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Abstract. This paper revisits the pose estimation from point correspon-
dences problem to properly exploit data provided by a GPS. In practice,
the location given by the GPS is only a noisy estimate, and some point
correspondences may be erroneous. Our method therefore starts from the
GPS location estimate to progressively refine the full pose estimate by
hypothesizing correct correspondences. We show how the GPS location
estimate and the choice of a first random correspondence dramatically
reduce the possibility for a second correspondence, which in turn con-
strains even more the remaining possible correspondences. This results
in an efficient sampling of the solution space. Experimental results on a
large 3D scene show that our method outperforms standard approaches
and a recent related method [1] in terms of accuracy and robustness.

1 Introduction

The recent development of mobile devices has made applications such as localiza-
tion using a simple embedded camera realistic on such devices. Research in this
direction, however, has mostly focused on image retrieval techniques to consider
large-scale environments [2]. Such approach can only provide a coarse pose, and
more accuracy will be needed, for example in Augmented Reality applications.

In this paper, we focus on the estimation of an accurate 3D pose from corre-
spondences between 3D points and their projections in the image. This is most
certainly one of the oldest problems in Computer Vision, however in this work,
we explicitly target pose estimation of photographs taken with a hand held de-
vice. In particular, this implies that we can exploit the other sensors these devices
are typically equipped with beside the camera.

These sensors include accelerometers, magnetometers (i.e. electronic com-
passes), and GPS. Accelerometers, or inertial sensors, have been used for several
years in tracking applications [3]. They can measure the camera motion, which is
of no use in our application 1, and the camera orientation. In practice, however,
it is not uncommon to see errors of over 90 degrees in the obtained orientation
estimate, and so we choose not to use orientation measurements. Instead, we
only consider the GPS.

⋆ Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne (EPFL)
1 In practice the accuracy of the accelerometers available for mobile devices combined

with the erratic motion of such a device together make it virtually impossible to
integrate acceleration signal to obtain location.



2 Timo Pylvänäinen, Lixin Fan, and Vincent Lepetit

The standard GPS is typically said to have an accuracy of around few meters.
This gives a strong prior on the camera pose, but the uncertainty must still be
properly taken into account for an accurate pose estimation. Our method starts
from the GPS location estimate to progressively refine the full pose estimate.
This is done by sequentially hypothesizing correct correspondences. Because the
choices for the previous correspondences dramatically constrain the possibilities
of the next correspondence, this allows a particularly efficient sampling of the
solution space.

The closest method in the literature is [1], which starts from a prior on the full
pose and applies an Extended Kalman filter each time a correspondence is picked
to shrink the search space for the next hypotheses. Our experimental results show
that our method performs better in terms of robustness and accuracy. This is
most likely due to the analytical solution to constrain the search where [1] has
to linearize the Kalman filters equations.

In the remainder of the paper, previous work which has used GPS and other
sensors is first briefly reviewed. A formalization of the problem is given in Sec-
tion 3, and Section 4 describes and analyses the sequential sampling procedure.
Finally Section 5 compares the proposed method to the standard solution using
RANSAC and [1] on a large real 3D scene.

2 Related Work

Carceroni et al. [4] have studied a similar problem of estimating camera ori-
entation from multiple views, given the locations of the viewpoints and a set
of point correspondences between views. The uncertainty in the viewpoint lo-
cations, however, has not been taken into account. Their method essentially
reduces the problem to three degrees of freedom, while we optimize over the full
six degrees of freedom of the camera pose.

Some work has been done with inertial sensors and GPS where pose estima-
tion is relevant [3, 5–7]. Many of these systems do not truly use all the redun-
dancy of the given measurements, but rather use sensors to initialize and help
the visual system [3]. When low level sensor fusion is used, it is often done as the
prediction part of a Kalman filter such as in [5] and is only useful for tracking
applications.

Pollefeys et al. [7] use GPS and inertial tracking for camera pose estimation,
and then correspondences for reconstruction. There is therefore no fusion of
image and sensor information. GPS and orientation sensor data are used in [6] to
compute an initial pose estimate by solving a linear system. This estimate is then
refined using a non-linear optimization of an objective function that incorporates
a GPS term with an arbitrary weighting factor. Both of these methods require a
measurement of the full pose, while we rely only on the GPS and its uncertainty
to initialize our method.

We want to be able to deal with outlier correspondences, and RANSAC-like
methods have proved their robustness and efficiency. Many variants have been
proposed over the years, and we can roughly classify them into four categories:
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1. Methods to reduce cost of evaluation to increase the number of iterations
that can be done in a given time [8, 9].

2. Methods that use prior knowledge to guide sampling [10–12].
3. Methods that exploit the connectivity of nearly optimal models [13–17].
4. Methods that modify the evaluation function to get better results [18, 19].

Most improvements of RANSAC fall into Categories 1 and 3. In most cases,
these improvements can be combined with our method. For instance, our method
has been successfully combined with the Hill Climbing strategy [13] to create
a combined optimization strategy which performs better than Hill Climbing
strategy alone.

The method we propose falls mostly in the second category, taking advan-
tage of very specific prior knowledge. The closest method in this category is
perhaps [11] in the sense they use a model specific sampling strategy. They,
however, consider a different problem than ours since they focus on homography
estimation. They use a different consistency constraint, enforced as a prepro-
cessing step which introduces a fixed overhead.

Like our method, NAPSAC [15] uses the idea of generating sample sets se-
quentially, but its only assumption was that neighbouring points of an inlier are
more likely to be inliers. This method does not use any prior knowledge and falls
in Category 3.

Moreno-Noguer [1] also uses sequential sample generation and considers the
camera pose estimation problem but requires a prior on the full pose, while
we use a prior on the camera center location only. In [1], the correspondences
between 3D points and their reprojection are not assumed to be known, and
each consecutive point is treated as an observation of the unknown pose in a
Kalman filter setting. In contrast, we take a fundamentally different approach
as each consecutive point is instead used to reduce degrees of freedom of the
pose estimate and the covariances are propagated to represent the uncertainty
in the fixed degrees.

However, the algorithm presented in [1] is probably the closest one to ours in
that it solves the same problem, uses similar prior knowledge and builds minimal
sets sequentially. We therefore compare it against our method in Section 5.

3 Problem Statement

This section gives a formal mathematical definition of the problem we solve.
The camera pose estimation is formulated as a minimization problem of a cost
function that considers the log likelihood of the pose given the observed cor-
respondence and of the location measurement from the GPS. Because these
measurements have meaningful units, the relative weights of the two different
kinds of measurements are properly described by the covariance matrices.

We assume we are given a set of world points Xi ∈ R
3 and their reprojections

xi ∈ R
2 in the image. In practice we use SURF [20] to find these correspondences.

The reprojections xi are corrupted by noise, and some can even be completely
mismatched.
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We denote by θ the camera pose and by projθ (xi) the projection of point Xi

by the camera. In other words, for the inliers it is expected that

xi = projθ (Xi) + ε , (1)

where ε is a Gaussian noise term.

The location provided by the GPS is denoted by g, and to simplify we assume
its true value ḡ can be computed directly from the true value θ̄ of the camera
parameters as the camera center ḡ = c(θ̄).

The problem can finally be stated as recovering the pose θ which minimizes
the cost function

cost(θ) = Ec(θ) +
∑

i

ρ(e2
i ) , (2)

where

Ec(θ) = (g − c(θ))⊤Σ−1
c (g − c(θ))

e2
i = (xi − projθ (Xi))

⊤Σ−1
x (xi − projθ (Xi))

(3)

and ρ(.) is a robust estimator:

ρ(e2
i ) =

{

e2
i e2

i < T 2

T 2 e2
i ≥ T 2

. (4)

4 Sequential Sampling

For the pose estimation problem, three correspondences define a pose. In the pro-
posed sequential sampling, this minimal set is generated by selecting each con-
secutive correspondence from a different distribution, starting from the uniform
distribution. Each consecutive correspondence reduces the degrees of freedom of
the unknown pose. The probability distribution of the location measurement is
mapped to a probability distribution of the correspondences, with the assump-
tion that the first correspondence was correct.

This effectively uses the location measurement to guide the generated min-
imal sets to be consistent with the location measurement. The proposed poses
are evaluated against the robust cost function to find a good inlier set.

4.1 Sampling the First Correspondence

Assuming the rotation of the camera is unknown, then even with known location
any single correspondence is a priori equally likely. It is always possible to align
any point in 3D to any point in the camera image by rotating the camera. So the
first correspondence x1 ↔ X1 is randomly selected from a uniform distribution.
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4.2 Sampling the Second Correspondence

Lets first assume that the camera location and the image location x1 of the first
correspondence are known exactly. The only remaining degree of freedom is the
rotation about the axis formed by the camera center and the corresponding 3D
point X1. Under this constraint, the projection x2 of a given world point X2 lies
on an ellipse in the image plane.

Since the value of the angle defined by X1, the camera center g, and X2

should remain the same when expressed in the camera coordinate system and in
the world coordinate system, the following formula should hold:

x⊤
1 x2

‖x1‖‖x2‖
−

(X1 − g)⊤(X2 − g)

‖X1 − g‖‖X2 − g‖
= 0 , (5)

where x1 and x2 are considered to be in homogeneous coordinates. This equation
defines an implicit function constraint of the type:

f(x2,x1,g) = 0 . (6)

In practice, however, the location g provided by the GPS and the projection
x1 are corrupted by noise. For a given x2, there is then some probability that
Equation (6) is satisfied. The exact computation of this probability involves
integrating over the sets of x1 and g for which the constraint holds. This is not
computationally feasible, so instead, we linearize f in the neighbourhood of the
observations:

f(x2,x1,g) ≈ Jx2
x2 + Jx1

x1 + Jgg, (7)

where Jx1
, Jx2

and Jg are the Jacobians of (6) with respect to to x1, x2 and g

respectively, and evaluated at the measured points.
Since we assumed that x1, x2 and g are normally distributed, the residual

f(x2,x1,g) can now be thought of as a normally distributed random variable:

f(x2,x1,g) ∼ N(0, σ2
e)

σ2
e = Jx2

ΣxJ⊤
x2

+ Jx1
ΣxJ⊤

x1
+ JgΣcJ

⊤
g .

(8)

Figure 1 illustrates the error introduced by the linear approximation. The
ground truth was obtained by randomly sampling the camera center and first
correspondence according to the assumed normal distributions. For each sample,
the possible exact projections were accumulated.

The likelihood of any point xi satisfying the constraint, assuming that x1

is an inlier corrupted by noise, can now be computed by taking the residual of
Equation (6) where x2 = xi and plugging it into Equation (8). The second point
is randomly selected proportional to these likelihoods.

4.3 Sampling The Third Correspondence

Even if a given location and two correspondences constitute an over-constrained
pose estimation problem, we found it is still better to consider a third correspon-
dence because of the uncertainty in the location measurement. We give here an
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Simulated ground truth

100 200 300 400

50

100

150

200

250

300

Linear estimate

100 200 300 400

50

100

150

200

250

300

Difference

100 200 300 400

50

100

150

200

250

300

Fig. 1. An example of the linear approximation of the correspondence likelihood. The
biggest error happens close to the edges of the image. Light areas of the difference map
indicate where the linear approximation under estimates the probability.

Fig. 2. The scene used in the experiments
contains 99 cameras and 10000 world
points. The world point visibility in the
cameras is based on the original matching
information in the original reconstruction.

Candidate 1

X1

X2
Candidate 2

Fig. 3. The sensitivity of the projection of
the third point depends on its location rel-
ative to the first two points and the cam-
era. Points such as Candidate 1 that are
far from the first points are sensitive to
camera location. Candidate 2, on the other
hand, is close to one of the first two se-
lected points and is less sensitive to camera
location.
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approximation of the covariance for the projection x3 of a selected third point
X3 that works well in practice and keeps the computation tractable.

We first assume that the biggest contributor to the variance comes from the
camera location uncertainty and all other sources are neglected. We compute a
current estimate for the camera pose by taking for the moment the GPS location
measurement g as camera center, and by using the first two correspondences to
estimate the rotation R. Intuitively, as shown in Figure 3, when the third point
X3 is close to the two first points X1 and X2, the covariance Σx3

of x3 will be
small. When it is moved away from these points, the covariance will increase.
We therefore use the following approximation for Σx3

:

Σx3
= κ2

1κ
2
2W

⊤ΣcW (9)

where

κ1 = min

(

‖X3 − X1‖

‖X1 − g‖
,
‖X3 − X2‖

‖X2 − g‖

)2

κ2 = min

(

1

‖X1 − g‖
,

1

‖X2 − g‖

)2

W = R⊤





1 0
0 1
0 0



 .

(10)

The matrix W maps the covariance of the camera location to the image plane.

We still have to explain how we compute the rotation matrix R that appears
in the third row of (10). The camera maps the 3D points X1 and X2 to their
respective 2D locations x1 and x2 and its rotation R must satisfy

RX̂1 = x̂1

RX̂2 = x̂2

R(X̂1 × X̂2) = x̂1 × x̂2 ,

(11)

where X̂i = Xi−g

‖Xi−g‖ and x̂i = xi

‖xi‖
. The last equation in (11) comes from the

properties of a rotation matrix.

This can be written as a linear system, and solved in the least-squares sense to
obtain the elements of the rotation matrix. We force the solution R′ to a proper
rotation matrix by computing the singular value decomposition R′ = UDV⊤

and then taking R = UV⊤.

A summary of our method is given in Algorithm 1. This version has no
other stopping criterion than a limited time budget. The function cost is the
cost function defined in (2). Functions EllipseLikelihood and PointLikelihood

will randomly draw a correspondence index according to the likelihoods defined
in Sections 4.2 and 4.3 respectively. Function PossiblePoses returns the four
solutions of the P3P problem.
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Input: A set of N possible correspondences and location information g

Output: Camera pose estimate
while time left do

i1 := Uniform(1..N);
i2 := EllipseLikelihood(g, i1, x1, ..., xN );
i3 := PointLikelihood(g, i1, i2, x1, ..., xN );
Θ := PossiblePoses(xi1

, xi2
, xi3

);

foreach θ ∈ Θ do

if cost(θ, x1, ..., xN , g) < cb then
cb := cost(θ, x1, ..., xN , g);
θ∗ := θ;

end

end

end

Algorithm 1: Overview of pose estimation.

5 Experiments

5.1 Setup

We reconstructed a real 3D scene from 99 images with GPS measurements using
our own reconstruction pipeline based on SURF features [20] and the sparse
bundle adjustment library described in [21]. The resulting reconstruction con-
tains over 20000 world points. 10000 of the world points were randomly selected
for the test set. The resulting scenario is shown in Figure 2.

To analyze the effect of keypoint localization noise and GPS noise, we first
corrected the keypoint locations in the images to match the reconstructed world
exactly. This created a noise free reconstruction with perfectly known camera
poses, which nevertheless represents a real world scenario.

We then added noise to the keypoint locations. Inliers were corrupted with
Gaussian noise with a standard deviation of 5 pixels in the original 800 × 600
pixel images used to capture the scene. With a given probability a keypoint is
treated as an outlier, in which case its location is randomly drawn from the
uniform distribution over the image. We tests with 4 different outlier ratios from
10% to 70%.

The GPS measurement was generated by adding noise to the camera location
in the reconstruction, which after the corrected projections is effectively noise-
less. The noise was drawn from the three dimensional Gaussian distribution and
normalized to a fixed length. Tests were run with 6 different GPS offsets from 0
to 5 meters. The distribution used for the GPS error in the cost function and in
sequential sampling had a standard deviation of 5 meters.

This results in a total of 24 noise scenarios. Three methods were tested under
these conditions:

1. Standard RANSAC to optimize the compound cost function.
2. The pose prior method of [1] modified as described below.
3. The proposed sequential sampling method.

The original method described in [1] does not assume known correspondences
and performs an exhaustive search. It was adapted to the Random Sampling
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Consensus framework as follows. Starting from the given pose prior, the pose
estimate and its covariance are updated according to the Kalman filter rules as
new points are selected. The selection of the next point is done according to
the likelihoods defined by the reprojection error obtained using the current pose
estimate. The reprojection error covariance is obtained by propagating the pose
estimate covariance using the Jacobian of the projection function.

The pose prior method requires a full pose. To be fair, it was tested with
realistic noise which corresponds to the kind of orientation estimate that might
be obtained from sensors embedded in a mobile device. The rotation matrix was
corrupted by random noise until a rotation matrix was obtained where the mean
angle between the axis of the original rotation matrix and the corrupted rotation
matrix was between 20 and 25 degrees.

A sample run consists of 10 iterations of the algorithm to estimate the pose
of a randomly selected image from the set. A test comprises of 1000 sample runs
of an algorithm under specific noise conditions.
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Fig. 4. Comparison with RANSAC and the modified pose prior method of [1] for
two different ratios of outliers, and three levels of GPS errors. The bars in the stacks
correspond, from left to right, to the proposed method (blue), the modified method
of [1] (green), and RANSAC (red). Left: For small ratios of outliers, the three methods
perform about the same. Right: For large ratios of outliers, which correspond to more
realistic scenarios, our method is clearly more accurate.

5.2 Results

The three histograms of the left of Figure 4 show the results obtained with the
three different methods for various GPS errors when there are only 10% outliers.
In that case, the three methods perform about the same.

The proposed GPS method, however, is most valuable when the images are
difficult to match. In practice, urban scenes have many repetitive structures, for
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example the windows of a building, and to guarantee the existence of the real
correspondence, multiple hypotheses from feature matching should be retained,
resulting in a large number of outliers. As shown by the histograms on the
right of Figure 4, our method efficiently takes advantage of the GPS data, and
outperforms the other methods.

Figure 5 (left) summarizes the results of more experiments. We also include
the results obtained with the modified method of [1] provided by the exact
orientation. This version performs remarkably well, unfortunately currently no
sensors are able to provide such accuracy on the orientation. It can be seen that
RANSAC and pose prior with realistic noise in the pose both tend to break down
after 50% outliers.
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Fig. 5. Left: Median distance to ground truth location for different noise conditions
and for all the methods. In this test we also included, for comparison, the modified pose
prior method of [1] with no error in the orientation. It can be seen that RANSAC and
pose prior with realistic noise in the pose both tend to break down after 50% outliers.
Although our method shows degraded performance as the GPS error approaches values
unlikely according to the assumed covariance, it still outperforms previous methods. Of
course, the full pose prior method with perfect orientation performs very well as with
perfect orientation measurement there is little to optimize. Right: The histograms of
distance to ground truth location for 70% outliers for the proposed method and the
full pose prior with different levels of noise in the orientation. The bars in the stacks
are from left to right: the proposed method (blue), full pose prior with maximum 5
(cyan), 5-10 (yellow) and 10-15 (red) degrees of error. As is to be expected, with no
error in the location and very little error in the orientation, the full pose prior method
works very well. When the GPS error is increased, the performance of the proposed
method approaches that of the method with nearly perfect orientation. The full pose
prior with noisy orientation does not perform as well as the proposed method. It can
be observed that if the orientation measurement is available, it must have error less
than 5 degrees before the switch to full pose prior method is justified.

Finally, we tested our method against the full pose prior method with differ-
ent levels of noise in the orientation and location measurements. The test case
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contained 70% outliers and is based on 1000 sample runs. The results are shown
in Figure 5 (right). We tested against three different orientation noise cases:
where the average angluar error to the axes of the ground truth rotation was
less than 5 degrees, when it was between 5 and 10 degrees and between 10 and
15 degrees. Obviously, with nearly perfect prior pose information the full pose
prior method performs extremely well. It can be observed, however, that as the
GPS error is increased the performance difference becomes smaller.

The results show that if the orientation measurement is available, it has to
have an error less than 5 degrees for it to be useful. The proposed method, which
uses only GPS, outperforms the full pose prior method with 5-10 degrees of error
in the orientation.

6 Conclusion

We showed how GPS information can be used to guide sampling in a RANSAC
setting to estimate inliers of the pose estimation problem. This novel sequential
sampling method was shown to effectively guide the sampling towards the correct
solution.

In the experiments, the method shows clear performance advantage when
the number of outliers is high. In real world applications, extremely high outlier
ratios commonly occur when multiple hypotheses from feature matching are re-
tained. In the case of repeated patterns, multiple hypotheses can lead to multiple
consensus sets only one of which represents the correct pose. The use of GPS
effectively resolves this ambiguity and the proposed method does this efficiently.

It should be noted, however, that the evaluation of the likelihoods for each
candidate match in steps 2 and 3 is roughly equivalent to one evaluation of the
objective function. One iteration of the proposed algorithm in a naive imple-
mentation therefore equals to roughly three iterations of standard RANSAC in
terms of CPU time. This means, unfortunately, that in practice it is usually
faster to not apply the GPS based weighting on the candidate matches unless
the outlier ratio is very high. It might be possible to develop more advanced
selection strategies which would avoid full evaluation of the likelihoods for each
point.
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Q., Stewènius, H., Yang, R., Weclh, G., Towles, H.: Detailed real-time urban 3d
reconstruction from video. International Journal of Computer Vision (2007)

8. Nister, D.: Preemptive RANSAC for live structure and motion estimation. In:
ICCV. (2003) 199–206 vol.1

9. Chum, O., Matas, J.: Randomized RANSAC with Td,d test. In: BMVC. (2002)
448–457

10. Tordoff, B., Murray, D.W.: Guided sampling and consensus for motion estimation.
In: ECCV. (2002) 82–98

11. Guo, F., Aggarwal, G., Shafique, K., Cao, X., Rasheed, Z., Haering, N.: An efficient
data driven algorithm for multi-sensor alignment. In: Workshop on Multi-camera
and Multi-modal Sensor Fusion Algorithms and Applications, ECCV. (2008)

12. Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In:
CVPR. (2005) 220–226
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