
Multiple 3D Object Tracking for Augmented Reality

Youngmin Park∗

GIST, U-VR Lab

Vincent Lepetit†

EPFL, CVLab

Woontack Woo‡

GIST, U-VR Lab

ABSTRACT

We present a method that is able to track several 3D objects si-
multaneously, robustly, and accurately in real-time. While many
applications need to consider more than one object in practice, the
existing methods for single object tracking do not scale well with
the number of objects, and a proper way to deal with several objects
is required. Our method combines object detection and tracking:
Frame-to-frame tracking is less computationally demanding but is
prone to fail, while detection is more robust but slower. We show
how to combine them to take the advantages of the two approaches,
and demonstrate our method on several real sequences.

Index Terms:

1 INTRODUCTION

Single 3D object tracking using natural features has now been well
explored by the Computer Vision and Augmented Reality commu-
nities [4]. By contrast, the multiple object case, where several 3D
objects must be considered simultaneously, has not really been ad-
dressed, while it is often needed for real applications, for example
a tangible interface.

In this paper, we apply image feature recognition and keyframe
techniques to several objects, because they were shown to be very
robust for the single object case [8] and also for SLAM [3], by
preventing loss of track and drift. Unfortunately, it is not possible
to directly apply the method described in [8] in practice, because its
complexity would grow with the number of objects.

We therefore propose an approach that is able to efficiently deal
with several objects without concession to robustness. In addition,
it is particularly stable. The key is an efficient combination of fea-
ture recognition and feature tracking from frame to frame. Because
feature recognition is usually very time consuming, it is indeed very
tempting to introduce feature tracking, which is generally cheaper.
However, this has to be done carefully to avoid error propagation
that eventually leads to drift.

Our approach is somehow related to [12] but is much more robust
since ours exploits feature recognition. For each target object, we
have its CAD 3D model plus a small set of reference images we will
call “keyframes” of the object. We try to match each input frame
against only a subset of the keyframes to keep processing at frame-
rate, and track features lying on the visible objects over consecutive
frames. The two sets of matches, those with the previous frame and
those with the keyframes, are correctly combined by propagating
errors to estimate the object 3D poses. Thus, robustness is achieved
by regularly “injecting” features from the keyframes in the compu-
tation. Tracking features from frame-to-frame gives stability and
relaxes the need for considering every keyframe at every frame,
keeping the method efficient.

∗e-mail: ypark@gist.ac.kr
†e-mail: vincent.lepetit@epfl.ch
‡e-mail: wwoo@gist.ac.kr

In the remainder of the paper, we first discuss related work on
single and multiple object tracking. Then, we describe our method,
and present our results.

2 RELATED WORK

Many multiple object 2D tracking algorithms have been devel-
oped [9, 10] however the 2D problem is only remotely related to
the 3D case we address in this paper. By contrast, works on multi-
ple object 3D tracking are almost inexistent, and we will focus here
on recent single object 3D tracking.

The state-of-the-art is probably the tracking-by-detection ap-
proach of [8], which is the starting point of our method. It de-
tects the object in each input frame independently by matching fea-
ture points extracted in the input frame against those extracted in
some keyframes (or reference frames) representing the target ob-
jects. Other methods for this wide baseline matching, or recogni-
tion, of feature points are available [5, 1], but [8] is very simple
to implement and very fast. The approach is robust to occlusion,
light, scale and perspective changes. However, a naive extension to
several objects would not scale, since the system would have to try
all the objects for every single input frame, making the complexity
grow linearly with the number of objects.

Our method is also related to frame-by-frame 3D tracking ap-
proaches, which tracks image features such as edges [2] or feature
points [12] over the sequence. In [12], feature points are extracted
from the current frame and matched against those from the previ-
ous frame, but also against those extracted in keyframes. We use
a similar scheme, however the method of [12] to establish matches
with the keyframes is very vulnerable to fast motion, contrary to
ours. Another difference is the way we fuse the two sets of matches.
Our approach relies on error propagation, which allows proper error
handling.

3 MULTIPLE OBJECT TRACKING

In this section, we first give an overview of our multiple object de-
tection and tracking algorithm, and then detail it step by step.

3.1 Overview

As discussed in the introduction, we want to rely on object detec-
tion because it makes tracking applications more robust, but it has
to be done carefully to keep processing time consistent with real-
time constraints. An overview of our approach is given in Figure 2.
Our starting idea is to distribute the time complexity of detecting
multiple objects over consecutive frames. We do not try to detect
every object in every input frame but only as many as possible while
maintaining camera frame-rate. The objects present in the frame but
not detected will be detected in one of the few next frames. That
results in a small delay that is kept under a second in practice, so it
is not really perceptible by the user.

When a new object appears, it is therefore quickly detected by
the system which initializes a frame-by-frame tracking for this ob-
ject. To do so, we rely on what we call “temporal keypoints”, which
are feature points detected on the object surface and that matched
over consecutive frames. From them, we can continue to estimate
the object pose accurately even without object detection because it

Figure 1: Multiple 3D object tracking: Our method can automatically recognize and track several objects simultaneously under partial occlusions
and illumination changes, at about 15 Hz.

Keypoint detection

Matching with

keyframe subset

Robust pose

estimation

Matching with

previous frame

Temporal

keypoints creation

Keyframe

detected?

Initialized?

Robust pose

estimation

Matches merge Track initialization

N

Y

Y

N

Thread #1 Thread #2

Figure 2: Overview of the processing for one input frame. Detection
and frame-by-frame tracking are performed on two different cores in
parallel.

is less time consuming method compared to object detection. The
other advantage is that it is usually more accurate.

In the meantime, we keep trying to detect the application objects,
even when a frame-by-frame tracking process is already running for
them. That way, we prevent common problems such as loss of track
due to fast motion or occlusions, and drift. Note that detection and
tracking are clearly separated and most of the computations can be
done on different cores of the processor in parallel.

In the next sections, we first detail the data structure we use to
represent the objects tracked by the system, then we discuss the
detection process, and describe how temporal keypoints are used
and fused to the object detection results to provide a stable track of
the visible objects.

3.2 Object Model

Our object model contains both the geometrical information and
appearance of a target object. The geometrical information is a
standard CAD 3D model stored as a list of triangles. Many software
now exist to easily build such 3D model from a set of pictures.

The appearance part is made of a small set of keyframes that
are registered images of the object shot from various viewpoints
so that they cover most of the object. Usually, 3 to 4 keyframes
are sufficient to cover an object along 360 degrees with some parts

taken more than once. In each keyframe, we extract feature points
we call keypoints. It is easy to estimate the 3D locations Mi of these
keypoints by back-projecting them on the object 3D model. These
keypoints and their 3D locations are stored as well. They will be
used during the detection phase.

3.3 Sequential Multiple Object Detection

3.3.1 Keyframe Selection

We divide all the keyframes from all the objects into smaller sub-
sets and match one subset with each camera image that is we build
subsets Si such that:

S1 =
{

κ1,κ2, · · · ,κ f

}

S2 =
{

κ f +1,κ f +2 · · · ,κ2 f

}

...

SN/ f =
{

κ f · f loor(N
f
)+1, · · · ,κN

}

,

where the κ j are the keyframes, f is the number of keyframes
that can be handled at frame-rate, and N is the total number of
keyframes.

Each input frame is matched against the keyframes of one of
these subsets Si using the method described in the next section. The
subsets are simply considered iteratively one after the other: after
N/ f frames, we restart from S1.

3.3.2 Matching with Keyframes and Pose Estimation

We use the method described in [8] to match the input frame against
keyframes because it is fast and robust under perspective distortion
and different viewing conditions. It gives a number of initial cor-
respondences between feature points extracted in the input frame
and the keypoints of each of the keyframes in Si for which the 3D
locations Mi are known. Since some of these correspondences can
be erroneous, the object pose is estimated using RANSAC and a
non-iterative P-n-P algorithm [6].

The detection is considered successful when the number of in-
liers found by RANSAC is larger than a threshold. If the object was
no present before, we perform a non-linear optimization to refine
the object pose computed by RANSAC to initialize the frame-by-
frame tracking. If the object was already present, the inlier matches
are added to the frame-by-frame matching to estimate the object
pose as it will be described below in Section 3.4.

3.4 Stable Tracking with Temporal Keypoints

We now explain our stable tracking algorithm that combines object
detection and frame-by-frame tracking. Frame-by-frame tracking
has two purposes: It completes detection to track the object when-
ever it is present, and it stabilizes the estimated pose, removing the
jittering effect that detection alone would produce.

We extract feature points in each input frame, and match them
against those extracted in the previous frame using standard tech-
niques based on cross-correlation and local search. Compared to
the KLT tracker [11], it allows us to easily handle appearing and
disappearing feature points, and to prevent drift of the tracked loca-
tions. We call these feature points “temporal keypoints”.

We fuse temporal keypoints with keypoints matched during ob-
ject detection to estimate the object poses. For a given object, its

pose parameters at time t p(t) is estimated by minimizing:

p(t) = argmin
p

∑
i

ρ
(

‖φ(p,Mi)−mi‖
2
)

+∑
j

w jρ
(

‖φ(p,X j)−x j‖
2
)

(1)
where p is a 6-vector that contains the rotation and translation val-
ues, the Mi are the 3D locations of the keypoints extracted from
the matched keyframe and the mi, their 2D locations, found by the
object detection process explained Section 3.3.2, the X j and the x j

are respectively the 3D and 2D locations found for the jth temporal
keypoint. φ(p,M) is a function that returns the 2D projection of M

under camera pose p.
The terms of the sums in Eq. (1) are weighted differently: The

w js are weights that will allow to handle the fact that the X j are not
known exactly, as it will be detailed below. Since the 3D locations
Mi come from the keyframes registered offline, we assume they are
error-free and we do not use such a weight for the corresponding
terms. ρ(·) is a robust estimator; we use an approximation of the
Tukey estimator:

ρ(x2) =

{

x2 when x2 < c2

c2 otherwise
, (2)

where c is a thresholding value. When no correspondences are
available from the detection, only the second term of the sum is
used. In our implementation, we use the Levenberg-Marquardt al-
gorithm for minimization.

The 3D locations of the temporal keypoints are estimated by
back-projecting their 2D location in the previous image using the

estimated pose p(t−1). Back-propagation can be performed effi-
ciently using OpenGL rendering to quickly find the triangle on

which the keypoint lies [12]. Since p(t−1) is only an approxima-
tion of the true pose, we use the w js to weight the contributions of
the different temporal keypoints, according to their error estimates.
We take the w j as:

w j = ρ(tr(ΣX j
)) , (3)

where tr(·) is the trace function, and ΣX j
is the covariance on the

3D location X j . ΣX j
is obtained in two steps: First we estimate the

covariance Σp(t−1) of the pose estimate for the previous frame. Then

we propagate this error to X j.
Under the standard assumption that the correspondences are in-

dependent, Σp(t−1) can be computed by back-propagation as:

Σp(t−1) =

(

(

∂ fk

∂p

)⊤

p(t−1)

Σk

(

∂ fk

∂p

)

p(t−1)

)−1

, (4)

where Σk is the 2×2 covariance on the extracted keypoints, and the
fk are functions that can be expressed as:

fk(p) = φ(p,X(t−1)) . (5)

Figure 3: Keyframes used in our experiments.

In this expression, X
(t−1)
k

denotes the kth temporal keypoint used to

estimate pose p(t−1). Let’s now consider a temporal keypoint that

comes from a match x
(t−1)
j ↔ x j . The covariance ΣX j

of its 3D

location X j can be estimated by forward propagation of Σp(t−1) as:

Σ
X

(t)
j

=
(

∂gk

∂p

)

p(t−1),x
(t−1)
j

Σp(t−1)

(

∂gk

∂p

)⊤

p(t−1),x
(t−1)
j

+

(

∂gk

∂x

)

p(t−1),x
(t−1)
j

Σp(t−1)

(

∂gk

∂x

)⊤

p(t−1),x
(t−1)
j

, (6)

where gk(p,x) is a function that back-projects keypoint x
(t−1)
j on

the object under pose p. Its Jacobian matrices in Eq. (6) are com-

puted at pose p(t−1) and for keypoint x
(t−1)
j .

4 EXPERIMENTS

For our experiments, we considered the seven box-shaped objects
and the two planar objects displayed Figure 3. The objects were
registered in the keyframes using manual 3D-2D correspondences.
More complex shaped objects could also be considered if their 3D
model is available. We used only one keyframe per subset.

We tested our implementation on a 3.2 GHz multi-core CPU PC.
The total keyframe set includes 9 keyframes shown in Figure 3. It
works at 15 to 20 frames per second, which is less than the detec-
tion only [8] because of the combined tracking steps. However, it
compensates with multiple objects and improves stability, and more
importantly, the tracking frame rate does not decreased drastically
with the number of considered objects.

In Figure 1, up to three objects are in the point of view of the
camera and tracked simultaneously. The pose of the objects are
accurately estimated despite the partial occlusions between objects.
Figure 4 shows another example where one object is completely
occluded by another one but tracked again when it is visible again.

Figure 5 demonstrates the accuracy of the proposed tracking al-
gorithm. We fixed a camera and tracked the movement of an object
which was constrained to lie on a planar surface as shown on the
first row. The recovered trajectory for the object centroid is shown
on the second row and exhibits only very limited jitter and lies on a
3D plane as expected. This validates the accuracy of the system.

Figure 6 plots the evolution of frame rate for a typical sequence.
While the number of tracked objects varies over the sequence, the
frame rate is almost constant around 16Hz, showing the approach is
suitable for interactive applications and does not degrade with the
number of tracked objects as long as this number remains reason-
able.

Figure 4: Tracking several objects under difficult conditions: The objects are moving fast, one object completely occludes the other one in the
middle of the sequence, but the occluded object is re-initialized when it is visible again.

(a) (b) (c)

−200 −150 −100 −50 0 50

−100

−50

0

50

100

600

650

700

750

800

850

Y (mm)

X (mm)

Z
 (

m
m

)

(d)

−200
−150

−100
−50

0
50 −100

−50

0

50

100

600

650

700

750

800

850

Y (mm)

X (mm)

Z
 (

m
m

)

(e)

Figure 5: Accuracy of the proposed tracking algorithm: (Top row:) An
object is moved while constrained to lie on a planar surface. (Bottom
row:) The recovered trajectory for the object centroid exhibits only
small jitter and lies on a 3D plane as expected.

5 CONCLUSION & FUTURE WORK

We presented a method for tracking simultaneously multiple 3D ob-
jects using a monocular camera. From the experiments, it is shown
that multiple objects are successfully considered in a reasonable
frame rate. Typical applications are table-top AR and tangible in-
teraction applications.

However, our approach still not properly scales with the number
of objects and is currently limited to a database with a few tens of
objects. To handle larger databases, it may be interesting to first
limit the number of possible present objects with a scalable recog-
nition method such as [7] which does not provide any exact pose but
can provide the list of the visible objects. This will be addressed in
future work.

ACKNOWLEDGEMENTS

This research is supported by the Foundation of UCN Projects, the
MKE, and the 21C Frontier R&D Program in Korea as a result of
subproject UCN 08B3-O1-20S

REFERENCES

[1] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust

features. In 9th European Conference on Computer Vision, May 2006.

0 200 400 600 800 1000 1200
0

1

2

3

N
u

m
b

er
 o

f
o

b
je

ct
s

0 200 400 600 800 1000 1200

14

16

18

20

Frame number

F
ra

m
e

ra
te

 (
H

z)

Number of objects

Frame rate (Hz)

Figure 6: Tracking frame rate: The green curve represents the evolu-
tion of the frame rate over a period of time, the blue curve represents
the number of objects tracked by the system. While the number of
objects varies, the frame rate remains almost constant around 16 Hz.

[2] T. Drummond and R. Cipolla. Real-time visual tracking of complex

structures. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 24(7):932–946, July 2002.

[3] G. Klein and D. Murray. Parallel tracking and mapping for small AR

workspaces. In International Symposium on Mixed and Augmented

Reality, Nara, Japan, November 2007.

[4] V. Lepetit and P. Fua. Monocular model-based 3D tracking of rigid

objects. Foundations and Trends in Computer Graphics and Vision,

1(1):1–89, 2005.

[5] D. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

[6] F. Moreno-Noguer, V. Lepetit, and P. Fua. Accurate non-iterative O(n)

solution to the PnP problem. In IEEE International Conference on

Computer Vision, Rio de Janeiro, Brazil, October 2007.

[7] D. Nister and H. Stewenius. Scalable recognition with a vocabulary

tree. In Conference on Computer Vision and Pattern Recognition, vol-

ume 2, pages 2161–2168, October 2006.

[8] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten

lines of code. In Conference on Computer Vision and Pattern Recog-

nition, Minneapolis, MI, June 2007.

[9] D. Reid. An Algorithm for Tracking Multiple Targets. IEEE Trans.

on Automatic Control, 24(6):843–854, Dec 1979.

[10] S. Oh, S. Russell, and S. Sastry. Markov Chain Monte Carlo Data As-

sociation for General Multiple-Target Tracking Problems. In Proc. of

the IEEE Conference on Decision and Control, Bahamas, Dec. 2004.

[11] C. Tomasi and T. Kanade. Detection and tracking of point fea-

tures. Technical Report CMU-CS-91-132, Carnegie Mellon Univer-

sity, April 1991.

[12] L. Vacchetti, V. Lepetit, and P. Fua. Stable real-time 3D tracking using

online and offline information. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(10):1391–1402, 2004.

