
Extended Keyframe Detection with Stable
Tracking for Multiple 3D Object Tracking

Youngmin Park, Student Member, IEEE, Vincent Lepetit, and Woontack Woo, Member, IEEE

Abstract—We present a method that is able to track several 3D objects simultaneously, robustly, and accurately in real time. While

many applications need to consider more than one object in practice, the existing methods for single object tracking do not scale well

with the number of objects, and a proper way to deal with several objects is required. Our method combines object detection and

tracking: frame-to-frame tracking is less computationally demanding but is prone to fail, while detection is more robust but slower. We

show how to combine them to take the advantages of the two approaches and demonstrate our method on several real sequences.

Index Terms—Augmented reality, computer vision, object tracking, object detection.

Ç

1 INTRODUCTION

SINGLE 3D object tracking using natural features has now
been well explored by the Computer Vision and

Augmented Reality communities [1]. By contrast, the
multiple object case, where several 3D objects must be
considered simultaneously, has not really been addressed,
while it is often needed for real applications, for example, a
tangible interface.

In this paper, we apply image feature recognition and
keyframe techniques to several objects because they have
been shown to be very robust for the single object case [2]
and also for SLAM [3] by preventing loss of track and drift.

Unfortunately, it is not possible to directly apply the
method described in [2] in practice because its complexity
grows with the number of objects.

We therefore propose an approach that is able to
efficiently deal with several objects without concession to
robustness. In addition, it is particularly stable. The key is

an efficient combination of feature recognition and feature
tracking from frame-to-frame. Because feature recognition
is usually very time consuming, it is indeed very tempting
to introduce feature tracking, which is generally cheaper.
However, this has to be done carefully to avoid error

propagation that eventually leads to drift.
Our approach is somehow related to [4] but is much

more robust since ours exploits feature recognition. For
each target object, we have its CAD 3D model plus a small
set of registered reference images we will call “keyframes”

of the object. Some example keyframes are shown Fig. 2. We
try to match each input frame against only a subset of the

keyframes to keep processing at frame rate, and track
features lying on the visible objects over consecutive frames.
The two sets of matches, those with the previous frame and
those with the keyframes, are correctly combined by
propagating errors to estimate the object 3D poses. Thus,
robustness is achieved by regularly “injecting” features
from the keyframes in the computation. Moreover, tracking
features from frame-to-frame gives stability and relaxes the
need for considering every keyframe at every frame,
keeping the method efficient. We also take into account
the object visibility to properly handle occlusion between
the tracked objects. A preliminary version of this work was
published in [5]. This paper describes several technical
improvements, presents more experiments, and discusses
the recent literature.

In the remainder of the paper, we first discuss related
work on single and multiple object tracking. Then, we
describe our method and present our results.

2 RELATED WORK

Many multiple object 2D tracking algorithms have been
developed [6], [7]. However, the 2D problem is only
remotely related to the 3D case we address in this paper
and we will not discuss it here. By contrast, works on
multiple object 3D tracking are rare and most of them are
very recent. We will start by quickly reviewing single object
3D tracking methods and then discuss the few existing
works on multiple object 3D tracking.

2.1 Single Object Tracking by Detection

A very robust way to track objects is to rely on a wide
baseline matching of feature points. The target object can be
detected in each input frame independently by matching
feature points extracted in the input frame against those
extracted in some reference frames (also called keyframes)
representing the target objects. This was done, for example,
in [2], [8], [9].

Many methods for wide baseline matching, or recogni-
tion, of feature points are available [10], [11], but [2] is very
simple to implement and very fast. It is based on a classifier

1728 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 11, NOVEMBER 2011

. Y. Park and W. Woo are with the U-VR Lab., Department of Information
and Communications, Gwangju Institute of Science and Technology,
Oryong-dong, Buk-gu, Gwangju, South Korea.
E-mail: {ypark, wwoo}@gist.ac.kr.

. V. Lepetit is with the EPFL/IC/ISIM/CVLab, Station 14, CH-1015
Lausanne, Switzerland. E-mail: vincent.lepetit@epfl.ch.

Manuscript received 24 Feb. 2010; revised 18 Aug. 2010; accepted 3 Nov.
2010; published online 9 Dec. 2010.
Recommended for acceptance by D. Schmalstieg.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2010-02-0051.
Digital Object Identifier no. 10.1109/TVCG.2010.262.

1077-2626/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

called Ferns that is trained to recognize feature points under
image perturbation including perspective change, and our
method makes use of this technique for the detection part. It
is robust to occlusion, lighting, scale, and perspective
changes. However, a naive extension to several objects
would not scale, since the system would have to try all the
objects for every single input frame, making the complexity
grow linearly with the number of objects.

2.2 Frame-to-Frame Tracking

Our method is also related to frame-by-frame 3D tracking
approaches, which tracks image features such as edges [12],
[13] or feature points [4] over the sequence. In [4], feature
points are extracted from the current frame and matched
against those from the previous frame, but also against
those extracted in keyframes.

We use a similar scheme, however the method of [4] to
establish matches with the keyframes is very vulnerable to
fast motion, contrary to ours. Another difference is the way
we fuse the two sets of matches. Our approach relies on
error propagation, which allows proper error handling.

2.3 Multiple Object 3D Tracking

A few works on multiple object 3D tracking appeared
recently [14], [15], [16]. [14] introduces a particularly fast
matching method based on histograms created during a
training phase. It attempts to detect the objects in each frame
independently, without exploiting temporal constraints.

By contrast, and similarly to our own work, [15] and [16]
combine detection and tracking. In particular, [15] opti-
mizes a score evaluating the trade-off between detection
and frame-to-frame tracking, as detection is more robust but
requires more time. It also “masks” the parts of the image
where an object is already tracked, to avoid running the
detection process on these parts and thus save computation
time. These different aspects could be integrated in our
approach. In this paper, we mostly focus on how to
propagate the pose and 3D locations uncertainties in the
context of detection and tracking combinations.

3 MULTIPLE OBJECT 3D TRACKING

In this section, we first give an overview of our multiple
object detection and tracking algorithm, and then detail it
step by step.

3.1 Overview

As discussed in the introduction, we want to rely on object
detection because it makes tracking applications more
robust, but it has to be done carefully to keep processing
time consistent with real-time constraints. An overview of
our approach is given in Fig. 3. Our starting idea is to
distribute the time complexity of detecting multiple objects
over consecutive frames. We do not try to detect every object
in every input frame but only as many as possible while
maintaining camera frame rate. The objects present in the
frame but not detected will be detected in one of the next few
frames. That results in a small delay that is kept under a
second in practice, so it is not really perceptible by the user.

When a new object appears, it is therefore quickly
detected by the system which initializes a frame-by-frame

tracking for this object. To do so, we rely on what we call
“temporal keypoints,” which are feature points detected on
the object surface and that matched over consecutive
frames. From them, we can continue to estimate the object
pose accurately even without object detection because it is
less time-consuming method compared to object detection.
The other advantage is that it is usually more accurate.

In the meantime, we keep trying to detect the application
objects, even when a frame-by-frame tracking process is
already running for them. That way, we prevent common
problems such as loss of track due to fast motion or
occlusions, and drift. Note that detection and tracking are
clearly separated and most of the computations can be done
on different cores of the processor in parallel.

In the next sections, we first detail the data structure we
use to represent the objects tracked by the system, then we
discuss the detection process and describe how temporal
keypoints are used and fused to the object detection results
to provide a stable track of the visible objects.

3.2 Object Model

Our object model contains both the geometrical information
and appearance of a target object. The geometrical
information is a standard CAD 3D model stored as a list
of triangles. Many software tools now exist to easily build
such 3D models from a set of pictures.

The appearance part is made of a small set of keyframes
that are registered images of the object shot from various
viewpoints so that they cover most of the object. Usually, 3-
4 keyframes are sufficient to cover an object along
360 degrees with some parts taken more than once. In each
keyframe, we extract feature points we call keypoints. It is
easy to estimate the 3D locations Mi of these keypoints by
back projecting them on the object 3D model. These
keypoints and their 3D locations are stored as well. They
will be used during the detection phase.

3.3 Sequential Multiple Object Detection

3.3.1 Keyframe Selection

We group the keyframes for all the objects into different
subsets. We match each input frame against only one
subset, the different subsets being tried in turn. This is a
simple method to keep the detection running at frame rate,
where the price to pay is a possible short lag between the
apparition of an object and its detection by the system.

By contrast with our previous work [5], each subset
contains only keyframes from a specific object. This allows
us to have a more efficient keyframe detection strategy. A
keyframe that is matched successfully with an input frame
is likely to also match the next input frames. Such a
keyframe is therefore tagged to be tried first the next time
an input frame must be matched against its subset. If the
match score between this keyframe and the input frame is
sufficiently high, we can consider the next subset without
checking the other keyframes in the same subset. This
approach allows to save computation time without sacrifi-
cing robustness most of the time. More details about
keyframe matching are described in the next section.

3.3.2 Matching with Keyframes and Pose Estimation

We use the method described in [2] to match the input
frame against keyframes because it is fast and robust under

PARK ET AL.: EXTENDED KEYFRAME DETECTION WITH STABLE TRACKING FOR MULTIPLE 3D OBJECT TRACKING 1729

perspective distortion and different viewing conditions. It
gives a number of initial correspondences between feature
points extracted in the input frame and the keypoints of
each of the keyframes in Si for which the 3D locations Mi

are known. Since some of these correspondences can be
erroneous, the object pose is estimated using RANSAC and
a noniterative P-n-P algorithm [17].

The detection is considered successful when the number
of inliers found by RANSAC is larger than a threshold. If
the object was not present before, we perform a nonlinear
optimization to refine the object pose computed by
RANSAC to initialize the frame-by-frame tracking. If the
object was already present, the inlier matches are added to
the frame-by-frame matching to estimate the object pose as
it will be described below in Section 3.4.

3.3.3 Evenly Distributed Keypoint Extraction

Extracting keypoints for object detection and tracking must
be done with care, especially in our case where we want to
consider different objects simultaneously. The number of
keypoints must be kept reasonably low to maintain
efficiency, but enough keypoints must be extracted on an
object if the system must detect and track this object.
Keeping only the strongest keypoints over the image would
not work: as shown in Fig. 4, if two objects are visible, one
much more textured than the other one, the less textured
object will exhibit much less keypoints, making detection
and tracking for this object likely to fail.

Therefore, we adopt a mechanism to evenly distribute
the keypoints over the input image. The first step is to
extract (much) more than N keypoints, where N is the
number of keypoints we actually want to extract. The image
is split into M �M and we keep the N

M2 strongest keypoints
in each region. This results into a distribution that is now
more suitable to detection and tracking.

3.4 Stable Tracking with Temporal Keypoints

We now explain our stable tracking algorithm that
combines object detection and frame-by-frame tracking.
Frame-by-frame tracking has two purposes: it completes
detection to track the object whenever it is present, and it
stabilizes the estimated pose, removing the jittering effect
that detection alone would produce.

We extract feature points in each input frame and match
them against those extracted in the previous frame using
standard techniques based on cross-correlation and local
search. Compared to the KLT tracker [18], it allows us to
easily handle appearing and disappearing feature points,
and to prevent drift of the tracked locations. We call these
feature points “temporal keypoints.”

3.4.1 Robust Pose Estimation

We fuse temporal keypoints with keypoints matched
during object detection to estimate the object poses. For a
given object, its pose parameters at time t, pðtÞ, are estimated
by minimizing

pðtÞ ¼ arg min
p

X

i

�ðk�ðp;MiÞ �mik
2Þ

þ
X

j

wj�ðk�ðp;XjÞ � xjk
2Þ;

ð1Þ

wherep is a 6-vector that contains the rotation and translation

values; theMi are the 3D locations of the keypoints extracted

from thematched keyframe; themi, their 2D locations, found

by the object detection process explained in Section 3.3.2;

and the Xj and xj are, respectively, the 3D and 2D locations

found for the jth temporal keypoint.�ðp;MÞ is a function that

returns the 2D projection of M under camera pose p.
The terms of the sums in (1) are weighted differently: the

wjs are weights that will allow to handle the fact that the Xj

are not known exactly, as it will be detailed below. Since the

3D locationsMi come from the keyframes registered offline,

we assume they are error-free and we do not use such a

weight for the corresponding terms. �ð�Þ is a robust

estimator; we use an approximation of the Tukey estimator

�ðxÞ ¼
x2 when x2 < c2

c2 otherwise;

�

ð2Þ

where c is a thresholding value. When no correspondences

are available from the detection, only the second term of the

sum is used. In our implementation, we use the Levenberg-

Marquardt algorithm for minimization.

3.4.2 Temporal Keypoint Generation

The 3D locations of the temporal keypoints are estimated by

back-projecting their 2D location in the previous image using

the estimated pose pðt�1Þ. Back-projection can be performed

efficiently using OpenGL rendering to quickly find the

triangle on which the keypoint lies [4]. This way, we can also

easily handle occlusion between the tracked objects by

assigning the temporal keypoint to the closest object.
Since pðt�1Þ is only an approximation of the true pose, we

use the wjs to weight the contributions of the different

temporal keypoints, according to their error estimates. We

take wj as

wj ¼ !ðtrð�Xj
ÞÞ; ð3Þ

where !ðxÞ ¼ �0ðxÞ
x

is the weight function corresponding to

the robust estimator �ð:Þ, trð�Þ is the trace function, and �Xj

is the covariance on the 3D location Xj. �Xj
is obtained in

two steps: first, we estimate the covariance �pðt�1Þ of the

pose estimate for the previous frame. Then, we propagate

this error to Xj.
Under the standard assumption that the correspon-

dences are independent, �pðt�1Þ can be computed by back-

propagation as

�pðt�1Þ ¼
@fk

@p

� �>

pðt�1Þ

�k

@fk

@p

� �

pðt�1Þ

 !�1

; ð4Þ

where �k is the 2� 2 covariance on the extracted keypoints,

and the fk are functions that can be expressed as

fkðpÞ ¼ �
�

p;X
ðt�1Þ
k

�

: ð5Þ

In this expression, X
ðt�1Þ
k denotes the kth temporal keypoint

used to estimate pose pðt�1Þ. Let’s now consider a temporal

keypoint that comes from a match x
ðt�1Þ
j $ xj. The

covariance �Xj
of its 3D location Xj can be estimated by

forward propagation of �pðt�1Þ as

1730 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 11, NOVEMBER 2011

�
X

ðtÞ
j

¼
@gk

@p

� �

pðt�1Þ;x
ðt�1Þ
j

�pðt�1Þ

@gk

@p

� �>

pðt�1Þ;x
ðt�1Þ
j

þ
@gk

@x

� �

pðt�1Þ;x
ðt�1Þ
j

�pðt�1Þ

@gk

@x

� �>

pðt�1Þ;x
ðt�1Þ
j

ð6Þ

where gkðp;xÞ is a function that back-projects keypoint
x
ðt�1Þ
j on the object under pose p. Its Jacobian matrices in (6)

are computed at pose pðt�1Þ and for keypoint x
ðt�1Þ
j .

3.4.3 Temporal Keypoint Verification

Temporal keypoints that lie on an unknown object occlud-
ing a tracked object may cause drift even when using robust
estimation. We therefore use an extra step after the frame-
to-frame tracking stage.

This verification is done by predicting the appearance
of the point using the object pose estimated for the
previous image and its appearance in the keyframe. Then,
the predicted appearance is computed with the input
image using Normalized Cross Correlation. If the NCC
score is higher than a predefined threshold, the point is
kept; otherwise, it is likely to lie on an occluding object
and it is discarded.

We first select the keyframe having the closest orienta-
tion to the estimated object pose in the input image and use
this keyframe to predict the appearance of each temporal
keypoint in the area of interest as shown in Fig. 5. We
generate four 3D points ci that define a 3D square centered
on the keypoint 3D location Xj and tangent to the object
surface. To do that, we consider a first vector P0 which
origin corresponds to the keypoint and which points
toward one of the vertices of the mesh triangle the keypoint

lies on: P0 ¼ V0 �Xj. An orthogonal vector that lies on the
same triangle can be obtained by computing the cross-
product of P0 and the vector normal n to the triangle:
P1 ¼ n�P0. The ci points can finally be created as

ci ¼ Xj þ sð�P0 �P1Þ; ð7Þ

PARK ET AL.: EXTENDED KEYFRAME DETECTION WITH STABLE TRACKING FOR MULTIPLE 3D OBJECT TRACKING 1731

Fig. 3. Overview of the processing for one input frame. Detection and
frame-by-frame tracking are performed on two different cores in parallel.

Fig. 1. Multiple 3D object tracking: our method can automatically recognize and track several objects simultaneously under partial occlusions and
illumination changes, at about 40 Hz.

Fig. 2. Keyframes with registered 3D CAD models used in our experiments.

where s is a scaling factor which determines the size of
the patch.

Once we have the 3D coordinates fcig of the patch, we
project them into both the keyframe and the input image
and compare the corresponding 2D patches with NCC. The
temporal keypoint is kept as valid only if the NCC between
the patches is higher than a predetermined threshold.

3.5 Thread Synchronization

The detection and tracking threads require a correct
synchronization if we do not want to lose the advantage
of the two processes running in parallel. In our previous
work [5], we used a simple synchronization where both
threads begin on a frame feed as shown in Fig. 6a. It is
actually possible to improve the synchronization so that
each thread advance to the following process without
suspending as shown in Fig. 6b. This scheme is of a
different nature than [19] because in our case both threads
are designed to respond to every frame.

After keyframe matching, the detection thread sends the
detection result to the tracking thread and moves on to the
next frame. While the detection thread is grabbing and
matching the next image (Itþ1), the tracking thread is
working with the current image (It). This asynchronous
process causes no negative effect since the tracking thread
completes before the keyframe detection of the next image,

and gives more time for frame-to-frame tracking as shown
in Fig. 6b as dotted areas.

4 EXPERIMENTS

In order to evaluate our approach, we considered the seven
objects shown Fig. 2. For each object, we used one or two
keyframes to cover the both sides or large view difference of
the objects. The models and the objects in the keyframes
were registered by manual 3D-2D correspondences. More
complex shaped objects could also be considered if their 3D
model is available.

We tested our implementation on a 3.2 GHz multicore
CPU PC. It works at around 40 frames per second, which is
almost the same as when we run the detection only [2]
despite of the combined tracking steps. It also handles
multiple objects and improves stability, and more impor-
tantly, the tracking frame rate does not decrease signifi-
cantly with the number of considered objects.

In Fig. 1, up to three objects are in the field of view of the
camera and tracked simultaneously. The pose of the objects
is accurately estimated despite the partial occlusions
between objects. More difficult conditions were tested in
the sequence of Fig. 7. Up to five objects appear in the image
and occlude each other. Sometimes, only a very small part
of the object is visible but the object is still tracked
successfully. Fig. 8 shows another sequence where one
object is completely occluded by another one but tracked
again when it is visible again.

4.1 Accuracy

Fig. 9 demonstrates the accuracy of the proposed tracking
algorithm. We fixed a camera and tracked the movement of
an object which was constrained to lie on a planar surface as
shown on the first row. The recovered trajectory for the
object centroid is shown on the second row and exhibits
only very limited jitter and lies on a 3D plane as expected.
This validates the accuracy of the system.

4.2 Comparison with Detection Only

Fig. 10 compares the results obtained with the proposed
method and the results obtained with detection only on the
sequence of Fig. 7. For clarity, the graph shows only one
coordinate of the estimated trajectory of the objects. Our
method improves the stability of the trajectory and
improves robustness because the tracking is maintained
even when the detection fails.

1732 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 11, NOVEMBER 2011

Fig. 5. Creation of a patch for temporal keypoint verification. c0-c3 are
the patch corners on the model surface.

Fig. 4. Extracting evenly distributed keypoints. N ¼ 1;000 keypoints
extracted: (a) When keeping the strongest keypoints over the whole
image. Most of the keypoints are clustered at the bottom of the image in
this example. (b) When first splitting the image into M �M regions, and
keeping the N

M2 strongest keypoints in each region. The keypoints
distribution is now more suitable to detection and tracking. (c) and (d)
shows the density of the keypoints in the regions by the two methods.

Fig. 6. Thread synchronization schemes used (a) in our previous work
[5] and (b) in this paper. (a) Both detection and tracking starts at a new
frame feed. (b) The threads advance to the next frame processing
without suspension.

4.3 Occlusion

The contribution of the extra step of temporal keypoint
verification described in Section 3.4.3 is presented in Fig. 11.

The temporal keypoints which have undergone the ver-
ification step are classified into valid and invalid keypoints
as shown in the second column of Fig. 11. When we
consider only valid temporal keypoints, the tracking
becomes robust and works correctly as the last column in
Fig. 11.

4.4 Frame Rate

Fig. 12 plots the evolution of frame rate for the sequence
shown in Fig. 7. While the number of tracked objects varies
over the sequence, the frame rate of keyframe detection is
almost constant around 40 Hz which is close to a single
object detection. This is achieved by the subset approach in
Section 3.3.2. The frame-to-frame tracking is always faster
than the detection even with every detected object. This
shows that our approach is suitable for interactive applica-
tions and does not degrade with the number of tracked
objects as long as this number remains reasonable.

4.5 Detailed Computation Times

Table 1 shows the performance measurement of the
keyframe detection and frame-to-frame tracking threads.
The time was measured through the image sequence shown
in Fig. 7. The frame-to-frame tracking had to consider up to

PARK ET AL.: EXTENDED KEYFRAME DETECTION WITH STABLE TRACKING FOR MULTIPLE 3D OBJECT TRACKING 1733

Fig. 9. Accuracy of the proposed tracking algorithm. (a) An object is
moved while constrained to lie on a planar surface. (b) The recovered
trajectory for the object centroid exhibits only small jitter and lies on a 3D
plane as expected.

Fig. 8. Tracking several objects under difficult conditions: the objects are moving fast, one object completely occludes the other one in the middle of
the sequence, but the occluded object is re-initialized when it is visible again.

Fig. 7. The sequence used for detection and tracking performance evaluation. The 3D CAD models are projected with estimated poses by our
tracking. Up to five objects appear in the same frame. (b) and (e) show that the proposed method can correctly estimate the object pose even when
small part of them is visible.

five objects in one input image. In Thread #1, the keypoint
detection includes color-to-gray conversion of the input
image, image pyramid construction, and keypoint extrac-
tion. The other step covers keypoint matching with the
current subgroup of keyframes and pose estimation with
outlier rejection. Frame-to-frame tracking step in Thread #2

takes all of the other steps except for temporal keypoint

verification in the frame-to-frame tracking.

5 CONCLUSION

We presented a method for tracking simultaneously multi-

ple 3D objects using a monocular camera. Compared to our

preliminary work [5], this paper presented several technical

improvements that contributed to the improved frame rate

and robustness to occlusion. Typical applications are table-

top AR and tangible interaction applications.
However, our approach still not properly scales with the

number of objects and is currently limited to a database

with a few tens of objects. To handle larger databases, it

1734 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 11, NOVEMBER 2011

Fig. 11. Effect of occlusion by unknown objects and temporal keypoint verification. First column: without the verification step, frame-to-frame tracking
is prone to drift in case of occlusion. Second column: the temporal keypoints verified as correct are marked with yellow squares and those found
incorrect are marked with red ones. Third column: the corresponding keypoints to the second column show only the correct points in the keyframe.
Last column: tracking without invalid temporal keypoints.

Fig. 10. Estimated poses of the objects in the sequence shown in Fig. 7 by the proposed method (a) and by detection only (b). For visibility, the
graphs show only one coordinate of the position of each object. For the detection only case, from frame #690-frame #710, object #5 is rarely
detected and the pose of object #6 is very unstable between the 785th and 795th frames. By contrast, our method retrieves longer and smoother
trajectories.

TABLE 1
Average Processing Time of Detection and Tracking

Fig. 12. Tracking frame rate: the green and blue curves represent the
evolution of the frame rate over a period of time, the black curve
represents the number of objects tracked by the system. While the
number of objects varies, the frame rate for the detection remains
almost constant and the frame-to-frame tracking performs always faster
than the detection.

may be interesting to first limit the number of possible
present objects with a scalable recognition method such as
[20] which does not provide any exact pose but can provide
the list of the visible objects.

ACKNOWLEDGMENTS

This research is supported by the Ministry of Culture,
Sports and Tourism (MCST) and the Korea Creative
Content Agency (KOCCA), under the Culture Technology
(CT) Research and Development Program 2010.

REFERENCES

[1] V. Lepetit and P. Fua, “Monocular Model-Based 3D Tracking of
Rigid Objects,” Foundations and Trends in Computer Graphics and
Vision, vol. 1, no. 1, pp. 1-89, 2005.

[2] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast Keypoint
Recognition Using Random Ferns,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 32, no. 3, pp. 448-461, Mar. 2010.

[3] G. Klein and D. Murray, “Parallel Tracking and Mapping for
Small AR Workspaces,” Proc. Int’l Symp. Mixed and Augmented
Reality, Nov. 2007.

[4] L. Vacchetti, V. Lepetit, and P. Fua, “Stable Real-Time 3D Tracking
Using Online and Offline Information,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1391-1402,
Oct. 2004.

[5] Y. Park, V. Lepetit, and W. Woo, “Multiple 3D Object Tracking for
Augmented Reality,” Proc. Int’l Symp. Mixed and Augmented
Reality, Sept. 2008.

[6] D. Reid, “An Algorithm for Tracking Multiple Targets,” IEEE
Trans. Automatic Control, vol. 24, no. 6, pp. 843-854, Dec. 1979.

[7] S. Oh, S. Russell, and S. Sastry, “Markov Chain Monte Carlo Data
Association for General Multiple-Target Tracking Problems,” Proc.
IEEE Conf. Decision and Control, Dec. 2004.

[8] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D.
Schmalstieg, “Pose Tracking from Natural Features on Mobile
Phones,” Proc. Int’l Symp. Mixed and Augmented Reality, Sept. 2008.

[9] I. Skrypnyk and D. Lowe, “Scene Modelling, Recognition and
Tracking with Invariant Image Features,” Proc. Int’l Symp. Mixed
and Augmented Reality, Nov. 2004.

[10] D. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” Int’l J. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[11] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “SURF: Speeded
Up Robust Features,” Computer Vision and Image Understanding,
vol. 110, no. 3, pp. 346-359, 2008.

[12] T. Drummond and R. Cipolla, “Real-Time Visual Tracking of
Complex Structures,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 932-946, July 2002.

[13] A. Comport, E. Marchand, M. Pressigout, and F. Chaumette,
“Real-Time Markerless Tracking for Augmented Reality: The
Virtual Visual Servoing Framework,” IEEE Trans. Visualization and
Computer Graphics, vol. 12, no. 4, pp. 615-628, July 2006.

[14] S. Taylor and T. Drummond, “Multiple Target Localisation at over
100 FPS,” Proc. British Machine Vision Conf., Sept. 2009.

[15] D. Wagner, D. Schmalstieg, and H. Bischof, “Multiple Target
Detection and Tracking with Guaranteed Framerates on Mobile
Phones,” Proc. Int’l Symp. Mixed and Augmented Reality, Oct. 2009.

[16] J. Pilet and H. Saito, “Virtually Augmenting Hundreds of Real
Pictures: An Approach Based on Learning, Retrieval, and
Tracking,” Proc. IEEE Virtual Reality, Mar. 2010.

[17] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An Accurate
O(n) Solution to the PnP Problem,” Int’l J. Computer Vision, vol. 81,
no. 2, pp. 155-166, Feb. 2009.

[18] C. Tomasi and T. Kanade, “Detection and Tracking of Point
Features,” technical report, Carnegie Mellon Univ., Apr. 1991.

[19] T. Lee and T. Hollerer, “Multithreaded Hybrid Feature Tracking
for Markerless Augmented Reality,” IEEE Trans. Visualization and
Computer Graphics, vol. 15, no. 3, pp. 355-368, May 2009.

[20] D. Nister and H. Stewenius, “Scalable Recognition with a
Vocabulary Tree,” Proc. Conf. Computer Vision and Pattern
Recognition, pp. 2161-2168, Oct. 2006.

Youngmin Park received the BS degree in
computer engineering from the Kangwon Na-
tional University, Gangwon-do, Korea, in 2004,
and the MS degree from the Department of
Information and Communications (DIC), Gwang-
ju Institute of Science and Technology (GIST),
Gwangju, Korea, in 2006, where he is currently
working toward the PhD degree. His research
interests include augmented reality, 3D computer
vision, image processing, and mobile computing.

He is a student member of the IEEE.

Vincent Lepetit received the engineering and
master degrees in computer science from the
ESIAL in 1996, and the PhD degree in computer
vision in 2001, all from the University of Nancy,
France, after working in the ISA INRIA team. He
is a senior researcher at the Computer Vision
Laboratory, EPFL, Laussane, Switzerland. He
then joined the Virtual Reality Lab at the EPFL
(Swiss Federal Institute of Technology) as a
postdoctoral fellow and became a founding

member of the Computer Vision Laboratory. His research interests
include vision-based Augmented Reality, 3D camera tracking, object
recognition, and 3D reconstruction.

Woontack Woo received the BS degree in
electronics engineering from the Kyungpook
National University, Daegu, Korea, in 1989, the
MS degree in electronics and electrical engi-
neering from the POSTECH, Pohang, Korea, in
1991, and the PhD degree in electrical engineer-
ing systems from the University of Southern
California (USC), in 1998. In 1999, as an invited
researcher, he joined Advanced Telecommuni-
cations Research (ATR), Kyoto, Japan. Since

February 2001, he has been with the Gwangju Institute of Science and
Technology (GIST), Gwangju, Korea, where he is an associate
professor in the Department of Information and Communications (DIC)
and director of the Culture Technology Institute (CTI). His research
interests include 3D computer vision and its applications including
attentive AR and mediated reality, HCI, effective sensing, and context-
aware for ubiquitous computing. He is a member of the IEEE and the
IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PARK ET AL.: EXTENDED KEYFRAME DETECTION WITH STABLE TRACKING FOR MULTIPLE 3D OBJECT TRACKING 1735

