
Fast Keypoint Recognition in Ten Lines of Code ∗

Mustafa Özuysal Pascal Fua Vincent Lepetit
Computer Vision Laboratory

École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland
Email: {Mustafa.Oezuysal, Pascal.Fua, Vincent.Lepetit}@epfl.ch

Abstract

While feature point recognition is a key component of

modern approaches to object detection, existing approaches

require computationally expensive patch preprocessing to

handle perspective distortion. In this paper, we show that

formulating the problem in a Naive Bayesian classification

framework makes such preprocessing unnecessary and pro-

duces an algorithm that is simple, efficient, and robust. Fur-

thermore, it scales well to handle large number of classes.

To recognize the patches surrounding keypoints, our

classifier uses hundreds of simple binary features and mod-

els class posterior probabilities. We make the problem com-

putationally tractable by assuming independence between

arbitrary sets of features. Even though this is not strictly

true, we demonstrate that our classifier nevertheless per-

forms remarkably well on image datasets containing very

significant perspective changes.

1. Introduction

The ability to recognize interest points across images
that may have been taken from very different viewpoints is
required to address many important Computer Vision prob-
lems. They range from image registration to object detec-
tion [7, 6] and often require real-time performance. The
standard approach to addressing this problem is to build
affine-invariant descriptors of local image patches and to
compare them across images. This usually involves fine
scale selection, rotation correction, and intensity normal-
ization [11, 10]. It results in a high computational overhead
and often requires handcrafting the descriptors to achieve
insensitivity to specific kinds of distortion.

It has recently been shown that casting this wide-baseline
matching problem as a more generic classification problem
leads to solutions that are much less computationally de-
manding [9]. This approach relies on an offline training

∗This work has been supported in part by the Swiss National Science
Foundation.

phase during which multiple views of the keypoints to be
matched are used to train randomized trees [2] to recog-
nize them based on a few pairwise intensity comparisons.
This yields both fast run-time performance and robustness
to viewpoint and lighting changes, which has proved very
effective for real-time object detection.

In this paper, we show that using a classic Naive
Bayesian framework yields an approach that is simpler,
faster, and as robust as the state-of-the-art methods dis-
cussed above. We use non-hierarchical structures that we
refer to as ferns to classify the patches. Each one consists
of a small set of binary tests and returns the probability that
a patch belongs to any one of the classes that have been
learned during training. These responses are then combined
in a Naive Bayesian way. As [9], we train our classifier by
synthesizing many views of the keypoints extracted from
a training image as they would appear under different per-
spective or scale.

The binary tests we use as classifier features are picked
completely at random, which puts our approach firmly
in the camp of techniques that rely on randomization to
achieve good performance [1]. We will show that this is par-
ticularly effective for the specific classification task we are
addressing, which requires scale and perspective invariance,
involves a very large number of classes, but can tolerate sig-
nificant error rates since we use robust statistical methods to
exploit the information provided by the keypoints. Further-
more, our approach is particularly easy to implement, does
not overfit, does not require ad hoc patch normalization, and
allows fast and potentially incremental training.

2. Image Patch Classification

The importance of image patch recognition and match-
ing across images is widely accepted for applications rang-
ing from object recognition and image retrieval to pose esti-
mation. Given feature points extracted from the images, two
main classes of approaches have been proposed to achieve
results such as those of Figure 6.

The first family involves computing local descriptors in-

1

variant to changes such as perspective and lighting [13, 10].
In particular the SIFT vector [10], computed from local his-
tograms of gradients, works remarkably well, at least on
textured images and we will use it as a benchmark for our
own approach.

A second class relies on statistical learning techniques
to model the set of possible appearances of a patch. The
one-shot approach of [6] uses PCA and Gaussian Mixture
Models but does not account for perspective distortion. This
is addressed in [9] using Randomized Trees (RTs). Since
the set of possible patches around an image feature under
changing perspective and lightning conditions can be seen
as a class, it is possible to train a set of RTs to recognize
feature points by feeding it samples of their possible ap-
pearances, synthesized by warping the patches found in a
training image using randomly chosen homographies.

This approach is fast and effective to achieve the kind
of object detection depicted by Figure 6. Note that un-
like in traditional classification problems, a close-to-perfect
method is not required. Here it is enough to recognize some
features succesfully and to use a robust estimator such as
RANSAC to detect the object. However a scalable approach
is still highly desirable for practical applications since the
number of keypoints might become very large (typically >

400). We will show that when this happens the performance
of the RTs tends to drop whereas that of the ferns does not.

Recently [12] used keypoints as visual words [14] for
image retrieval in very large image databases. Keypoints
are labeled by a hierarchical k-means [5] clustering based
on their SIFT descriptors. This allows a very large number
of visual words, but the performance measure is the number
of correctly retrieved documents rather than number of cor-
rectly classified keypoints. In this work, we concentrate on
localizing individual keypoints to obtain pose information
which is required in tracking and augmented reality appli-
cations.

3. Naive Bayesian Classification

It has been shown that image patches can be recognized
on the basis of very simple and randomly chosen binary
tests that are grouped into decision trees and recursively par-
tition the space of all possible patches [9]. In practice, no
single tree is discriminative enough when there are many
classes. However, using a number of trees and averaging
their votes yields good results.

In this section, we will argue that, when the tests are
chosen randomly, the power of the approach derives not
from the tree structure itself but from the fact that com-
bining groups of binary tests allows improved classification
rates. Therefore, replacing the trees by our non-hierarchical
ferns and pooling their answers in a Naive Bayesian man-
ner yields better results and scalability in terms of number
of classes. The naive combination strategy lets us combine

many more features, which is key to improved recognition
rate.

3.1. Formulation

As discussed in Section 2 we treat the set of all possible
appearances of the image patch surrounding a keypoint as
a class. Therefore, given the patch surrounding a keypoint
detected in an image, our task is to assign it to the most
likely class. Let ci, i = 1, . . . ,H be the set of classes and
let f j, j = 1, . . . ,N be the set of binary features that will be
calculated over the patch we are trying to classify. Formally,
we are looking for

ĉi = argmax
ci

P(C = ci | f1, f2, . . . , fN) ,

where C is a random variable that represents the class.
Bayes’ Formula yields

P(C = ci | f1, f2, . . . , fN)=
P(f1, f2, . . . , fN |C = ci)P(C = ci)

P(f1, f2, . . . , fN)
.

Assuming a uniform prior P(C), since the denominator is
simply a scaling factor that it is independent from the class,
our problem reduces to finding

ĉi = argmax
ci

P(f1, f2, . . . , fN |C = ci) . (1)

In our implementation, the value of each binary feature f j

only depends on the intensities of two pixel locations d j,1

and d j,2 of the image patch we write

f j =

{

1 if I(d j,1) < I(d j,2)
0 otherwise

where I represents the image patch. Since they are very sim-
ple, we require many (N ≈ 300) for accurate classification.
Therefore a complete representation of the joint probability
in Eq. (1) is not feasible since it would require estimating
and storing 2N entries for each class. One way to compress
the representation is to assume independence between fea-
tures. An extreme version is to assume complete indepen-
dence, that is,

P(f1, f2, . . . , fN |C = ci) =
N

∏
j=1

P(f j |C = ci) .

However this completely ignores the correlation between
features. To make the problem tractable while accounting
for these dependencies, a good compromise is to partition
our features into M groups of size S = N

M
. These groups are

what we define as ferns and we compute the joint proba-
bility for features in each fern. The conditional probability
becomes

P(f1, f2, . . . , fN |C = ci) =
M

∏
k=1

P(Fk |C = ci) , (2)

for i = 1 to H

logPI |C[i]← 0 1:for(int i = 0; i < H; i++) P[i] = 0.;

end for

for all fern Fk do 2:for(int k = 0; k < M; k++) {

index← 0 3: int index = 0, * d = D + k * 2 * S;

for j = 1 to S 4: for(int j = 0; j < S; j++) {

index← 2× index 5: index <<= 1;

if I
(

dσ(k, j,1)

)

< I
(

dσ(k, j,2)

)

then 6: if (*(K + d[0]) < *(K + d[1]))

index← index+ 1 7: index++;

end if 8: d += 2;

end for }

for i = 1 to H 9: p = PF + k * shift2 + index * shift1;

logPI |C[i]← logPI |C[i]+ logPFk
[index, i] 10: for(int i = 0; i < H; i++) P[i]+=p[i];

end for }

end for

Figure 1. Left: The pseudo-code of the run-time algorithm that computes P(f1, f2, . . . , fN | C = ci) as given by Eq. (2) to classify the
image patch I, where index is an integer index computed from the binary features. No image rectification, illumination normalization, or
parameter tuning are required. Right: A C++ implementation of the pseude-code. The code used for training is very similar.

where Fk = { fσ(k,1), fσ(k,2), . . . , fσ(k,S)},k = 1, . . . ,M repre-
sents the kth fern and σ(k, j) is a random permutation func-
tion with range 1, . . . ,N. Hence we follow a Semi-Naive
Bayesian [15] approach by modelling only some of the de-
pendencies between features. The viability of such an ap-
proach has been shown by [8] in the context of image re-
trieval applications.

This form can now be handled easily since the it has
M× 2S parameters with M between 30-50, and we show
in Section 4 that a fern size S around 10 gives good recog-
nition rates, compared to the 2N with N ≈ 300 for the full
joint probability representation. It is also flexible since per-
formance/memory trade-offs can be made by changing the
number of ferns and their sizes. The corresponding code is
given as Figure 1 to highlight the simplicity of the resulting
implementation.

3.2. Training

For our experiments, we start the training by construct-
ing a set of H prominent keypoints lying on the object
model. To each feature point corresponds a class.

The fern features, that is the locations d j,1 and d j,2, are
picked at random. The terms

P(Fk |C = ci), k = 1, . . . , M

are estimated by computing the features on training samples
of each class. We can exploit here our strong knowledge on
the problem to create a virtually infinite training set: We
use a small number of images and synthesize many new
views of the object using simple rendering techniques as
affine deformations, and extract training patches for each
class. White noise is also added for more realism. For each
keypoint on the model, this gives us a fine sampling of the

set of all its possible appearances under different viewing
conditions.

However even if each term P(Fk |C = ci) is only a part of
the full joint probability of Eq. (1), their estimation still in-
volves estimating an extremely large number of parameters,
and they cannot be reliably estimated directly as empirical
probabilities in practice. In order to explain how we esti-
mate the P(Fk | C = ci), lets us introduce the event Θ(Fk)
that states that “the empirical probabilities for Fk are reli-

able”. We can then express a P(Fk |C = ci) term as:

P(Fk |C = ci) = P(Fk |C = ci,Θ(Fk))P(Θ(Fk)) +

P(Fk |C = ci,Θ(Fk))P(Θ(Fk))
.

(3)
P(Fk | C = ci,Θ(Fk)) is nothing more than the empirical
probability of P(Fk | C = ci), and P(Fk | C = ci,Θ(Fk))
should be taken as constant and is therefore equal to 1

H
. Let

us now model P(Θ(Fk)) as:

P(Θ(Fk)) =
∑i nk,i

∑i(nk,i + u)
,

where nk,i is the number of training samples that verify the
set of features Fk. When the training set is truly repre-
sentative of the actual variations within classes, this model
makes sense since it tends to 1 when the number of train-
ing samples grows, and yields a simple way to estimate the
P(Fk |C = ci,Θk). It is easy to check that we have then:

P(Fk |C = ci) =
nk,i + u

∑k(nk,i + u)
.

In practice, the value of u does not really influence the re-
sults as soon as it is higher than 0. In all our experiments,
we use u = 1. This factor can be interpreted as a Dirichlet
prior, since the class conditional probabilities are modelled
as multinomials [4].

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 E

va
lu

at
ed

 C
la

ss
 P

os
te

rio
rs

Number of Ferns Evaluated

Ratio thresholds (300 classes)
Simple thresholds (300 classes)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 E

va
lu

at
ed

 C
la

ss
 P

os
te

rio
rs

Number of Ferns Evaluated

Ratio thresholds (900 classes)
Simple thresholds (900 classes)

Figure 2. The number of class posteriors that needs to be evaluated decreases very rapidly when the probabilities are thresholded by their
ratio to the maximum probability. Plots show these curves when 300 and 900 classes are trained respectively.

Figure 3. Two of the images used for evaluation.

3.3. Handling Many Classes

At run-time, computing the class probabilities takes a
single lookup for each fern and their final multiplication.
However this has to be repeated for each class and as the
number of classes increases this quickly becomes burden-
some. Furthermore some of the class posteriors reach very
small values at the end of a multiplication of the first few
terms and their final value becomes irrelevant for class se-
lection. In principle we do not have to calculate the final
value of the posterior for each class as long as the selected
class does not change.

Here we consider two strategies for eliminating classes
during posterior evaluation as each term coming from a fern
is multiplied, so that the computation can be carried out
much more quickly. The first strategy is to use a simple
threshold, which can be learned from the training set, on
the posteriors as each term gets multiplied. This eliminates
classes that are unlikely to be the correct class. The sec-
ond approach is to use a threshold on the ratio of the maxi-
mum posterior to the considered class posterior at each step.
This is based on the observation that a class posterior that

300 Classes 900 Classes

No Thresholding 93.2 87.2
Simple Thresholds 87.2 80.6
Ratio Thresholds 90.2 84.1

Table 1. Percentage of correctly classified image patches with and
without thresholding. Since the thresholds are calculated using the
training set they can cause misclassification on a test set. In the
case of ratio thresholds this loss of performance is not significant.

has fallen back by a large margin is unlikely to catch up.
Note that this second strategy requires the computation of
the maximum posterior at the end of each step.

Figure 2 shows the average number of class posteriors
calculated at the end of each step for the two thresholding
strategies. As the plots clearly show, thresholds on the ratios
to maximum probability at each step decreases the number
of necessary evaluations significantly. The thresholds were
chosen to be as large as possible without causing a mis-
classification on the training set. For these experiments, we
used the two images shown Figure 3, and the percentage
of correctly classified image patches evaluated on randomly
generated images of these images. As can be observed from
Table 1 the ratio thresholds decrease the classification rate
only slightly and therefore can generalize well.

4. Comparing Ferns and Trees

Ferns and Random Trees are very similar in spirit but
differ in two important respects. In trees the binary tests are
organized hierarchically and the posterior distributions are
computed additively. By contrast, ferns are flat and compute
posteriors multiplicatively. In this section, we first compare
the two approaches. We then offer a theoretical insight into
why ferns appear to outperform trees, but only when the
training set is sufficiently large.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
R

at
e

of Structures (Depth/Size 10)

Ferns
Random Trees

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
R

at
e

of Structures (Depth/Size 10)

Ferns
Random Trees

Figure 4. The percentage of correctly classified image patches is shown against different classifier parameters for the fern and tree based
methods. The independence assumption between ferns allows the joint utilization of the features resulting in a higher classification rate.
The error bars show the 95% confidence interval assuming a Gaussian distribution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 250 500 750 1000 1250 1500 1750 2000

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
R

at
e

of Classes

Ferns (20 ferns with size 10)
Random Trees (20 trees with depth 10)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 250 500 750 1000 1250 1500 1750 2000

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
R

at
e

of Classes

Ferns (30 ferns with size 10)
Random Trees (30 trees with depth 10)

Figure 5. Classification using ferns can handle many more classes than Random Tree based methods. For both figures ferns with size 10
and trees with depth 10 are used.

4.1. Ferns Outperform Trees

We evaluate the performance of the proposed fern based
approach by comparing to the results of a Random Tree
based implementation. The number of tests in the ferns and
the depth of the trees are taken to be equal, and we compare
the classification rate when using the same number of struc-
tures, that is of ferns or Random Trees. In particular, the
same number of tests is performed on each keypoint, and
the same number of joint probabilities has to be stored.

We do our tests on the images presented 3 with 500
classes and calculate the average classification rate on
randomly generated test images while eliminating false
matches using object geometry. Since the feature selec-
tion is random, we repeat the test 10 times and calculate the
mean and variance of the classification rate and we perform
the test on the two images.

As depicted by Figure 4, despite the inaccuracy of the
independence assumptions the fern based classifier outper-
forms the combination of trees. Furthermore as the number

of ferns is increased the random selection method does not
cause large variations on the classifier performance.

We also investigate the behavior of the classification rate
as the number of classes increases. Figure 5 shows that a
larger number of classes does not affect the performance
of ferns much, while tree based methods can not cope with
many classes. In both experiments we have trained the clas-
sifiers using classes from three different images up to 700
classes for each image.

4.2. Linking the Two Approaches

Here we show that the two approaches are equivalent
when the training set is small and give some insights into
why the ferns perform better when it is large.

Recall that we evaluate P(Fk |C = ci) of Eq. (3)

P(Fk |C = ci) = PeP(Θ(Fk))+ µ(1−P(Θ(Fk))) ,

where Pe is the empirical probability and µ = 1
H

. Since
computing the product of such terms is the same as sum-

ming their logarithms, we write

logP(Fk |C = ci)

= log
[

µ
(

P(Θ(Fk))
(

Pe
µ −1

)

+ 1
)]

= logµ + log
[

1 + P(Θ(Fk))
(

Pe

µ −1
)]

≈ logµ + P(Θ(Fk))
(

Pe
µ −1

)

when P(Θ(Fk)) is small

= P(Θ(Fk))
µ +(log µ−P(Θ(Fk))) when P(Θ(Fk)) is small

= aPe + b,

where a and b depend on P(Θ(Fk)) and µ .
Therefore, when the training set is small and the empir-

ical probabilities are only crude estimates of the true ones,
there is not much difference in selecting the class either
based on the maximum of the products of the P(Fk |C = ci)
as the ferns do, or, as the maximum of the sum of the em-
pirical probabilities, as the trees do. In this case, the two
approaches are roughly equivalent.

By contrast, our experiments show that when the training
set is sufficient large the ferns perform much better. This
can be understood as follows: As soon as one single fern
attributes a very low probability to one class, the final com-
puted probability for the class is guaranteed to be low be-
cause of their multiplicative behavior. This does not occur
with trees due to their additive behavior. This increases the
discriminating power of ferns but requires posterior prob-
abilities that can be trusted. This is why the evaluation
method of Section 3.2 is required.

5. Results

We compare our ferns against SIFT [10], which is widely
reported as one of the most effective approaches. It com-
bines orientation estimation and SIFT descriptors to achieve
viewpoint invariance. We will show that ferns let us omit
costly preprocessing steps without loss in terms of per-
formance and sometimes even yield better performance.
We first compare classification rates and then computation
times.

5.1. Comparing Matching Rates

We compared the match rates of SIFT and ferns on the
sequence depicted by Figure 6, in which a mouse pad was
moved in front of a moving camera over a cluttered back-
ground. The mouse pad was undergoing large displace-
ments, which produces image blur and large scale, perspec-
tive, and illumination changes.

In the case of SIFT, we used the multi-resolution code
kindly provided by David Lowe, which computes the Lapla-
cian at several levels for each octave. By contrast, to test
the ferns, we used a simple keypoint detector that consid-
ers extrema of the Laplacian over 3 octaves only. This im-
plies that the patches our ferns have to work with are only

roughly correctly scaled whereas those fed to SIFT are com-
puted using a finely estimated scale. In other words, we use
a more primitive and simpler to implement keypoint extrac-
tion method, which should handicap us, but does not really
as we shall see.

We then train 20 ferns of size 14 as described in Sec-
tion 3 and use them to establish matches between the model
image and the sequence images selecting the most probable
class for each keypoint in the test image. In parallel, we
compute SIFT descriptors for the keypoints extracted from
the model images and match each of them against the key-
points in the sequence images by selecting the one which
has the nearest SIFT descriptor. We retain the 400 strongest
keypoints in the reference image, and 1000 keypoints in
the sequence images for the two methods. Then in both
cases we use robust RANSAC estimation to compute the
homography between the images, which is then refined us-
ing a non-linear estimation method using all matches that
are compatible with it. All matches are checked against this
homography and those who reprojection using this homog-
raphy is within 10 pixels are retained as inliers.

The graph of Figure 6 depicts the number of correct
matches obtained by both methods for all frames in the
sequence. Despite their simplicity, ferns match at least as
many points as SIFT and often even more.

As shown Figure 7, we also applied ferns on face images
to test the effect of non-planarity. Despite the planarity as-
sumption made for simplicity when generating the synthetic
training views, the ferns still perform well. The results ob-
tained with SIFT are similar and not repeated here.

5.2. Comparing Computation Times

It is difficult to perform a completely fair comparison be-
tween our ferns and SIFT for several reasons. SIFT reuses
intermediate data from the keypoint extraction to compute
canonic scale and orientations and the descriptors, while
ferns can rely on a low-cost keypoint extraction. On the
other hand, the distributed SIFT C code is not optimized,
and the Best-Bin-First K-tree of [3] is not used to speed up
the nearest-neighbor search.

However, it is relatively easy to see that our approach
requires much less computation. Performing the individ-
ual tests of Section 3 requires very little and most of the
time is spent computing the sums of the posterior proba-
bilities. Without taking into account the strategies of Sec-
tion 3.3 to speed things up, the classification of a keypoint
requires H×M additions, with H the number of classes, and
M the number of ferns. By contrast, SIFT uses 128H addi-
tions and as many multiplications when the Best-Bin-First
K-tree is not used. This represents an obvious advantage of
our method at run-time since M can be much less than 128
and is taken to be 20 in practice. Still note that in contrast
to our method SIFT does not require a training phase.

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

N
um

be
r

of
 In

lie
rs

Frame #

FERNS
SIFT

Figure 6. Matching a planar target over 1074 frames: Top row. Matches obtained using ferns for a few frames. Middle row. Matches
obtained using SIFT for the same frames. Bottom row. Number of correct matches obtained by both methods for all frames in the
sequence. Ferns match at least as many points as SIFT and often even more. The video sequence is available as supplemental material.

The major gain actually comes from the fact that ferns do
not require descriptors. This is significant because comput-
ing the SIFT descriptors, which is the most difficult part to
optimize, takes about 1ms on a MacBook Pro laptop with-
out including the time required to convolve the image. By
contrast, ferns take 13.5 10−3 milliseconds to classify one
keypoint into 200 classes on the same machine. Moreover,
ferns still run nicely with a primitive keypoint extractor,
such as the one we used in our experiments. When 300 key-
points are extracted and matched against 200 classes, our
implementation on the MacBook Pro laptop requires 20ms

per frame for both keypoint extraction and recognition in
640×480 images, and four fifth of the time is taken by the
extraction. This corresponds to a theoretical 50Hz frame
rate if one does factor in the time required for frame acqui-
sition. Training takes less than five minutes.

6. Conclusion

We have presented a general method for image patch
recognition that is effective for object pose estimation de-
spite severe perspective distortion. The “semi-naive” struc-

Figure 7. Matching face images with ferns. Despite the non-planarity of faces, ferns are still effective. Results with SIFT are similar and
not shown here.

ture of ferns is well adapted and allows a scalable, simple
and fast implementation to what is one of the most critical
step in many Computer Vision tasks. Furthermore the ferns
naturally allow trade offs between computing and discrimi-
native power. As computers become more powerful, we can
add more ferns to improve the performance. Conversely,
one can adapt to low computational power such those on
hand-held systems by reducing the number of ferns.

References

[1] Y. Amit. 2D Object Detection and Recognition: Mod-

els, Algorithms, and Networks. The MIT Press, 2002.

[2] Y. Amit and D. Geman. Shape Quantization and
Recognition with Randomized Trees. Neural Com-

putation, 9(7):1545–1588, 1997.

[3] J. Beis and D. Lowe. Shape Indexing using Approxi-
mate Nearest-Neighbour Search in High-Dimensional
Spaces. In Conference on Computer Vision and

Pattern Recognition, pages 1000–1006, Puerto Rico,
1997.

[4] C. Bishop. Pattern Recognition and Machine Learn-

ing. Springer, 2006.

[5] A. Böcker, S. Derksen, E. Schmidt, A. Teckentrup,
and G. Schneider. A Hierarchical Clustering Ap-
proach for Large Compound Libraries. Journal of

Chemical Information and Modeling, 45:807–815,
2005.

[6] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learn-
ing of object categories. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 28(4):594–
611, 2006.

[7] R. Fergus, P. Perona, and A. Zisserman. A Sparse Ob-
ject Category Model for Efficient Learning and Ex-

haustive Recognition. In Conference on Computer Vi-

sion and Pattern Recognition, July 2005.

[8] D. Hoiem, R. Sukthankar, H. Schneiderman, and
L. Huston. Object-based image retrieval using the sta-
tistical structure of images. Conference on Computer

Vision and Pattern Recognition, 02:490–497, 2004.

[9] V. Lepetit and P. Fua. Keypoint recognition using ran-
domized trees. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 28(9):1465–1479, Sept.
2006.

[10] D. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Com-

puter Vision, 20(2):91–110, 2004.

[11] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisser-
man, J. Matas, F. Schaffalitzky, T. Kadir, and L. V.
Gool. A comparison of affine region detectors. Inter-

national Journal of Computer Vision, 65(1/2):43–72,
2005.

[12] D. Nister and H. Stewenius. Scalable Recognition
with a Vocabulary Tree. In Conference on Computer

Vision and Pattern Recognition, 2006.

[13] C. Schmid and R. Mohr. Local Grayvalue Invari-
ants for Image Retrieval. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 19(5):530–
534, May 1997.

[14] J. Sivic and A. Zisserman. Video Google: Efficient vi-
sual search of videos. In Toward Category-Level Ob-

ject Recognition, volume 4170 of LNCS, pages 127–
144. Springer, 2006.

[15] F. Zheng and G. Webb. A comparative study of semi-
naive bayes methods in classification learning. In Pro-

ceedings of the Fourth Australasian Data Mining Con-

ference (AusDM05), pages 141–156, Sydney, 2005.

