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Abstract

Objects with symmetries are common in our daily life

and in industrial contexts, but are often ignored in the re-

cent literature on 6D pose estimation from images. In this

paper, we study in an analytical way the link between the

symmetries of a 3D object and its appearance in images. We

explain why symmetrical objects can be a challenge when

training machine learning algorithms that aim at estimat-

ing their 6D pose from images. We propose an efficient and

simple solution that relies on the normalization of the pose

rotation. Our approach is general and can be used with

any 6D pose estimation algorithm. Moreover, our method is

also beneficial for objects that are ’almost symmetrical’, i.e.

objects for which only a detail breaks the symmetry. We val-

idate our approach within a Faster-RCNN framework on a

synthetic dataset made with objects from the T-Less dataset,

which exhibit various types of symmetries, as well as real

sequences from T-Less.

1. Introduction

3D object detection and pose estimation are of primary

importance for tasks such as robotic manipulation, virtual

and augmented reality and they have been the focus of in-

tense research in recent years, mostly due to the advent of

Deep Learning based approaches and the possibility of us-

ing large datasets for training such methods [12, 7, 17, 23,

27, 16, 29, 22].

However, one challenge is often ignored in recent works.

Many objects of our daily life or from industrial contexts ex-

hibit symmetries, or at least ’quasi-symmetries’ when only

a small detail prevents the object to have a perfect sym-

metry. These symmetries create ambiguities when aiming

to estimate the 6D pose of the object from images, how-

ever only a few recent papers have considered the problems

raised by object symmetries [23, 26, 2, 19]. In this paper,

we first explain why exactly symmetries can be a problem

∗ Authors with equal participation.
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Figure 1: Two views of the same scene before and after a

rotation of 180◦ around the vertical axis of the blue object.

Since this object is symmetrical, it has the same appearance

but its pose is different.

for 6D pose estimation algorithms. We then provide a sim-

ple solution that is general and can be introduced in any 6D

pose estimation algorithms.

To better understand the problem raised by the symme-

tries of an object, let’s first consider Fig. 1. The blue object

has a rotational symmetry around the vertical axis: If we

apply a rotation of 180◦ around this axis, this object has ex-

actly the same appearance. More generally, when an object

O has some symmetry, there exist one or more rigid mo-

tions such that, if we apply these rigid motions to the object

pose, the appearance of the object is preserved. Formally,

we consider the set

M = {m ∈ SE(3) such that

∀p ∈ SE(3), R(O,p) = R(O,m.p)} , (1)

where R(O,p) is the image of Object O under pose p (ig-

noring lighting effects), m is a rigid motion related to the

symmetry, and m.p is the pose after applying motion m.

M(O) is thus the set of rigid motions m that preserve the

visual aspect of a given object. It is easy to see that it forms

a subgroup of SE(3). [2] calls the elements of M(O)
proper symmetries.

In other words, two images of a symmetrical object can

be identical but not correspond to the same pose. If we

consider an image I1 = R(O,p) of an object O under

pose P and a motion m ∈ M(O), then, the image I2
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of object O under pose m.p is equal to image I1, i.e.

I2 = R(O,m.p) = R(O,p) = I1. There is therefore

no function

F : I 7→ p (2)

that can provide the pose p of object O given an image I .

Any attempt to learn such a function, for example with a

Deep Network, would fail. For example, if a network is

trained to predict the pose using the squared loss between

the ground truth poses and the predicted poses, it would

converge to a model predicting the average of the possible

poses for an input image, which is of course meaningless.

Only few works consider the problem of symmetrical

objects: Sundermeyer et al. [26] solves this problem by

learning a mapping to a latent representation of the pose;

Bregier et al. [2] introduced a representation of the pose

that differs from rigid motions and suitable for their similar-

ity metric between two poses; [19] learns to predict several

poses so that at least one pose corresponds to the ground

truth; Rad and Lepetit [23] rely on image mirroring to deal

with some symmetries. While these papers propose inter-

esting solutions, here, we consider a general analytic ap-

proach to the problem. It will give insights on the learning-

based methods, and yields a simple method to solve the am-

biguities due to symmetries.

In the remainder of the paper, we review the state-of-

the-art on 3D object pose estimation from images, describe

our method, and evaluate it on the T-Less dataset, which is

made of very challenging objects and sequences.

2. Related Work

6-DoF pose estimation made significant progress re-

cently. We discuss below mostly the most recent ones, and

several techniques that have been proposed to specifically

tackle objects with pose ambiguities.

2.1. 6­DoF Object Pose Estimation

Several recent works extend on deep architectures devel-

oped for 2D object detection by also predicting the 3D pose

of objects. [17] trained the SSD architecture [18] to also

predict the 3D rotations of the objects, and the depths of the

objects. Deep-6DPose [6] relies on Mask-RCNN [10] in-

stead of SSD. To improve robustness to partial occlusions,

PoseCNN [29] segments the objects’ masks and predicts the

objects’ poses in the form of a 3D translation and a 3D rota-

tion. Yolo6D [27] relies on Yolo [24] and predicts the object

poses in the form of the 2D projections of the corners of the

3D bounding boxes, a 3D pose representation introduced in

[4] and [23].

Several works also attempted to be more robust to occlu-

sions. [16, 1, 30] first predict the 3D coordinates of the im-

age locations lying on the objects, in the object coordinate

system, and predict the 3D object pose through hypotheses

sampling with preemptive RANSAC. [21, 22] predict the

2D projections of 3D points from image patches or local

features, to avoid the effects of occluders when performing

the prediction.

These works have been very successful at predicting the

3D pose of objects, however they mostly do not consider ob-

jects with symmetry. Our goal in this paper is not to propose

another architecture for 3D pose prediction, but to study the

effects of symmetries on the prediction process, and pro-

pose a general solution, which can be integrated in these

previous works.

2.2. Ambiguity Aware Pose Estimation

[23] is probably the first work that mentioned the diffi-

culty of predicting the 3D pose of objects with symmetries

using Deep Networks, and presents some results on the T-

Less dataset. However, the paper does not provide many de-

tails about the method and the solution is not general. Our

approach is related to the direction they point at, but we

provide a general solution, with much more justifications.

[26] learns a latent representation of the object pose us-

ing an auto-encoder. They show that their learned embed-

ding is ambiguity agnostic, in the sense that visually am-

biguous poses will map to the same code in the latent space.

They perform pose estimation by matching the code ob-

tained from an image of the object with a precomputed code

table covering the 6D pose space. While this approach is

very interesting, we consider here an orthogonal approach

based on an analytical study of the ambiguities. Moreover,

the code table introduces some discretization, while we pre-

dict a 3D pose that varies continuously with the input image.

[3] learns to compare an input image with a set of ren-

derings of the object under many views, to predict the most

similar view and to predict the rotational symmetries of the

object. This also requires to discretize the possible rota-

tions, while we predict a continuous 3D pose.

[20] also considers a learning-based approach, tackles

ambiguities raised by partial occlusions in addition to ro-

tational symmetries, i.e. when an occluder hides a part of

an object, so that it is not possible to estimate the pose ex-

actly anymore. This is done by training a network to pre-

dict multiple poses, so that only one has to correspond to

the actual pose. At test time, the network predicts multiple

poses, which are expected to represent the distribution over

the possible poses. By contrast with this learning-based ap-

proach, we explicitly consider the ambiguities that can raise

under symmetries.

[2] introduced the concept of proper symmetries group

in a survey that aims to cover ambiguities and a pose rep-

resentation specific to a metric on 3D poses. We use this

concept to solve the ambiguities created by symmetrical ob-

jects. The paper however does not consider pose prediction

using regression or machine learning.
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Figure 2: Mapping of 3 ambiguous poses to the same pose.

We consider here a uniform object and the colors and dots

on the faces are only to visualize the different poses. The

left and right poses are remapped to the reference pose in

the middle.

[11] notices that symmetries produce multiple modes in

the distribution Q(θ|I) over 3D poses θ. They therefore en-

force a uniform prior P (θ) over symmetrical poses to suc-

cessfully approximate Q. However, they do not explicitly

report results on (quasi)-symmetrical objects such as those

of T-Less.

3. Method

We study below the effect of symmetries on algorithms

aiming to learn the mapping between an image of an object

and its 6D pose, and we show how we can derive a sim-

ple method for handling these symmetries. In the next sec-

tion, we describe how this method can be integrated within

a Faster-RCNN framework.

3.1. Mapping Ambiguous Rotations

Let’s consider the set M(O) already introduced in

Eq. (1). In practice, the motions in M are usually in the

form m = [R,0] with R ∈ SO(3), i.e. objects have mostly

rotational symmetries. A translation component different

from 0 would correspond to an object with translation sym-

metries, for example a long building with windows of simi-

lar appearances.

We thus first define the notion of ambiguous rota-

tions: We say that two rotations R1 and R2 are ambigu-

ous if they result in the same object appearance, i.e. if

R(O, [R1, T1]) = R(O, [R2, T2]). This defines an equiv-

alence relationship R1 ∼ R2. If R1 ∼ R2, then it is not

possible from an image to distinguish between rotation R1

and R2 when predicting the pose. Predicting R1, or R2, or

any rotation R ∼ R1 is equally good. This is in fact the

idea behind the ADI metric [12].

As illustrated in Fig. 2, a natural idea to aim at preventing

trouble during learning is therefore to first map equivalent

rotations to a unique rotation, which we call a canonical

rotation. This means that during training, training images

with the same object appearance will be assigned the same

rotation after mapping. The transformation F : I 7→ p of

Eq. 2 will thus become a function and we will be able to

learn it with a Deep Network for example. This implies that

at inference, the network will predict the canonical rotation

for a given input image, which is the best that can be done

in presence of symmetries.

Given setM(O) of the object’s proper symmetries, we

are therefore looking for an operator Map(·) on SO(3) that

can map ambiguous 3D rotations to a single rotation such

that Map(R1) = Map(R2) ⇐⇒ R1 ∼ R2 (⋆) holds.

Proposition 1. Given a proper symmetry groupM(O),
let us define Map operator as:

Map(R) = Ŝ−1R , ∀R ∈ SO(3), (3)

with

Ŝ = argmin
S∈M(O)

‖S−1R− I3‖F , (4)

where ‖.‖F is the Froebenius norm. Then Map verifies

the mapping property (⋆).

Proof. To simplify the notations, let us consider that

M(O) is made only of the rotation components. By def-

inition of R1 ∼ R2 andM(O):

R1 ∼ R2 ⇔ ∃! S12 ∈M(O) s.t. R1 = S12R2 . (5)

Let us consider the solution of the optimization problem in

Eq. (4) for R1:

Ŝ1 = argmin
S∈M(O)

‖S−1R1 − I3‖F . (6)

then

Ŝ1 = argmin
S∈M(O)

‖S−1S12R2 − I3‖F . (7)

We introduce variable T such that S = S12T . Since S and

S12 belong toM(O) andM(O) is a group, T also belongs

toM(O). We can therefore perform the following change

of variable:

Ŝ1 = S12 argmin
T∈M(O)

‖T−1R2 − I3‖F , (8)

which is equal to:

Ŝ1 = S12Ŝ2 , (9)

with

Ŝ2 = argmin
S∈M(O)

‖S−1R2 − I3‖F . (10)

Therefore

R1 ∼ R2 ⇔ Map(R1) = Ŝ−1
1 R1 = Ŝ−1

2 S−1
12 S12R2

= Ŝ−1
2 R2 = Map(R2) .

(11)



3.2. Implementing Map

If M is discrete, implementing operator Map is trivial,

as it is only a matter of iterating over the elements of M
to find the minimum. However, M can be continuous for

some objects. This is the case for generalized cylinders and

spheres [2]. For spheres, Map is also trivial as it can always

return the identity transformation, for example.

For generalized cylinders, implementing operator Map is

more complex. In this case,M can be written as:

M(O) = {Ru

α : α ∈ [0, 2π)}, (12)

where Ru

α is the rotation around axis u of amount α.

The Froebenius norm in Eq. (4) can be rewritten as

‖S−1R− I3‖F = ‖D‖F = Trace(DTD) , (13)

with D = S−1R− I3. After some derivations:

‖S−1R− I3‖F = 6− Trace(STR) . (14)

The complete derivations can be found in the supplementary

material.

Without loss of generality, we can assume that u is the z-

axis of the object’s coordinate system: If it is not the case,

the following still holds after applying a change of basis.

Then, S has the following form:

S =





cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1



 , (15)

and, after some basic manipulation:

Trace(DTD) = 6− (R11 +R22) cos(α)

+ (R12 −R21) sin(α) .
(16)

To implement Map, we need to solve the optimization prob-

lem Ŝ = argmin
S∈M(O)

Trace(DTD), which can now be rewrit-

ten as a minimization over α:

α̂ = argmin
α∈[0,2π)

Trace(DTD)

= argmax
α∈[0,2π)

(R11 +R22) cos(α)− (R12 −R21) sin(α) .

(17)

This is solved analytically by solving
∂Trace(DTD)

∂α = 0 for

α. The solution of Eq. (4) is then:

Ŝ = Rz

α̂ with α̂ = arctan2(R21−R12, R11+R22). (18)

3.3. Discontinuities of F After Mapping

After applying the Map operator, there are no pose am-

biguities anymore, i.e. two similar images are assigned the
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Figure 3: Discontinuities of F after applying the Map op-

erator, for an object with one axis of symmetry and a π-

symmetry. All poses are mapped to a pose in the hashed

region by operator Map introduced in Section 3.1. Since

Map(Rz
π/2+ǫ) = Rz

ǫ−π/2 (visualized by the green arrow)

and Map(Rz
π/2−ǫ) = Rz

π/2−ǫ, there exists a hazardous re-

gion (in red) where F is discontinuous.

same rotation. However, a new difficulty arises: The trans-

formation F(I) → p is now discontinuous around some

rotations. This is problematic when using Deep Networks

to learn F , as Deep Networks can only approximate contin-

uous functions [5, 15, 8].

To understand why these discontinuities happen, let us

consider an example, more exactly the rectangular object

seen from the top as in Fig. 3. M(O) is made of two ro-

tations around the Z axis: The identity matrix, and the ro-

tation of angle π, and M(O) = {I3, Ru

π}. If a training

image is annotated with rotation Rz

π/2+ǫ, this rotation will

be mapped by operator Map to rotation Rz

ǫ−π/2; If a train-

ing image is annotated with pose Rz

π/2−ǫ, this rotation will

be mapped to itself i.e. Rz

π/2−ǫ. By making ǫ converge to

0, it can be seen that there is a discontinuity of F around

images annotated with rotations π before mapping.

Another way of looking at the problem is to notice that

images of the object annotated with rotations Rz

ǫ−π/2 and

Rz

π/2−ǫ look very similar, but with very different rotations.

A Deep Network would have to learn to predict very differ-

ent poses for very similar images.

3.4. Solving the Discontinuities

The discontinuities only occur when M is discrete: It

can be seen from Eq. (18) that in the case of a general-

ized cylinder, the Map operator is continuous. Otherwise,

we avoid these discontinuities by introducing a partition of

SO(3) made of two subsets Ω1 and Ω2. For each subset, we

train a different regressor to predict the pose. We will there-

fore have two regressors F1 and F2 instead of only one.

In this way, both F1 and F2 will be continuous over their



respective domains.

We describe below our method on an example, and then

extend it to the general case.

3.4.1 One Symmetry Axis, M = 2

Let us consider again the rectangular object pictured in

Fig. 3, and already discussed in Section 3.3. For this ob-

ject, we have M(O) = {I3, Ru

π}. We can notice that M
and Map generate a partition of SO(3) made of two subsets:

Ω1 = {R : Ŝ(R) = I3} and Ω2 = {R : Ŝ(R) = Ru

π} ,
(19)

where Ŝ(R) is the rotation of Eq. (4) when applying Map

to R.

However, this partition will not solve our problem: We

already know that F is not continuous on Ω1. We must

therefore introduce a new partition of SO(3). For this parti-

tion, we consider the new set:

√
M(O) = {(Ru

kπ/2) : k ∈ Z}
= {I3, Ru

π/2, R
u

π , R
u

3π/2} ,
(20)

and the partition it generates with Map:

Ω(k) = {R : Ŝ(R) = Ru

kπ/2} . (21)

As shown in Fig. 4b, no part Ω(k) include any discontinuity.

Moreover, for a rotation in Ω(2), there is another rotation in

Ω(0) that generates the same object appearance. The same

yields for Ω(3) and Ω(1).

We therefore take Ω1 = Ω(0) for the domain of regressor

F1, and Ω2 = Ω(1) for the domain of regressor F2. F1 and

F2 thus do not suffer from discontinuities nor ambiguity.

They are sufficient to estimate the object pose under any

rotation, since we can map this rotation to a rotation either

in Ω1 or Ω2 corresponding to the same appearance. To do

so, we introduce a new mapping Map′ derived from Map

such that:

∀R ∈ SO(3), Map′(R) = (Ŝ−1R, δ) such that (Ŝ, δ) =










(argmin
S∈M(O)

‖S−1R− I3‖F , 1) if Map(R) ∈ Ω1 ,

(argmin
S∈M(O)

‖S−1R−Ru

π/2‖F , 2) otherwise ,

(22)

During training, given a training image I annotated with

rotation R, we compute (Ŝ−1R, δ) ← Map′(R) and train

regressor Fδ to predict rotation Ŝ−1R from I .

During inference, given a test image I of an object, we

need to know which regressor we should invoke to predict

the pose. To do so, during training, we train a classifier C
to predict which regressor we should invoke to compute the

pose, that is we train C to predict δ from I . For rotations
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Figure 4: Partitions for an object with one axis of sym-

metry with M = 2 (left) and M = 4 (right) as defined in

Section 3.4. Rotations in areas filled with one color should

be mapped to a rotation in the hashed region of same color

to avoid discontinuities. Two different regressors F1 and

F2, one for each color, are used to predict poses for each

hashed region.

close to the boundary between Ω1 and Ω2, the prediction

for C can become ambiguous. However, in this case, the

ambiguity is not a problem in practice: Even if the classifier

predicts the wrong regressor to use close to the boundary

between Ω1 and Ω2, both regressors can correctly predict

poses close to this boundary.

3.4.2 One Symmetry Axis, Arbitrary M

Let us now generalize to an object O with an arbitrary

amount of symmetries around a single axis u. These sym-

metries are necessarily periodic around u with angular pe-

riod fα = 2π/M : Rotating O around u by any angle multi-

ple of fα does not change its appearance. The proper sym-

metry groupM(O) for such an object is:

M(O) =
{(

Ru

2π/M

)m}

m∈N

= {Ru

2mπ/M}m∈N . (23)

√
M(O) of Eq. (20)) becomes:

√
M(O) =

{(

Ru

π/M

)m}

k∈N

= {Ru

mπ/M}m∈N , (24)

and mapping Map′ of Eq. (22) becomes:

∀R ∈ SO(3), Map′(R) = (Ŝ−1R, δ) such that (Ŝ, δ) =










(argmin
S∈M(O)

‖S−1R− I3‖F , 1) if Map(R) ∈ Ω1 ,

(argmin
S∈M(O)

‖S−1R−Ru

π/M‖F , 2) otherwise ,

(25)

where Ω1 = {R : Ŝ(R) = I3}.
We can use Map′ the same way as in the previous sub-

section to train and use to regressors F1 and F2.



3.4.3 General Case

In the general case, each rotation R inM can be written in

the form:

R = Ru

2π/M .Rv

2π/N .... with M,N, .. ∈ N , (26)

where u, v, etc. are rotation axes. Most common objects

have at most 2 axes of symmetries, but it is possible to imag-

ine objects with more, for example a golf ball. To keep the

notations as simple as possible, we will stick to only two

axes, as it is easy to extend to more axes from there.√
M(O) becomes:

√
M(O) = {Ru

mπ/M .Ru

nπ/N}(m,n)∈N2 , (27)

and mapping Map′ becomes:

∀R ∈ SO(3),Map′(R) = (Ŝ−1R, δ1, δ2) s.t. (Ŝ, δ1, δ2) =


































(argmin
S∈M(O)

‖S−1R− I3‖F , 1, 1) if Map(R) ∈ Ω1,1 ,

(argmin
S∈M(O)

‖S−1R−Ru

π/M‖F , 2, 1) if Map(R) ∈ Ω2,1 ,

(argmin
S∈M(O)

‖S−1R−Rv

π/N‖F , 1, 2) if Map(R) ∈ Ω1,2 ,

(argmin
S∈M(O)

‖S−1R−Ru

π/MRv

π/N‖F , 2, 2) otherwise ,

(28)

where Ω1,1 = {R : Ŝ(R) = I3}, Ω2,1 = {R : Ŝ(R) =

Ru

π/M}, and Ω1,2 = {R : Ŝ(R) = Rv

π/N}. It means that in

this case, we have to train 4 different regressors F1,1, F2,1,

F1,2, and F2,2 according to δ1 and δ2, and the classifier C
to predict a class index in [0; 3].

3.5. Method Summary

The method developed above can be summarized as fol-

low. We distinguish between generalized cylinders and ob-

jects with discrete symmetries.

If the object is a generalized cylinder, given a training

image I annotated with rotation R, we train a single regres-

sor F to predict Map(R) using Eq. 3 from I . At inference

time, given a test image I , we simply have to invoke F to

predict the object pose from I .

If the object has discrete symmetries, given a training im-

age I annotated with rotation R, we apply Map′ to R using

Eq. (25) or Eq. (28) depending on the number of symmetry

axes. Map′ provides the rotation to be associated with I for

training, as well as the index of the regressor Fi to train. In

addition to training the regressors, we need to train classifier

C to predict the index of the regressor to use. At inference

time, we first invoke classifier C to predict which regressor

we should use from I , and then, invoke this regressor to

predict the object pose from I .
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Figure 5: Our architecture for implementing our approach.

It is built on top of the Faster-RCNN [25] architecture, to

which we add specific branches: One for each regressor Fi,

and one for classifier C to learn to choose between the re-

gressors.

4. Integration into Faster-RCNN

We integrated our approach into Faster-RCNN [25]. We

keep the original architecture of [25] to obtain region pro-

posals and classify each of those regions with an object la-

bel: In the T-Less dataset [14], there exist 30 classes of ob-

ject. We also keep the original loss terms for this part.

We chose to predict the objects’ 6D poses in the form of

the 2D reprojections of the 8 corners of the 3D bounding

boxes, as in [23, 27, 28, 22] for simplicity. From these 2D

reprojections, it is possible to estimate a 6D pose using a

PnP algorithm [9]. However, our approach is general, and

using any other representation of the pose, with quaternions

for example, is also possible.

Fig. 5 shows the different branches we added to the orig-

inal Faster-RCNN architecture. We describe them below.

Pose regressor F branch. We add a specific branch to

the Faster-RCNN [25] architecture to predict the 2D coor-

dinates of each 3D corner for each regressor. The output of

each branch has size 16 × 30, where 30 is the number of

object classes and 16 accounts for the 8 2D coordinates to

predict. This branch is implemented as a fully connected

multi-layer perceptron and takes as input the output shared

single channel feature-map. We then use an L1 or L2 loss

on each coordinate. More details can be found in the sup-

plementary materials.

Classifier C branch. We also added a specific multi-layer

perceptron branch to Faster-RCNN to implement classifier

C. Ground truth is obtained using Eq. (22).



5. Experiments

In this section, we detail how we evaluated our approach,

and show its effectiveness on objects with various types of

symmetries.

5.1. Dataset

We use the objects of the T-Less dataset [14] as they

exhibit many different challenges due to symmetries, and

are representative of objects in daily and industrial environ-

ments. However, the T-Less dataset does not provide many

images for training, with a limited range of poses and illu-

mination conditions. We therefore generated training and

test images using the CAD models provided with T-Less,

introducing partial occlusions and illumination variations.

This dataset is made of 30K samples, generated using the

CAD models provided in the original T-Less dataset with

Cycles, a photorealistic rendering engine of the open source

software Blender.

Each sample of our dataset is generated using a random

set S of objects taken from the T-Less dataset, using ran-

dom gray scale color (from dark-gray to white) for each of

them. Each object of S is initially set with a random pose,

and we let the objects fall down on a randomly textured

plane, using Blender’s physics simulator. Because the ob-

jects can collide together, their final pose on the table is also

random. Illumination randomization is performed by vary-

ing the level of ambient light and randomizing a point light

source in terms of position, strength, and color. This of-

ten results in strong cast shadows, as can be seen in Fig. 6.

A comparison with the original T-Less (primesense) dataset

is given in Table 1. This dataset therefore provides chal-

lenging conditions, and allows us to focus on the challenges

raised by the symmetries, without having to consider the

domain gap between synthetic and real images.

Dataset
T-Less (primesense)

SyntheT-Less
Train Test

Number of samples 38K 10K 30K

Illumination variation None Small Strong

Occlusion No Yes Yes

Multi-objects images No Yes Yes

Object color variation None Small Small

Background variation None Small Strong

Table 1: Comparison between the T-Less dataset and our

SyntheT-Less dataset.

5.2. Effectiveness of our Approach

As shown in Fig. 9, the loss of our Faster R-CNN -based

implementation converges only when the rotations are nor-

malized using our normalization procedure, indicating that

Figure 6: Sample images from our SyntheT-Less dataset.

All objects in each image are annotated with their classes

and 6D poses.

(a) (b) (c) (d)

Figure 7: Pose estimation results with (top row) and with-

out (bottom row) our normalization approach for (a) gen-

eralized cylinders, (b) an object with an axis of symmetry,

(c) an object without any symmetry, and (d) a typical scene

from our SyntheT-Less dataset. The green and blue bound-

ing boxes correspond to the ground truth poses estimated

poses respectively. Without our normalization, the network

learns to predict the average between all the possible poses

for symmetrical objects, which is of course meaningless.

something is incorrect in the loss function in absence of nor-

malization. In Fig. 7, we show what happens in practice for

three possible types of objects: Two generalized cylinders

(objects 30 and 3), an object with an axis of symmetry (ob-

ject 29), and an object without any symmetry (object 26).

When dealing with non-symmetrical objects, the network is

able to learn the 6D pose with and without the normaliza-

tion procedure. On the opposite, when the objects are sym-

metrical, without our normalization the network learns the

average between all the possible poses ending up predicting

a pose collapsed to the center of the object.

5.3. T­LESS Dataset: Comparison with [26]

We use the Visible Surface Discrepancy (VSD) error

function introduced by [13]. It compares the ground truth

measured depth maps Ŝ and the depth maps S̄ rendered ac-

cording to the estimated poses to evaluate the proportion



Figure 8: Some qualitative results on test scenes of the T-Less dataset. Green and blue bounding boxes are the ground truth

and estimated poses respectively while the red bounding boxes correspond to missed detections.

  

2D-coordinates loss (L
1
)

Train

Val

Val

Train

without 

normalization

with 

normalization

Figure 9: Learning curves on the training and validation

sets of our Faster-RCNN based implementation. Without

our normalization described in Section 3, the network fails

to converge to a satisfying solution. More exactly, it con-

verges to a local minimum where all keypoints collapse at

the center of the object—see Fig. 7.

of visible pixels for which the depth absolute discrepancy

map |Ŝ - S̄| is below a threshold τ . As in [13], we set

τ = 20mm and report the recall of correct 6D object poses

at evsd < 0.3. This metric is not sensitive to visual sym-

metries, as they induce similar symmetries in depth maps.

Table 2 compares our method to the method of Sunder-

meyer et al [26]. The object 3D orientation and translation

along the x-and y-axes are typically well estimated. Al-

though most of the translation error is along z-axis, it is

unsurprising since we do not use or regress the depth in-

formation. In order to have a meaningful evaluation of our

results in terms of VSD, we keep the ground truth of the

translation along z-axis in our pose predictions.

6. Conclusion

In this paper, we studied the subtle problems that arise

when training a machine learning method to predict the 6D

pose of an object with symmetries. This leads to a sim-

ple method that is agnostic to the exact pose representation

and the pose prediction model. Our method can therefore

Sundermeyer et al. [26] Ours

Object SSD Retina GT BBox Faster-RCNN

1 5.65 8.87 12.33 26.35

2 5.46 13.22 11.23 56.14

3 7.05 12.47 13.11 83.33

4 4.61 6.56 12.71 32.98

5 36.45 34.80 66.70 44.54

6 23.15 20.24 52.30 98.33

7 15.97 16.21 36.58 87.74

8 10.86 19.74 22.05 17.09

9 19.59 36.21 46.49 52.54

10 10.47 11.55 14.31 5.43

11 4.35 6.31 15.01 27.97

12 7.80 8.15 31.34 43.08

13 3.30 4.91 13.60 48.54

14 2.85 4.61 45.32 42.19

15 7.90 26.71 50.00 47.10

16 13.06 21.73 36.09 42.18

17 41.70 64.84 81.11 56.83

18 47.17 14.30 52.62 19.31

19 15.95 22.46 50.75 27.53

20 2.17 5.27 37.75 32.16

21 19.77 17.93 50.89 41.19

22 11.01 18.63 47.60 49.10

23 7.98 18.63 35.18 26.08

24 4.74 4.23 11.24 41.34

25 21.91 18.76 37.12 44.37

26 10.04 12.62 28.33 23.80

27 7.42 21.13 21.86 33.78

28 21.78 23.07 42.58 35.10

29 15.33 26.65 57.01 15.92

30 34.63 29.58 70.42 36.17

Mean 14.67 18.35 36.79 41.27

Table 2: T-LESS: Object recall for errvsd < 0.3 on all

Primesense test scenes (the higher the better).

be included in current and future developments for properly

handling objects with symmetries. A direct extension of

our work could be to automatically detect the object sym-

metries.
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