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Abstract. We present a real-time method for detecting deformable surfaces, with no need whatsoever for a priori pose

knowledge.

Our method starts from a set of wide baseline point matches between an undeformed image of the object and the

image in which it is to be detected. The matches are used not only to detect but also to compute a precise mapping from

one to the other. The algorithm is robust to large deformations, lighting changes, motion blur, and occlusions. It runs at

10 frames per second on a 2.8 GHz PC. We demonstrate its applicability by using it to realistically modify the texture

of a deforming surface and to handle complex illumination effects.

Combining deformable meshes with a well designed robust estimator is key to dealing with the large number of

parameters involved in modeling deformable surfaces and rejecting erroneous matches for error rates of more than 90%,

which is considerably more than what is required in practice.
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1. Introduction

Rigid object detection and tracking have been extensively

studied and effective, robust, and real-time solutions pro-

posed (Lepetit and Fua, 2005; Lepetit et al., 2005; Lowe,

2004; Rosten and Drummond, 2005). The two are of

course complementary since trackers require initializa-

tion and, no matter how good they may be, will sometimes

lose track, for example, because of severe occlusions.

Non-rigid object tracking has also been convincingly

demonstrated, for example in the case of animated faces

(Baker et al., 2004; Cootes et al., 2001; DeCarlo and

Metaxas, 1998) or even more generic and deformable ob-

jects (Bartoli and Zisserman, 2004; Sclaroff and Isidoro,

2003). However, the automated detection of such de-

formable objects still lags behind and existing methods

(Belongie et al., 2002; Ferrari et al., 2004) are far less

convincing for real-time applications. They tend to be

computationally intensive and are usually geared more
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towards recognition or segmentation than providing the

kind of fast initialization that a tracker needs to recover

from potential failures.

In this paper, we propose a method that fits this re-

quirement by allowing fast and robust detection and reg-

istration of an object that can be subjected to very large

non-affine deformations such as those of Figs. 1 and 2. It

relies on wide-baseline matching of 2-D feature points,

which makes it resistant to partial occlusions and clut-

tered backgrounds: Even if some features are missing, the

object can still be detected as long as enough are found

and matched. Spurious matches are removed by enforc-

ing smoothness constraints on the deformation, which

is done very quickly in our approach. We then demon-

strate its applicability by using it to realistically modify

the texture of a deforming surface and to handle complex

illumination effects.

More specifically, at the heart of our approach is a

very fast wide-baseline point matching technique that

allows us to establish correspondences between key-

points extracted from a training image of the undeformed
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Figure 1. In order to achieve surface detection, we use a model image (a). Then, our method computes a function mapping the model to an input

image (b). To illustrate this mapping, we find the contours of the model using a simple gradient operator and we use them as a validation texture (c)

which is overlaid on the input image using the recovered transformation (d). Additional results are obtained in different conditions (e to i). Note that

in all cases, including the one where the T-shirt is replaced by a cup (j), the white outlines project almost exactly at the right place, thus indicating

a correct registration and shape estimation. The registration process, including image acquisition, takes about 100 ms and does not require any

initialization or a priori pose information.

Figure 2. Comparing three different keypoint matching algorithms. (a) Model image and validation texture shown in white. Results using: (b)

Real-time classification trees, (c) shape context descriptor reimplementation, and (d) SIFT.

object to those that can be found when the object de-

forms (Lepetit et al., 2005). Given such correspon-

dences, if the target object were rigid, detecting it and

estimating its pose could be implemented using a ro-

bust estimator such as RANSAC (Fischler and Bolles,

1981). However, for a deformable object, the problem

becomes far more complex because not only pose but

also a large number of deformation parameters must be

estimated.

This paper’s main contribution is a robust optimization

scheme designed to work in high dimensional spaces with

data very polluted by outliers, overcoming RANSAC lim-

itation for non-rigid surface detection. A well designed

robust estimator, along with a deformable 2-D mesh, is

key to dealing with this large number of parameters. The

keypoints positions are expressed as weighted sums of

the mesh vertices in the model image and change as the

mesh is deformed. Fitting then amounts to minimizing a

criterion that is the sum of two terms. The first is a ro-

bust estimate of the squared distances of the keypoints in

the model image to that of the corresponding ones in the

input image. The second is a quadratic deformation en-

ergy (Fua, 1997). As was the case for the original snakes

(Kass et al., 1988), this quadratic term allows the use of a

semi-implicit minimization scheme that converges even

when the initial estimate is very far from the solution,

which, in our context, is what happens when the object

is severely deformed. When combined with an appropri-

ately defined robust estimator for the keypoint distances

and optimization schedule, this approach to minimization

allows detection in under 100 milliseconds on a 2.8 GHz

desktop while being robust to large deformations, severe

occlusions, and changes in lighting. In fact, we have ver-

ified that our method keeps on working with more than

90% of point matches being erroneous, which is key to

robustness because no real-time matching technique can

be expected to work perfectly well in the presence of clut-

ter, orientation changes, shadows, or specularities. We do

not know of any other technique able to produce similar

results.

In the remainder of the paper, we first review briefly

the existing literature and present an overview of our

algorithm. We then discuss its most critical steps and our

results.
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2. Related Work

Many approaches to registering a model on an image

have been proposed. Some feature-based algorithms first

establish correspondences and then find the best transfor-

mation explaining them, while eliminating outliers. Oth-

ers simultaneously solve for both correspondence and

registration, without the need for correspondences and

with or without using feature characterization. Finally,

some techniques do not even rely on features. We re-

view them briefly below and discuss why they have not

yet been shown to be suitable for real-time detection of

deformable objects.

2.1. Feature-Based Methods

These approaches rely on establishing correspondences

between image-features of the target object in one or more

images and those that can be found in an input image in

which it is to be detected. These correspondences are then

used to estimate the transformations.

Establishing Correspondences. Our method relies on

establishing wide-baseline correspondences between a

training image and an input one. To be useful, corre-

spondences have to be insensitive to light and viewpoint

changes, as well as to some amount of non-rigid defor-

mation.

Among the many matching techniques that exist, we

tested three: SIFT Lowe (2004), shape context descrip-

tors (Belongie et al., 2002) and our own classification

based method (Lepetit et al., 2005).

Even if these algorithms differ in speed, correspon-

dences number and quality, the tests presented in Section

5 show that our algorithm’s effectiveness is independent

from the specific technique used to establish the point

correspondences. However, only the classification based

technique has proved fast enough for our purpose, real-

time detection without loss of accuracy. The technique

recently presented in Ling and Jacobs (2005) could fit

our needs since it is deformation invariant.

From Correspondences to Detection. Whatever the

matching technique used, the correspondences can then

be used to detect the object in several different ways.

The simplest is to eliminate outliers and find a globally

consistent interpretation using a robust estimator. Hav-

ing each local match vote for a global transformation is

the approach used by the Hough transform and its many

variations. This is effective for rigid objects but imprac-

tical for deformable ones because it would require far

too many degrees of freedom to represent all possible

transformations into a vote accumulator. The same can

be said of the popular RANSAC algorithm (Fischler and

Bolles, 1981): With 25% of outliers and 100 degrees of

freedom, 1012 samples are required to guarantee with

90% probability that at least one sample does not contain

outliers (Hartley and Zisserman, 2000).

An alternative strategy is to proceed iteratively.

TPS-RPM (thin plate spline - robust point matching,

Chui and Rangarajan (2003)) and EM-ICP (expecta-

tion maximization—iterative closest point, Dewaele et al.

(2004) and Granger and Pennec (2002)) are two well-

known representatives of the family of algorithms that

simultaneously solve for both correspondence and trans-

formation using an iterative process. At each step, the

current transformation estimate is first used to establish

correspondences and assign weights to them, and, then,

is refined using those correspondences. These methods

use an entropy term—be it called temperature parame-

ter, scale or blurring factor, or variance—that is progres-

sively reduced. It controls the assignment of weights to

the correspondences and has an important role in insur-

ing convergence towards a desirable solution. As will be

discussed in more detail in Section 3.2, our algorithm fol-

lows a similar strategy but makes use of local character-

ization to reduce the correspondence problem difficulty

and to achieve real-time performance.

In Belongie et al. (2002), a method designed to com-

pute a distance between shapes is presented. Shape

context descriptors provide correspondences which are

established one to one using bipartite graph matching.

Although this method copes with some outliers and

slightly different numbers of feature detected on both

shapes, it is not designed to extract objects from a clut-

tered background or to handle scale changes.

Image exploration (Ferrari et al., 2004) is another strat-

egy that hooks on a first set of correspondences and then

gradually explores the surrounding area, trying to estab-

lish more matches. It can handle deformable objects but

this complex process is slow and takes several minutes

on a 1.4 GHz computer.

2.2. Direct Methods

For objects such as faces whose deformations are well

understood and can be modeled in terms of a relatively

small number of deformation parameters, fitting directly

to the image data without using features is an attractive

alternative to using correspondences because it allows

the use of global constraints to guide the search. This has

been successfully demonstrated in the context of non-

rigid tracking (Baker et al., 2004; Cootes et al., 2001;

DeCarlo and Metaxas, 1998; Sclaroff and Isidoro, 2003)

but typically requires a good initialization because the

criteria being minimized tend to have many local minima.

These methods are complementary to the one proposed

here: They exploit more of the texture and therefore tend
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to be more accurate. However, they require the initial esti-

mate such as the one our algorithm can provide. There are

in fact relatively few others that can do this for deformable

objects. One of them has been proposed in Gumerov et al.

(2004) but requires that the whole outline be detected,

which severely limits its scope. Another is the tracking

of Lin and Liu (2006) that exploits the repeating proper-

ties of a near regular texture to discover new texture tiles

in new frames.

Finally, the recent work presented in White and Forsyth

(2006) is related to ours in two ways. First, it registers

a texture composed of a few colors, typically 3 or 4, by

comparing color histograms. Then, it modifies the tex-

ture on the deformed surface, while handling illumination

changes. This approach to retexturing differs from ours

in that we avoid limiting the number of colors present

on the surface by introducing some irradiance smooth-

ing, which yields real-time performance on both color or

gray level images.

3. Non-rigid Surface Detection

To detect a potentially deformable object, we rely on

establishing correspondences between a model image

in which the deformations are small and an input im-

age in which they may be large. To this end, we use

the fast wide-baseline matching algorithm (Lepetit et al.,

2005) discussed in Section 2.1. Given a set C of cor-

respondences between the two images, many of which

might be erroneous, our problem can be formally stated

as follows: We are looking for the transformation TS

mapping the undeformed model surface M into the de-

formed target one TS (M) and for the subset G ⊂ C

of correct matches such that the sum of the squared

)c()b()a(
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Figure 3. 2D mesh models. (a) Vertex neighborhood in an undeformed hexagonal mesh. (b) Two deformations that are not penalized. (c) Two

penalized deformations. Deformations resulting from perspective projection resemble those in (b) and are therefore much less severely penalized than

those resulting from erroneous matches.

distances between corresponding points in G is min-

imized while the deformations remain as smooth as

possible.

3.1. 2-D Surface Meshes

We represent our model M as a triangulated 2-D mesh

of hexagonally connected vertices such as the one shown

in Fig. 2. The position of a vertex v j is specified by its

image coordinates (x j , y j ). The overall shape is therefore

controlled by a state vector S that is the vector of all x

and y coordinates. Given S and the barycentric coordi-

nates Bi (p) of image point p that belongs to a specific

facet (v1, v2, v3) of the undeformed mesh, we define the

mapping

TS(p) =

3
∑

i=1

Bi (p)

[

xi

yi

]

, (1)

where xi and yi are vertex coordinates of the deformed

mesh.

The mesh deforms to minimize the objective function

ε(S) = λDεD(S) + εC (S), (2)

where εC is a data term that takes point correspondences

into account, εD is a deformation energy that should be

rotationally invariant and tend to preserve the regularity

of the mesh, and λD is a constant.

We take εD(S) to be an approximation of the sum over

the surface of the square second derivatives of the x and

y coordinates. More specifically, let E be the set of ver-

tex index triplets (i, j, k) such that (vi , v j , vk) form two

connected and colinear edges, as illustrated by Fig. 3(a).

Since the undeformed mesh M has equidistant vertices,
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we have

∀(i, j, k) ∈ E : vi − v j = v j − vk, (3)

and therefore write

εD(S)=
1

2

∑

(i, j,k)∈E

(−xi + 2x j − xk)2+(−yi + 2y j − yk)2.

(4)

εD(S) approximates the squared directional curvature of

the surface as long as the vertices remain roughly equidis-

tant and its value grows with the length difference of every

two colinear connected edges.

This regularization term serves a dual purpose. First it

convexifies the energy landscape and improves the con-

vergence properties of the optimization procedure. Sec-

ond, in the presence of erroneous correspondences, some

amount of smoothing is required to prevent the mesh from

overfitting the data, and wrinkling the surface excessively.

As illustrated by Fig. 3(b) and (c), εD is appropriate for

this purpose because it allows rigid motions but penal-

izes shape deformations. Of course, both those produced

by perspective distortions and by the actual surface de-

formation tend to increase εD . However, this increase is

insignificant when compared to those that spurious defor-

mations resulting from erroneous matches could produce.

Equation (4) can be rewritten in matrix form as

εD(S) =
1

2
(X T K ′T K ′ X + Y T K ′T K ′Y ), (5)

where K ′ is a matrix containing one row per triplet in E

and one column per mesh vertex. The row corresponding

to triplet (i, j, k) is filled with zeroes except for locations

i , j and k that contain −1, 2, and −1, respectively. By

replacing K = K ′T K ′ in Eq. (5), we have:

εD(S) = 1/2(X T KX + Y T KY). (6)

To minimize ε(S), we use the semi-implicit scheme so

successfully introduced in the original snake paper (Kass

et al., 1988): We are looking for a minimum of the energy

and therefore for solutions of

0 =
∂ε

∂ X
=

∂εC

∂ X
+ KX,

(7)

0 =
∂ε

∂Y
=

∂εC

∂Y
+ KY.

Since K is positive but not definite, given initial vectors

X0 and Y0, this can be solved by introducing a viscosity

parameter α and iteratively solving at each time step the

two coupled equations

KXt + α(X t − X t−1) +
∂εC

∂ X

∣

∣

∣

∣

X=X t−1Y=Yt−1

= 0,

KY t + α(Yt − Yt−1) +
∂εC

∂Y

∣

∣

∣

∣

X=X t−1,Y=Yt−1

= 0,

which implies

(K + α I )X t = αX t−1 −
∂εC

∂ X

∣

∣

∣

∣

X=X t−1,Y=Yt−1

,

(K + α I )Yt = αYt−1 −
∂εC

∂Y

∣

∣

∣

∣

X=X t−1,Y=Yt−1

.

Because K is sparse and regular, solving these linear

equations using LU decomposition is fast and upon con-

vergence X t ≈ X t−1 and Yt ≈ Yt−1. This iterative

scheme therefore quickly yields a solution of Eq. (8),

even when starting with completely random guesses for

X0 and Y0 as will be shown in Section 4.

3.2. Correspondence Energy

Minimizing εC , the data term of Eq. (2), tends to deform

the mesh so that it matches the target object in the input

image. This is achieved as follows.

Let C be a set of correspondences between the model

and the input image. Its elements are of the form c =

{c0, c1} ∈ C , where c0 represents the 2-D coordinates of

a feature point in the model image and c1 the coordinates

of its match in the input image. For the sake of gener-

ality, we allow potential matches between a point in the

first image and multiple points in the second, so that the

corresponding c0 may appear in several elements of C .

We write

εC = −
∑

c∈C

wcρ (‖c1 − TS (c0)‖ , r ) , (8)

where ρ is a robust estimator whose radius of confidence

is r and wc ∈ [0, 1] a weight associated to each corre-

spondence. In our experience the choice of ρ is critical

to ensure the elimination of outliers and convergence to-

wards the desired minimum while the choice of the wc

has much less impact, as will be discussed in Section 4.1.

We take the robust estimator to be

ρ (δ, r ) =

{

3(r2−δ2)
4r3 δ < r

0 otherwise
. (9)

As shown in Fig. 4, its shape is that of a quadratic

ridge that gets narrower and taller when r decreases. In

other words, r acts as a confidence measure. When it is

large, most correspondences, potentially including poor
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Figure 4. The ρ function of Eq. (9) is quadratic for distances smaller than the radius of confidence, elsewhere it is zero.

ones, fall within this broad ridge of confidence and are

given some weight. As r diminishes, ρ becomes more

peaked and selective. This formulation has the following

advantages:

• The quadratic behavior of ρ within the ridge of con-

fidence yields a relatively convex εC that is easy to

minimize.

• ρ is normalized so that
∫ ∞

−∞
ρ(x, r )dx = 1 ∀r > 0,

which means that the εC term computed with any r val-

ues remain commensurate to the λDεD term of Eq. (2).

Therefore, we do not need to adjust either the λD pa-

rameter or the wc weights of Eq. (8). This is in contrast

to methods such as SoftAssign (Chui and Rangarajan,

2003; Wills and Belongie, 2004) in which the surface

rigidity must be progressively reduced according to a

schedule that is not necessarily easy to synchronize

with the annealing of r and may change from case to

case.

• ρ has finite support so that correspondences that fall

outside the radius of confidence are completely ignored

and can be tagged as invalid.

These properties of the ρ estimator are what make the

straightforward approach to optimization described

below so effective.

3.3. Optimization Schedule

Minimizing ε therefore results in a mesh that moves to-

wards the desired solution but whose progression can be

blocked by outliers. To overcome this, we introduce a

simple optimization schedule in which the initial radius

of confidence r0 = 1000 is progressively reduced at a

constant rate η = 0.5: rt = ηrt−1. For each value of r ,

we minimize ε and use the result as the initial state for

the next minimization.

As discussed in Section 3.1, at each iteration of

our semi-implicit optimization scheme, we evaluate the

derivatives of εC . In this context, the fact that ρ has deriva-

tives whose magnitude is inversely proportional to r is

very beneficial: At the beginning when r is large, the

gradients of εD are comparatively larger than those of

εC , thus preventing erroneous matches from crumpling

the surface while allowing correct and consistent ones to

produce the right global deformation. As the optimiza-

tion progresses and r decreases, the ρ derivatives and

consequently the gradients of εC become larger. The tri-

angulation starts bending as appropriate and the influence

of the outliers progressively decreases.

The algorithm stops when r reaches a value close

to the expected precision of the matches expressed in

pixels, typically one or two. Such a deterministic algo-

rithm is guaranteed to converge but the result might be

wrong, for example because the target object is com-

pletely occluded. To decide whether or not to believe

the result, we simply count the number of correspon-

dences that fall within the ridge of confidence of our ρ

estimator. As will be shown in Section 4, this criterion

is surprisingly effective at distinguishing successes from

failures.

4. Synthetic Experiments

In this section, we use synthetic data to illustrate

the effectiveness of our implementation choices. More
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Figure 5. Image and meshes used for our synthetic experiments. (a) Original image. (b) Reference mesh computed using hand-picked correspon-

dences. (c) A random initial configuration.

specifically we show that our algorithm is insensitive to

parameter choices, insensitive to initial conditions, and

effective at rejecting false matches.

Figure 5 depicts our approach to creating synthetic

data for these experiments. We fed our algorithm with

manually established correspondences between a model

image in which the sheet of paper is flat, and the image

of Fig. 5(a) until we obtained the 600-vertex deformed

mesh of Fig. 5(b), which projects correctly over its whole

surface. We treat this mesh as our reference, which can

be viewed as the ideal result that can be expected from

our algorithm. In the remainder of this section we will use

different sets of correspondences, randomized initial con-

ditions, and modified parameter settings. They produce

different results that can then be compared to our refer-

ence. Proceeding in this manner ensures that the devia-

tions we measure are strictly related to what we are trying

to measure, as opposed to pose dependent problems.

4.1. Measuring Success

We define three objective success criteria:

C1 90% of the mesh vertices are within 2 pixels of those

in the reference mesh.

C2 50% of the mesh vertices are within 2 pixels of those

in the reference mesh.
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Figure 6. Probability of success according to the three criteria of Section 4.1 as a function of the number of valid input matches, on the horizontal

axis, and the outlier rate, on the vertical axis. White indicates values close to one and black close to zero.

C3 At least 90% of the valid correspondences given as

input are correctly labeled as such by the robust esti-

mator, as discussed in Section 3.2.

Given that the test image is of dimension 1024×768, C1

and C2 rate the algorithm’s accuracy and C3 its ability to

discriminate valid correspondences from spurious ones.

The 90% figure in C1 eliminates cases where a substantial

part of the mesh is incorrectly reconstructed, even though

the algorithm may have done a good job on the rest, a case

that C2 labels as correct.

To test our algorithm, we ran it about one hundred

thousand times with random initial conditions, such as

the one of Fig. 5(c) that is very far from the solution,

and using synthetic sets of correspondences containing

varying numbers of valid matches and percentages of

erroneous ones.

Accuracy and Robustness. Figure 6 depicts the success

rates according to the C1, C2, and C3 criteria introduced

above as a function of the number of valid correspon-

dences and of the outlier rate. In each plot, the color de-

picts the percentage of results that meet the corresponding

criterion. The black wiggly lines represent level lines in

this probability landscape. Note that in all three plots,

they are nearly vertical for outlier rates up to 90%, thus

indicating that the performance does not significantly de-

grade before then. Given that C1 is much more stringent
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than C2, it is natural that it requires more valid matches to

achieve the required level of precision. To recover 50%

mesh vertices location, 40 matches are enough and 120

for 90%. This is very encouraging considering that the

mesh has 600 vertices, which would imply 1200 degrees

of freedom in the absence of regularization constraints.

C3 is the less demanding of the three criteria and requires

less than 15 to 20 valid correspondences. However, suc-

cess in terms of C3 does not guarantee accuracy for large

outlier rates because, even though the algorithm still finds

most of the inliers, it starts mistakenly tagging outliers as

valid matches, which degrades the precision.

Self Diagnostic. So far, we have compared our results

against a manually obtained reference mesh. In practice,

the algorithm has to self-diagnose its own successes and

failures in the absence of any such reference. As a sub-

stitute, we use the absolute number of matches that are

tagged as valid by the ρ estimator of Eq. (9) as a mea-

sure of success. In other words, our algorithm declares a

successful detection when the number of valid matches

is above a given threshold. In Fig. 7, we plot the cor-

responding ROC curves according to C1, C2, and C3.

These curves indicate an excellent correlation between

“objective” success, as measured by comparison to a ref-

erence result, and “subjective” success, as measured by

the number of matches tagged as valid.

One limitation of the current approach, however, is

that we only implemented a global success measure: The
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Figure 7. Self diagnostic ROC curves. We accept a detection result based on the number of matches tagged as valid by our robust estimator. We

plot one curve for each one of the three criteria of Section 4.1. For each one, as the threshold for accepting a result is lowered, both the false-positive

rate, on the x-axis, and the true-positive rate, on the y-axis, increase.

surface is either completely found or not at all. An inter-

esting extension would be to measure partial success, for

example in cases where the surface is partly occluded, by

checking sub-areas as opposed to the whole surface.

Disambiguating Multiple Matches. Recall from

Section 3.2 that a point from the model image can have

several potential matches in the input image. One can

simply rely on the progressively decreasing r radius

of confidence of the ρ estimator to disambiguate those

cases. Alternatively one could use a more sophisticated

weighting scheme, an option we explore here by setting

the wc weights of Eq. (8) in one of the five following

ways:

1. wc = 1 for all correspondences,

2. wc = 1 for the closest match, and zero to all others as

in ICP,

3. as in EM-ICP (Granger and Pennec, 2002), with σ =
r

3
:

wc =
exp(−‖c1 − TS(c0)‖2/2σ 2)

∑

d∈C,do=co
exp(−‖d1 − TS(d0)‖2/2σ 2)

,

4. a variation of EM-ICP in which the Gaussian is re-

placed by ρ:

wc =
ρ(‖c1 − TS(c0)‖, r )

∑

d∈C,d0=c0
ρ(‖d1 − TS(d0)‖, r )

,
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Figure 8. Comparing weighting schemes. Success rate as a function of erroneous correspondences percentage, for each one of the five schemes

described in Section 4.1.

5. a weight computed by normalizing rows and columns

of the correspondence matrix, as in SoftAssign (Chui

and Rangarajan, 2003).

Figure 8 summarizes the result of this experiment.

We used 150 valid matches and a variable number

of spurious matches. We plot success rates according

to the C1 criterion as a function of the percentage of

outliers. Note that these curves correspond to a vertical

slice of Fig. 6(C1) and are very close to each other.

For our specific purpose, but obviously not in a more

general context, their respective performance are almost

indistinguishable, but not their computational cost. In

our real-time implementation, we therefore use the

simplest one and set all wc to one.

4.2. Parameters and Initial Conditions

We now turn to the influence of our parameter choices

and of the initial conditions. We show that they influence

the speed at which the algorithm converges much more

than its final result.

Regularization Weight. In the ε(S) total energy of

Eq. (2), the relative influence of the regularization and ob-

servation terms is controlled by the λD parameter. It rep-

resents surface stiffness: The larger it is, the more defor-

mations are penalized. If it is too large, legitimate bending

might be prevented. If it is too small, the mesh may wrin-

kle excessively and treat some spurious correspondence

as valid. In Fig. 9, we again use a fixed number of valid

matches and plot success rates according to the C1 crite-

rion as a function of the percentage of outliers and of the

λD value used to perform the computation. For outlier

rates below 60%, and even up to 80%, λD can be chosen

in a very wide range without significantly affecting the

results. As the outlier rate increases, larger λD values ap-

pear to give better results. It is to emphasize these large

values of λD that we chose to plot 1
λD

on the vertical axis

of the graph.

Deterministic Radius Reduction. In our algorithm, the

confidence radius r of Eq. (9) is decreased by a factor η

after each minimization. Even though this deterministic

approach might seem simplistic, we prefer it because, in

practice, it is very hard to evaluate a new radius from cur-

rently valid matches. For example, a similar problem is

solved in Rosten and Drummond (2005) using an expec-

tation minimization (EM) approach and the authors have

to “give a kick downwards” to their blurring factor when

EM converges too early. Here we show that value of η

has relatively little impact on the optimizer’s behavior.

To this end, we randomly chose one particular set

of correspondences and ran the optimizer several times

using η values ranging 0.3 and 0.8. In Fig. 10(a), for

each trial, we plot the number of individual Levenberg-

Marquardt steps performed to minimize the total-energy

of Eq. (2) for each successive value of r . Note how similar

the curves are. The total number of Levenberg-Marquardt

steps required to locate the surface does not change much.

If the radius decreases slowly, the optimizer will use more
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radius values but will require fewer iterations at each. If

the radius decreases faster, the situation is reversed but

the global outcome is similar.

Sensitivity to Initial Conditions. Because our algo-

rithm appears to be very effective at avoiding local min-

ima, the choice of initial condition has little bearing on

success or failure. It does however have an influence on

the time required to achieve convergence.

To demonstrate this, we again randomly picked a set

of correspondences and ran the optimizer several times

using nine different initial conditions, chosen to be in-

creasingly far from the reference mesh. The algorithm

yielded the same result in all cases and Fig. 10(b) depicts

the number of individual Levenberg-Marquardt steps per-

formed for each successive value of r during each run.

Starting close to the solution saves iterations for large

values of r but not for small ones. Nevertheless, this be-

havior could obviously be exploited in a tracking context

where a good initial estimate is usually available.

5. Results

We now turn to real images and video sequences. We

first demonstrate that our approach leads to a real-time
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Figure 11. Deforming a piece of foam. (a) Model image and validation texture. (b) to (e) detection results.

robust implementation. We then show that it can be

incorporated into an Augmented Reality application

that accounts not only for geometry but also illumina-

tion, thus producing very convincing illusions, still in

real-time.

5.1. Real Time Detection

The method has been tested in conjunction with three dif-

ferent feature point recognizers: The publicly available

SIFT implementation (Lowe, 2004), a reimplementation

of shape context characterization (Belongie et al., 2002),

and a classification-based method (Lepetit et al., 2005).

SIFT provide fewer but more accurate matches than shape

contexts. The classification-based approach produces

correspondences comparable to SIFT but does it faster.

Because our technique is robust, the results are almost

indistinguishable whatever the matching method used,

as shown in Fig. 2. However, because the classification-

based method is much faster than the others, it is only

when using it that we obtain true real-time performance.

In this example, the algorithm runs at 10 frames per

second on a 2.3 GHz laptop. Furthermore, because the

point matcher is relatively insensitive to light changes

and motion blur, they do not hinder the registration

process.

Since we work in each frame individually, we can find

objects as soon as they become visible and our method is

robust to both perspective distortion and severe deforma-

tions. In the example of Fig. 1, the ICCV logo on the shirt

is detected very quickly and well before its deformation

has become roughly planar. Similarly, the logo is equally

well detected when worn by different people or seen on

the ICCV mug. Figure 11 depicts similar speed and robust-

ness to deformations when detecting a piece of foam. For

well textured objects, we get no false positives and only

false negatives when the deformations or occlusions are

so severe that the target object is almost impossible to

make out. Of course, the performance degrades in the

absence of texture and this is one of the issues we will

address in future work.

5.2. Realistic Augmented Reality

So far, we have shown that we could compute fast and

accurately the 2-D deformation of a surface. In an Aug-

mented Reality application such as the one depicted by

Fig. 12, this is what is needed to modify in real-time the

appearance of that surface. However, to achieve a con-

vincing illusion, it is important not only to model geomet-

ric deformations but also lighting changes. To this end,

we have developed a dynamic approach to estimating the

amount of light that reaches individual image pixels by

comparing their colors to those of the model image. This

lets us either erase patterns from the original images and

replace them by blank but correctly shaded areas, which

we think of as Diminished Reality, or to replace them by

virtual ones that convincingly blend-in because they are

properly lighted.

The Lambertian Case. In practice, if we wish to build a

versatile system that can be demonstrated in uncontrolled

environments, we cannot make strong assumptions about

light sources that are present when acquiring the input

video. There can be many and their respective intensities

and spectral properties are unknown, which can result in

complex shading, shadowing, and color effects. To avoid

the latter, we work independently on the red, green, and

blue bands of color images.

However, it is easy to control the acquisition of the ref-

erence image. With no loss of generality, we can therefore

assume that it has been acquired when the surface was

both undeformed and lighted uniformly, which means

that every surface point receives the same amount of light

in the color band we are working with.

Under this assumption, let pr and pi be the projections

of the same surface point p in the reference and input im-

age respectively, and let Ap be the corresponding surface

albedo. In the Lambertian case, the contributions of all

the light sources seen at pr and pi add linearly. We can

therefore write

Ir,p = Lr Ap, (10)

Ii,p = L i,p Ap, (11)
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Figure 12. (a) The reference image of the target surface with the model mesh overlaid. (b) An input image. (c) The mesh is correctly deformed

and registered to the input image. (d) The original pattern has been erased and replaced by a blank but correctly shaded image. (e) A virtual pattern

replaces the original one. It is correctly deformed but not yet relighted. (f) The virtual pattern is deformed and relighted.

where Ir,p and Ii,p are the pixel intensities in the reference

and input image respectively, L i,p the total irradiance in

the input image at pi , and Lr the total irradiance in the

reference image assumed to be the same at all surface

points. In general, the values of Ir,p and Ii,p are different

due to changes in both normal orientations and lighting

conditions. However, the geometric registration we have

established between the two images tells us that they cor-

respond to the same physical point, which we exploit as

follows.

Let us consider a white surface area with albedo Aw

at location w on the surface. If the target surface has no

white part, it is always possible to put a white object next

to it while taking the reference image. We can measure

on the reference image the pixel intensity Ir,w where this

white location w is projected and write

Ir,w = Lr Aw, (12)

where Lr is the irradiance of Eq. (10).

Using this white normalization Ir,w, we can compute a

new image, looking similar to the input one, except that

the surface albedo is changed to Aw. In the input image,

if there was no texture, the corresponding image intensity

should be

Ix,p = L i,p Aw = Aw Lr

Ii,p

Ir,p

= Ir,w

Ii,p

Ir,p

. (13)

Note that Ix,p is expressed exclusively in terms of image

intensities, which are readily available, as opposed to

albedoes or surface normals that are not.

Replacing the intensities Ii,p of all the pixels on the

object surface by Ix,p yields images such as the one of

Fig. 12(d) where the original texture has been replaced

by a blank but correctly shaded surface. To draw a shaded

new texture, as in Fig. 12(f), we simply multiply texture

values with their corresponding white Ix,p.

Note that, because we perform the computation locally,

it remains valid no matter how many sources there are and

what their specific characteristics may be. The only thing

that has to be true is that the contribution of the individual

light sources to the pixel intensity are all modulated by the

same diffuse albedo and do not depend on the viewpoint.

In practice, we compute the lighting factor only at mesh

vertices, averaging pixels values of both model and in-

put images over an hexagonal area surrounding it. The

resulting Ix,p values are then interpolated over triangles

by OpenGL.

In some cases, Ix,p is difficult to estimate reliably on

large single-colored areas. In the example of Fig. 13(a),

recovering the Ix,p blue component over the red area is

hard because sensor inaccuracy on remaining blue light is

amplified by a big factor. However, the visual impression

given by Fig. 13(b) is still that the original painting has

been erased and replaced.

Specularities and Saturation. The assumptions used to

derive formula 13 are clearly violated for specular ma-

terials. However, as illustrated by Fig. 14, this does not

have severe consequences even in the presence of strong

specularities and the illusion remains convincing.

This is because, when there is a specularity, the image

intensity increases and the
Ii,p

Ir,p
ratio of Eq. (13) becomes

large. As a result, the Ix,p intensity that is used to draw the

synthetic patterns also increases, which is perceptually

correct since it yields intensity maxima at specularities’

locations. In other words, the absolute value of Ix,p may

not be correct but its magnitude relative to its neighbors

remains consistent with the presence of a specularity. And
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Figure 13. (a) original image. (b) The ISMAR logo replaces the shirt print. Recovering white is hard in this image since the model has large

single-colored areas, making light evaluation difficult.

Figure 14. Handling specularities. (a) Input image with strong specularities. The main one is produced by a lamp, while the two smaller ones can

be attributed to light coming through window. To produce this result, the paper has been covered by a transparent plastic sheet. (b) The picture has

been erased from the surface but the specularities still appear to be at the right places. (c) The ISMAR logo has been inserted.

since the human eye is much more sensitive to relative

values than to absolute ones, this suffices.

In practice, specular peaks often saturate the camera

sensor, thus making the estimation of Ii,p unreliable. We

detect such cases by simple thresholding and we handle

saturation by setting Ix,p to its maximal possible value.

Since color computation is applied independently on the

red, green and blue channels, one channel can saturate

while the other do not. As a result, not only specular peaks

but also saturated areas in the input image are correctly

transcribed into the synthetic ones.

6. Conclusion

We have demonstrated a very fast and robust approach

to detecting deformable surfaces. It is robust to large

deformations, changes in lighting, and motion blur and



Pilet, Lepetit and Fua

runs at 8–10 frames per second on a 2.3 GHz laptop. It

takes advantage of wide-baseline matching, deformable

mesh and robust estimation techniques in such a way that

the resulting algorithm has very few parameters that do

not require any fine tuning. As a result, it was easy to

incorporate it into a real-time Augmented Reality system

that produces convincing illusions even when the illumi-

nation is complex.

The current computations are performed using 2-D

meshes but the formalism presented in this paper nat-

urally extend to 3-D, with only a very limited additional

computational burden. This should be key to handling

even more severe self-occlusions than the ones shown

in this paper and, also, to incorporate physical knowl-

edge about the deformation modes of the surface if they

are known. This should help us handle less textured ob-

jects than the ones we have worked with so far, that is

objects for which fewer interest points can be detected

and matched. An alternative way to deal with relatively

bland surfaces would be to broaden the definition of in-

terest points to include those that can be found along

contours, as opposed to corners, and could also be con-

sidered within our framework. We intend to pursue both

avenues of research in future work.
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