architecture is strongly inspired
by [26], and is shown in Fig. [6} It consists of four hidden
layers, which learn an initial latent representation of feature
maps apparent after the fourth fully connected layer FC4.
These latent feature maps are followed by several unpooling
and convolution layers. The unpooling operation, used for
example by [26], [39], [67], is the inverse of the max-pooling
operation: The feature map is expanded, in our case by
a factor of 2 along each image dimension. The emerging
"holes” are filled with zeros. The expanded feature maps
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Fig. 6. Network architecture of the synthesizer CNN used to generate
depth images of hands given their poses. The input of the network
is the hand pose. The fully connected hidden layers create a 2048
dimensional latent representation at FC4 which is reshaped into 32
feature maps of size 8 x 8. The feature maps are gradually enlarged by
successive unpooling and convolution operations. The last convolution
layer combines the feature maps to derive a single depth image of size
128 x 128. All layers have rectified-linear units, except the last layer which
has tanh units. C denotes a convolutional layer with the number of filters
and the filter size inscribed, FC a fully connected layer with the number
of neurons, and UP an unpooling layer with the upscaling factor.
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are then convolved with trained 3D filters to generate an-
other set of feature maps. These unpooling and convolution
operations are applied subsequently. The last convolution
layer combines all feature maps to generate a depth image.

We learn the parameters © of the network by minimizing
the difference between the generated depth images synth(p)
and the training depth images D as

~ 1

D

We perform the optimization in a layer-wise fashion. We
start by training the feature maps of resolution 8 x 8.
Then we gradually enlarge the output resolution by adding
another unpooling and convolutional layer and train again,
which achieves lesser errors than end-to-end training in our
experience.

The synthesizer CNN is able to generate accurate im-
ages, maybe surprisingly well for such a simple architec-
ture. The median pixel error on the test set of the NYU
dataset [16] is only 0.1 mm. However, the average pixel error
is 8.9 mm with a standard deviation of 28.5 mm. This is
mostly due to noise in the input images along the outline of
the hand, which is smoothed away by the synthesizer CNN.
The average depth accuracy of the sensor is 11 mm [68] in
practice.

[synthe(p) = DII* . (7)

3.5 Learning the Updater Function updater(., .)

The updater CNN updater(.,.) takes two depth images as
input. As already stated in Eq. @, at run-time, the first
image is the input depth image, the second image is the
image returned by the synthesizer CNN for the current pose
estimate. Its output is an update that improves the pose
estimate. The architecture is shown in Fig.|7| The input to the
network is the observed image stacked channel-wise with
the image from the synthesizer CNN. We do not use max-
pooling here, but a filter stride [69], [70] to reduce the resolu-
tion of the feature maps. We experienced inferior accuracy
with max-pooling compared to that with stride, probably
because max-pooling introduces spatial invariance [71] that
is not desired for this task.

Ideally, the output of the updater CNN should bring
the pose estimate to the correct pose in a single step. This



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

€ c2 €3 Cc4 FECl FCZ FC3 FC4
. (0] O (¢] O
Synthesized Image
al o ol 9] O] |9 gcs
a¥ ] ] o — =
2 2 @@ o| |Oo] |o o| |o
] @ @ ) < < < <
f—»ﬁ*é*x$x*g$g$g*g»g
=4 vt o| [o| |o| |o| |o
o o
® ® o] o (@] o
O O (¢] o
Input Image — — 0 =

Fig. 7. Network architecture of the updater CNN. The network contains
several convolutional layers that use a filter stride to reduce the size of
the feature maps. The final feature maps are fed into a fully connected
network. All layers have rectified-linear units, except the last layer which
has linear units. The pose update is used to refine the initial pose and
the refined pose is again fed into the synthesizer CNN to iterate the
whole procedure. As in Fig.[6] C denotes a convolutional layer, and FC
a fully connected layer.

Fig. 8. Our iterative pose optimization in high-dimensional space,
schematized here in 2D. We start at an initial pose (x) and want to
converge to the ground truth pose (o), that maximizes image similarity.
Our updater CNN generates updates for each pose () that bring us
closer. The updates are predicted from the synthesized image of the
current pose estimate and the observed depth image.

is a very difficult problem, though, and we could not get
the network to reduce the initial training error within a
reasonable timeframe. However, our only requirement from
the updater CNN is for it to output an update which brings
us closer to the ground truth as shown in Fig. 8| We iterate
this update procedure to get closer step-by-step. Thus, the
update should follow the inequality

lp + updater(D, synth(p)) — pcrl| < Allp — parll , (8)

where pgr is the ground truth pose for image D, and
A € [0,1] is a multiplicative factor that specifies a minimal
improvement. We use A = 0.6 in our experiments.

We optimize the parameters 2 of the updater CNN by
minimizing the following cost function

£= Y max(0,[p” —pll - Alp’ —pl) , ©)

(D,p)eT p'€Tp

where p”’ = p’ + updaterq (D, synth(p’)), and Tp is a set of
poses. The introduction of the synthesizer CNN allows us to
virtually augment the training data and add arbitrary poses
to Tp, which the updater CNN is then trained to correct.
The set 7p contains the ground truth p, for which the
updater CNN should output a zero update. We further add
as many meaningful deviations from that ground truth as
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possible, which the updater CNN might perceive during
testing and be asked to correct. We start by including the
output pose of the predictor CNN pred(D), which is used
during testing as initialization of the update loop. Addition-
ally, we add copies with small Gaussian noise for all poses.
This creates convergence basins around the ground truth,
in which the predicted updates point towards the ground
truth, as we show in the evaluation, and helps to explore
the pose space.

After every 2 epochs, we augment the set by applying
the current updater CNN to the poses in 7p, that is, we
permanently add the set

{p2 | 3p € Tp s.t. p2 = p + updater(D,synth(p))} (10)

to Tp. This extends the training set with poses made of the
predicted updates from the current training set 7p. This
forces the updater CNN to learn to further improve on its
own outputs.

In addition, we sample from the current distribution of
errors across all the samples, and add these errors to the
poses, thus explicitly focusing the training on common de-
viations. This is different from the Gaussian noise and helps
to predict correct updates for larger initialization errors.

3.6 Learning all Functions Jointly

So far, we have considered optimizing all functions sep-
arately, ie., first training the synthesizer CNN and the
predictor CNN, and then using them to train the updater
CNN. However, it is theoretically possible to train the three
networks together. One iteration can be expressed in terms
of the current pose p by introducing the following iter(.)
function:
iter(p) = p + updater(synth(p), D) . (11)
The pose estimate p™) after n iterations can be written as:
p™ = iter(...iter(pred(D))...) . (12)

pred(.), synth(.), and updater(.) can now be trained by
minimizing

{2,6,0} =argmin > [p™ —p|* .
{®,0,Q} (D.p)eT

(13)

The function iter(.) can be seen as a Recurrent Neural
Network (RNN) that depends on the input depth image
D. In comparison to RNNs, our method makes training
simpler, intermediary steps easier to understand, and the
design of the networks’ architectures easier.

We tried to optimize Eq. starting from a random net-
work initialization, but the optimization did not converge
to a satisfying solution. Also, when using the pretrained
synthesizer CNN and predictor CNN as initialization, the
optimization converges, but this leads to similar accuracy,
indicating that end-to-end optimization is possible, but not
useful here. Moreover, the intermediate results, i.e., the
synthesized depth images, are less interpretable as the hand
is barely recognizable. Splitting the optimization problem as
we do makes therefore the optimization easier, at no loss of
accuracy.
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4 JOINT HAND-OBJECT POSE ESTIMATION

We now aim at estimating both the pose p¥ of a hand and
the pose p® of an object simultaneously while the hand is
manipulating the object. We start the pose prediction by first
estimating the locations of the hand and the object within
the input image. Using the localization, we predict an initial
estimate of the pose for the hand and the object separately.
In practice, these poses are not very accurate, since hand
and object can severely occlude each other. Therefore, we
introduce feedback by first synthesizing depth images of the
hand and the object, and merge them together. An overview
of our method with the different operations and networks is
shown in Fig.[9]

We can then predict an update that aims at correcting the
object pose and the hand pose. Each step is performed by
a CNN. As in the previous section, we denote them local-
izer CNN loc(.), predictor CNN pred(.), synthesizer CNN
synth(.), and updater CNN updater(., .). However, this time
we use one network for the hand and one for the object and
use suffixes  and ©, respectively, to distinguish them. In
the following we detail how the individual networks are
trained.

Since we now aim at estimating the hand pose and the
object pose simultaneously, we require for the training set
the hand pose and the object pose for each depth frame
T = {(D;,p?,p)}N . Acquiring these annotations for
real data can be very cumbersome, and therefore we only
use synthetically generated training data, as detailed in the
next section.

4.1 Training Data Generation

Capturing real training data of a hand manipulating an
object can be very cumbersome, since in our case it requires
3D hand pose and 3D object pose annotations for each
frame. This is hindered by severe occlusions, or not always
possible at all. Our approach leverages annotations from
datasets of hands in isolation, which are much simpler to
capture in practice [6], [7], [72], and data from 3D object
models, which are available at large scales [73]. We use an
OpenGL-based rendering of the 3D object model and fuse
the rendering with the frames from a 3D hand dataset. Since
we use depth images, we can simply take the minimum
of both depth images for each pixel. We render the object
on top of the hand, placing the object near the fingers,
and apply a simple collision detection, such that the object
is not placed “within” the hand point cloud. The object
poses, i.e., rotations and translations, are sampled randomly,
constrained by the collision detection. In order to account for
sensor noise, we add small Gaussian noise to the rendering.
In Fig. [10] we show some samples of synthesized training
data.

Besides this semi-synthetic training data, we also use
completely synthetic training data of hands and objects. We
therefore use a marker-based motion capture system [74]
to capture the hand and object pose while the hand is
manipulating different objects. Since the image data is cor-
rupted with the markers, we render a synthetic hand model
and the CAD object model given the captured poses, and
use this rendering as additional training data. This dataset
comprises five users performing gestures with five different
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hand-held objects. In total, 73k frames are synthetically
rendered from the captured poses from different viewpoints
and used for training.

4.2 Learning the Hand and Object Localizers

During experiments we have found that accurate localiza-
tion of the hand and the object is crucial for accurate pose
estimation. Since we jointly consider a hand and an object,
we use the combined center-of-mass to perform a rough
localization and extract a larger cube around the center-
of-mass that contains the hand and the object. Then, we
use two CNNs to perform the localization of the hand
and the object separately. We train two networks, loc” ()
for the hand, and loc?(.) for the object, both taking the
same input image cropped from the center-of-mass location.
The network architectures are the same as the one used in
Section[3.2]and shown in Fig.d} The networks are trained to
predict the 2D location and depth of the MCP joint of the
hand 17 and the object centroid 19, respectively, relative to
the center-of-mass. Formally, we optimize the cost function

~

I' = argmin Z [locE (D) — 1772 (14)
(DIH)eT
for the hand localizer, and
X = argmin Z ||10(:S(D) —19)? (15)

X (DI1%)eT

for the object localizer, where I' and  are the parameters of
the localizer CNNS.

4.3 Spatial Transformer and Inverse Spatial Trans-
former Networks

Once we are given the location of the hand and the object,
we use them to crop a region of interest around the hand
and the object, respectively, using a Spatial Transformer
Network (STN). Note that this makes the crop differentiable
and thus trainable end-to-end, and allows faster inference
on the GPU since we can run a single large network made
from the individual CNNs. The STN proposed in [75] was
parametrized to work with 2D images. In this work, we ap-
ply the STN on 2.5D depth images. We estimate the spatial
transformation Ay from the 3D location, calculated from
the predicted 2D location and depth. Using the intrinsic
camera calibration we denote the projection from 3D to 2D
as proj(-), the 3D bounding box as ¢, and the 3D location
as t. We can estimate the 2D bounding box projection as
(x%,y*) = proj(t £ ¢) and define 2 = (z+ — 27) and

y® = (y* — y7). This leads to the parametrization of the
spatial transformation Ay as:
2/2 0 x +122)/2
Ag=| 0 w22 y~+y2/2] | (16)
0 0 1

for the parametrization of the sampling grid locations as
in [75]. The source sampling grid locations (z*,y®) are
obtained by transforming the regularly sampled target grid
locations (z¢,y*) as:

(xs,yS)T = Ay - (mt,yt, 1)T . 17)
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Fig. 9. Overview of our joint hand-object pose estimation method. We show the predictors for the initial poses with one iteration of the updaters. The
input to our method is a crop from the depth camera frame that contains the hand with the object estimated from the center-of-mass in the depth
camera frame. From this input, we localize the hand and the object separately, by predicting the 2D locations and depth using the localizer CNNs.
We apply a Spatial Transformer Network (STN) to crop a region of interest around the predicted location. On this centered crop, we predict an initial
pose using the predictor CNNs, which are then used to synthesize depth images of the hand and the object using the synthesizer CNNs. Using an
Inverse STN (ISTN), we paste back the different inputs, i.e., the synthesized object and the synthesized hand, onto the input image. These images
are stacked together (®) and serve as input to the updater CNNs that predict one update for the pose of the hand and one for the object. The
updates are added to the poses and the procedure is iterated several times.

We then use bilinear sampling to interpolate the depth
values of input depth image D of size W x H:

STN(1, D) =
H W
Z Z D[h, w] max(0,1 —|z° —w|) max(0,1—|y* —h|) .
h w
(18)

Since we apply a detection and crop using the STN, we
require the inverse operation for putting the synthesized ob-
ject back into the original image frame before applying the
updater CNN. Hence, we apply an Inverse STN (ISTN) [76].
It operates the same way as the STN, but uses the inverse of
the spatial transformation Ag.

4.4 Learning the Hand and Object Pose Predictors

Once we are given an accurate location of the hand and the
object, we crop a patch around the hand and the object using

the STN and use the crop to estimate the pose. We denote
cH the crop of the hand, and c© the crop of the object.
We denote this operation as ¢ = STN(loc? (D), D). For
the pose prediction, we require appropriate parametrization
of the hand and object poses. For the object pose p©, we
use the eight corners of its 3D bounding box, which was
shown to perform better than rotation and translation [77].
For the hand pose, we use the 3D joint locations with a
prior, as in Section on the 3D hand poses obtained
from the data described in Section A prior on the 3D
hand pose is very effective in case of occlusions, since it
constraints the predicted hand pose to valid poses. For
our experiments with hands manipulating objects we use
a similar architecture to the network shown in Fig. |4 for
the sake of speed. However, for the hand predictor CNN
pred”(.) we use 3 - J neurons for the output layer and for
the object predictor CNN pred?(.) we use 3 - 8 neurons.

Again, we optimize two cost functions to train the predictor
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Fig. 10. Training samples used for joint hand-object pose estimation.
Top row: Semi-synthetic training data comprising real depth images
of hands with rendered objects. The interaction between hand and
object cannot be accurately modeled easily, but the solution space of
possible object locations and possible object poses can be significantly
reduced, which enables training our proposed method. Bottom row:
Additional synthetic depth data is used to accurately model the hand-
object interaction, but it does not capture the sensor characteristics.

CNN:s. For the hand pose predictor we optimize

> P (pred] (™) - p"|? (19
(D,pH)eT

7 = argmin
n

where P is the linear prior on the 3D hand poses. For the
object pose predictor we optimize

> lpredi(c?) = x(p))*
(D,p@)eT

~

II = arg min (20)

where 7(-) returns the 3D bounding box coordinates given
the object pose. n and II denote the parameters of the
predictor CNNs. We use orthogonal Procrustes analysis [78]]
to obtain the 3D object pose from the output of pred® (.).

4.5 Learning the Hand and Object Updaters

Since we now have initial estimates of the pose for the hand
and the object, we can use them to start a feedback loop
that considers the interaction of hand and object. Therefore,
we extend the input data of the updater CNN with the
synthesized image of the hand and the object given the
initially predicted poses. This requires training a synthesizer
CNN, or using a software renderer. Since we have the 3D
model of the object readily available, we implement the
object synthesizer synth?(.) with an OpenGL-based ren-
derer. During our experiments, we also evaluated training
the updater CNN with the object synthesizer CNN, and
this resulted in similar results compared to the OpenGL-
based rendering. The hand synthesizer CNN synth” (.) is
trained in the same way as described in Section Also,
the network architecture of the updater CNN is the same as
shown in Fig.[7)in the previous section.
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For training the updater CNN, the synthesized images
are merged into a single depth image:

S = min(ISTN(loc” (D), synth(p)),

ISTN(loc® (D), synth(p®))) @ D , @b

where min(A, B) denotes the pixel-wise minimum between
two depth images A and B, and ® denotes a channel-
wise stacking. We then train the updater CNN for the hand
updater”(.,.) and the object updater®(.,.) by minimizing
the following cost function:

Z Z Z max/(0, ||p”—p||—/\||P/H’O_PH)

(D,pH,p?)eT p'°€To p'HeTH
(22)

where p” = p™° + updater” (79, 5), and Ty and
To are sets of poses for the hand and the object, respec-
tively. When optimizing Eq. for the hand updater
updater” (.,.), the variables with suffix  are used, and
when optimizing for the object updater updater®(.,.) the
variables with suffix © are used.

When training the updater CNN updater”(.,.) for the
hand, 7y is initialized and updated during training as
described in Section To is made from random poses
around the ground truth object pose, and poses from the
predictor pred®(.) applied to training ima%es.
When training the updater CNN updater™ (., .) for the ob-
ject, 7o is defined as in Section T is made from random
poses around the ground truth together with predictions
from the training data.

For inference, we iterate the updater CNNs several
times: We first obtain the initial estimates p(®) for hand
H and object O, by running the predictor CNNs on the
cropped locations from the localizer CNNs. Then we predict
the updates using the merged image S(*) from the previous
iteration. Alg.|I|gives a formal expression of this algorithm.

Algorithm 1 Feedback Loop
: O pred” (STN(loc” (D), D)
: P09  pred?(STN(loc? (D), D)
3: fori<-0to N —1do ]
S« min(ISTN(loc” (D), synth(p™-H)),
ISTN(loc? (D), synth(p9))) @ D
5: plt M B H L ypdater” (STN(p®-H, D), §())
6:  pUtO « p.O 4 updater” (STN(p™-©, D), S0)
7: end for

N =

5 HAND POSE EVALUATION

In this section we evaluate our proposed method on the
NYU Hand Pose Dataset [16], a challenging real-world
benchmark for hand pose estimation. First, we describe how
we train the networks. Then, we introduce the benchmark
dataset. Furthermore, we evaluate our method qualitatively
and quantitatively.

5.1

We optimize the network parameters using gradient de-
scent, specifically using the ADAM method [79] with default

Training
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hyper-parameters. The batch size is 64. The learning rate
decays over the epochs and starts with 0.001. The networks
are trained for 100 epochs. We augment the training data
online during training by random scales, random crops, and
random rotation [11].

We extract a fixed-size metric cube from the depth image
around the hand location. The depth values within the
cube are resized to a 128 x 128 patch and normalized to
[—1, 1]. The depth values are clipped to the cube sides front
and rear. Points for which the depth is undefined—which
may happen with structured light sensors for example—are
assigned to the rear side. This preprocessing step was also
done in [7] and provides invariance to different hand-to-
camera distances.

5.2 Benchmark Dataset

We evaluated our method on the NYU Hand Pose
Dataset [16]. This dataset is publicly available and it is
backed up by a huge quantity of annotated samples together
with very accurate annotations. It also shows a high vari-
ability of poses, however, which can make pose estimation
challenging. While the ground truth contains J = 36 anno-
tated joints, we follow the evaluation protocol of [16], [35]
and use the same subset of J = 14 joints.

The training set contains samples of one person, while
the test set has samples from two persons. The dataset
was captured using a structured light RGB-D sensor, the
Primesense Carmine 1.09, and contains over 72k training
and 8k test frames. We used only the depth images for our
experiments. They exhibit typical artifacts of structured light
sensors: The outlines are noisy and there are missing depth
values along occluding boundaries.

5.3 Comparison with Baseline

We show the benefit of using our proposed feedback loop
to increase the accuracy of the 3D joint localization. For
this, we compare our method to very recent state-of-the-
art methods: DeepPrior++ [11] integrates a prior on the 3D
hand poses into a Deep Network; REN [13] relies on an
ensemble of Deep Networks, each operating on a region
of the input image; Lie-X [10] uses a sophisticated tracking
algorithm constrained to the Lie group; Crossing Nets [42]
uses an adversarial training architecture; Neverova et al. [[12]
proposed a semi-supervised approach that incorporates a
semantic segmentation of the hand; DeepModel [15] inte-
grates a 3D hand model into a Deep Network; DISCO [80]
learns the posterior distribution of hand poses; Hand3D [14]
uses a volumetric CNN to process a point cloud, similar to
3DCNN [81]].

We show quantitative comparisons in Table [1, which
compares the different methods we consider using the aver-
age Euclidean distance between ground truth and predicted
joint 3D locations, which is a de facto standard for this
problem. For our feedback loop, we use DeepPrior++ [11]
for initialization as described in Section which performs
already very accurately. Still, our feedback loop can reduce
the error from 12.2 mm to 10.8 mm.
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TABLE 1
Quantitative evaluation on the NYU dataset [16]. We compare the
average Euclidean 3D error of the predicted poses with state-of-the-art
methods on the NYU dataset.

Method Average 3D error
Neverova et al. [12] 14.9mm
Crossing Nets [42] 15.5mm
Lie-X [10] 14.5mm
REN [13] 13.4mm
DeepPrior++ [11] 12.3mm
Feedback [29] 16.2mm
Hand3D [[14] 17.6mm
DISCO [80] 20.7mm
DeepModel [15] 16.9mm
Pose-REN [82] 11.8mm
3DCNN [81] 10.6mm
Ours 10.8mm

5.4

We mentioned in Section 3.1| that the attempt may be made
to estimate the pose by directly optimizing the squared loss
between the input image and the synthetic one as given in
Eq. (3) and we argued that this does not in fact work well.
We now demonstrate this empirically.

We used the powerful L-BFGS-B algorithm [83], which
is a box constrained optimizer, to solve Eq. (B). We set the
constraints on the pose in such a manner that each joint
coordinate stays inside the hand cube.

The minimizer of Eq. (3), however, does not correspond
to a better pose in general, as shown in Fig. Although
the generated image looks very similar to the input image,
the pose does not improve, moreover it even often becomes
worse. Several reasons can account for this. The depth input
image typically exhibits noise along the contours, as in the
example of Fig. After several iterations of L-BFGS-B,
the optimization may start corrupting the pose estimate
with the result that the synthesizer generates artifacts that
fit the noise. We quantitatively evaluated the image-based
optimization and it gives an average Euclidean error of
32.3 mm on the NYU dataset, which is actually worse
than the initial pose of the predictor CNN, which achieves
12.2 mm error.

Furthermore the optimization is prone to local minima
due to a noisy error surface [6]. However, we also tried Par-
ticle Swarm Optimization [6], [20], [23] a genetic algorithm
popular for hand pose optimization, and obtained similar
results. This tends to confirm that the bad performance
comes from the objective function of Eq. (3) rather than the
optimization algorithm.

We further show the histogram of average 3D errors
before and after applying the predicted updates for different
initializations around the ground truth location in Fig.
As evident from the distribution of errors, the updater
improves all initializations.

Image-Based Hand Pose Optimization

5.5 AQualitative results

Fig. [12| shows some qualitative examples. For some exam-
ples, the predictor provides already a good pose, which we
can still improve, especially for the thumb. For worse ini-
tializations, also larger updates on the pose can be achieved
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Fig. 11. Comparison with image-based pose optimization. (Top) results
for image-based optimization, and (bottom) for our proposed method.
From left to right: input depth image with initial pose, synthesized image
for initial pose, after first, second iteration, and final pose. Minimizing
the difference between the synthesized and the input image does not
induce better poses due to sensor noise and local minima. Thanks to
the updater, our method can fit a good estimate.

Iter 2

by our proposed method, to better explain the evidence in
the image.

6 JOINT HAND-OBJECT POSE EVALUATION

In this section we present the evaluation of our approach
for joint hand-object pose estimation on the challenging
DexterHO dataset [30]. First, we describe the data we use
for training. Then, we introduce the benchmark dataset.
Furthermore we evaluate our method qualitatively and
quantitatively.

6.1 Training Datasets

Since there are no datasets for joint hand-object pose es-
timation available that contain enough samples to train a
Neural Network, our approach relies on fusing real and
synthetic data. We use real hand data and synthetic object
data as described in Section We use real hand data
from the large MSRA [72] dataset, consisting of 76.5k depth
frames of hands of 9 different subjects and a wide variety
of hand poses. Further, we use the dataset of Qian et al. [6],
which contains 2k depth frames of 6 different subjects. Both
datasets were captured using a Creative RealSenz Time-of-
Flight camera, which is the same camera as used for the
experiments on the benchmark dataset. The depth image
resolution is 320 x 240px and the annotations contain J = 21
joint locations. The 3D object models are manually created
from simple geometric primitives to resemble the objects
from the benchmark dataset.

6.2 Benchmark Dataset

We evaluated our method on the DexterHO dataset [30] for
the task of joint hand-object pose estimation. The dataset
contains several sequences of RGB-D data, totaling over 2k
frames. There are two different objects used, a large and a
small cuboid. The dataset has annotations for both the hand
and the object available. The hand annotation contains the
3D location of visible fingertips, and the object annotation
consists of three 3D points on the object corners. Although
the dataset contains color and depth, we only use the depth
images for the evaluation. During our experiments, we
noticed some erroneous annotation that we fixed. We will
make these corrected annotations available.
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6.3 Comparison with Baseline

We evaluate the approach using the metric proposed by [30],
which combines the evaluation of the hand and the object
poses:

E= X —
e > Gill +

Y S Vi — Fl
meM

(23)
The first sum measures the Euclidean distance between the
predicted finger tips X and the ground truth finger tips
G for all visible finger tips V. The second sum measures
the Euclidean distance between the predicted object corners
Y and the ground truth corners F, where M is the set of
visible corners. Thereby the object pose is only evaluated
if all corners of the object are visible, ie., the indicator
function 15, = 3 if all three corners are visible. Although we
predict the 3D location of all joints of the hand, we only use
the 3D locations of the finger tips for calculating the error
metric. Also, we predict the full 6DoF pose of the object, and
calculate the 3D corner locations for the evaluation.

We compare our results to the state-of-the-art on the
DexterHO dataset [30] in Table [2| Note that the baseline
of [30] uses a tracking-based approach, which does not rely
on training data but requires the pose of the previous frame
as initialization. By contrast, we do not require any initial-
ization at all and predict the poses from scratch on each
frame independently. We outperform this strong baseline on
two sequences (Rigid and Occlusion), and when [30] use only
depth, as we do, we outperform their method on average
over all sequences of the dataset. Our method is significantly
more accurate for the object corner metric, since it is much
easier to acquire training data for objects, compared to
hands. For the accuracy of the hand pose estimation, our
approach is mostly restricted by the limited training data.

The updaters perform two iterations for the hand and
the object, since the results do not improve much for more
iterations. Using the feedback loop improves the accuracy
on all sequences by 10% on average compared to our initial-
ization.

Note that the two localizer CNNs take the same input
data but predict different coordinates, since one is for the
hand, the other one for the object. The average localization
error of the hand gets 1 mm worse when trained with spher-
ical objects and tested on the DexterHO objects, i.e., cuboids.
The localization error of the object gets 40 mm worse when
trained on spherical objects and tested on the DexterHO
objects. This indicates that the hand localizer CNN, and
similarly the hand pose predictor CNN, can still be used
with other objects, but the object localizer CNN needs to be
object specific.

We also evaluated an approach based on a single CNN
predicting both hand and object 3D poses in order to assess
the advantage of having two separate networks. In this case,
we center the input of the CNN on the center-of-mass of
the hand and the object combined together, as described
in Section and the CNN outputs the poses of the hand
and the object concatenated. Training this network appeared
more difficult and results in lower accuracy. The average
combined error is 36.6 mm, which is significantly more than
our proposed approach using a separate CNN for the hand
and the object, which achieves an error of 17.6 mm.
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Fig. 12. Qualitative results for NYU dataset. We show the inferred joint locations in color and the ground truth in grayscale projected to the depth
images. The individual fingers are color coded, where the bones of each finger share the same color, but with a different hue. The left image of
each pair shows the initialization and the right image shows the pose after applying our method. Our method applies to a wide variety of poses and
is tolerant to noise, occlusions and missing depth values as shown in several images. The rightmost images show a failure case, where the error of
the initialization is too large to recover the correct pose and the update only pushes the erroneous joints towards the hand silhouette.

TABLE 2
Quantitative results on the DexterHO dataset [30]. Note that uses color and depth information together with a tracking-based approach, which
relies on a strong pose prior from the previous frame. In comparison, we perform hand and object pose estimation for each frame independently.
Also, we use depth information only, for which their reported average error is larger than for our approach. Our approach significantly outperforms
the baseline for the accuracy of the object pose on average.

Method Sequence | Rigid Rotate  Occlusion  Graspl Grasp2 Pinch | Average
. Finger tips 142mm 16.3mm 17.5mm 181mm 175mm 10.3mm | 15.6mm
srﬁg%i%gl't Object corners | 13.5mm  26.8mm  11.9mm 15.3mm 15.7mm 13.9mm | 16.2mm
p Combined 141mm 18.0mm 16.4mm 176 mm 17.2mm 10.9mm | 15.7mm
Sridhar et al. — Depth only Combined | - - - - - - | 18.5mm
This work init — Depth only Combined \ 141mm 20.3mm 18.8 mm 20.8mm 243mm 17.6mm \ 19.3mm
Single network — Depth only Combined \ 29.0mm  35.5mm 35.8mm 40.1lmm  39.7mm  39.9mm \ 36.6 mm
This work feedback Finger tips 142mm 17.9mm 16.3mm 227mm 240mm 185mm | 18.9mm
SD © th eel ¢ Object corners | 84mm  23.4mm 74mm 82mm I6.6mm 9.6mm | 124mm
cpth only Combined 132mm 189 mm 14.5mm 202mm 225mm  16.7mm | 17.6mm

6.5 Runtime
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Fig. 13. Histogram of errors before and after applying the predicted
updates. We initialize noisy joint locations around the ground truth
location and calculate the average 3D error before and after applying
the update. The different updates minimize the error and thus bring us
closer to the ground truth pose.

6.4 Qualitative Results

Fig. [14] shows some qualitative examples on the DexterHO
dataset , and Fig. shows qualitative results for a
sequence where a hand is manipulating a toy duck. Our
approach estimates accurate 3D poses for the hand and the
object.

Fig. (16| shows the pose for consecutive iterations. The pre-
dictor provides an initial estimate of the pose of the hand
and the object, and our feedback loop improves these initial
poses iteratively.

Our method is implemented in Python using the Theano
library and we run the experiments on a computer
equipped with an Intel Core i7, 64GB of RAM, and an
nVidia GeForce GTX 980 Ti GPU. Training takes about
ten hours for each CNN. The runtime is composed of the
localizer CNN that takes 0.8ms, the predictor CNN takes
20ms, the updater CNN takes 1.2ms for each iteration, and
that already includes the synthesizer CNN with 0.8 ms. In
practice we iterate our updater CNN twice, thus our method
runs at over 40fps on a single GPU. For the joint hand-
object pose estimation we have to run each network once
for the hand and once for the object. We run the inference
in two threads in parallel, one for the hand and one for the
object, and use the predictor CNN with the simpler network
architecture that takes 0.8 ms. Thus our approach runs at
over 40 fps on a single GPU.

7 CONCLUSION AND FUTURE WORK

In this work we presented a novel approach for joint hand-
object pose estimation. First, we separate the problem into
hand pose and object pose estimation, in order to obtain an
initial pose for the hand and the object independently. Then,
we introduce a feedback loop, that refines these initial esti-
mates. Remarkably, our approach does not require real data
of hand-object interaction and can be trained on synthetic
data, which simplifies the creation of the dataset. We eval-
uated our approach on public datasets. When considering
hands only, our approach performs en-par with state-of-the-
art approaches. For joint hand-object pose estimation our
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Fig. 14. Qualitative results on the DexterHO dataset [30]

D

. Our method provides accurate hand and object pose.

¢ v

13

- ,-=>

Fig. 15. Qualitative results for a hand interacting with a toy duck. Our method provides accurate hand and object poses, also when the hand is

manipulating an object.

Initialization

Iteration 1

Iteration 2

Fig. 16. Different iterations on the DexterHO dataset [30]. Top row shows
the initialization, and further rows the consecutive iterations. Our results
are shown in color, and the ground truth annotations are shown in
orange. The ground truth contains the finger tips for the hand, and the
corners for the object.

approach outperforms the state-of-the-art tracking-based
approach when using only depth images. Compared to such
tracking-based approaches, our approach processes each
frame independently, which is important for robustness to
drift [20], [85].

It should be noted that our predictor and our synthesizer
are trained with exactly the same data. One may then ask
how our approach can improve the first estimate made by
the predictor. The combination of the synthesizer and the
updater network provides us with the possibility for simply
yet considerably augmenting the training data to learn the
update of the pose: For a given input image, we can draw
arbitrary numbers of samples of poses through which the
updater is then trained to move closer to the ground truth.
In this way, we can explore regions of the pose space which
are not present in the training data, but might be returned
by the predictor when applied to unseen images.

This work can be extended in several ways. Given the
recent trend in 3D hand pose estimation [37], [86], [87], it
would be interesting to adapt the feedback loop to color im-
ages, which means that the approach also needs to consider
lighting and texture. Further, considering a generalization to
an object class or different hand shapes would be interesting
and could be achieved by adding a shape parameter to the
synthesizer CNN. It would also be interesting to see how
this approach works with a 3D hand CAD model instead of
the synthesizer CNN. Future work could also consider the
objective criterion of the updater training such that it would
not require the hyperparameters for adding poses.
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