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Abstract. We introduce a novel learning method for 3D pose estima-
tion from color images. While acquiring annotations for color images is
a difficult task, our approach circumvents this problem by learning a
mapping from paired color and depth images captured with an RGB-D
camera. We jointly learn the pose from synthetic depth images that are
easy to generate, and learn to align these synthetic depth images with the
real depth images. We show our approach for the task of 3D hand pose
estimation and 3D object pose estimation, both from color images only.
Our method achieves performances comparable to state-of-the-art meth-
ods on popular benchmark datasets, without requiring any annotations
for the color images.

Keywords: Domain transfer - 3D object pose estimation - 3D hand pose
estimation - Synthetic data.

1 Introduction

3D pose estimation is an important problem with many potential applications.
Recently, Deep Learning methods have demonstrated great performance, when
a large amount of training data is available [IJ28I4lJ5]. To create training data,
the labeling is usually done with the help of markers [6l/7] or a robotic system [g],
which in both cases is very cumbersome, expensive, or sometimes even impossi-
ble, especially from color images. For example, markers cannot be used for 3D
hand labeling of color images, as they change the appearance of the hand.

Another direction is to use synthetic images for training. However, syn-
thetic images do not exactly look like real images. Generative Adversarial Net-
works (GANs) [QUIOTTIITZ] or transfer learning techniques [I3UT4YT5II6] can be
used to bridge the domain gap between real and synthetic images. However,
these approaches still require some annotated real images to learn the domain
transfer. [2] relies on registered real images to compute a direct mapping between
the image features of real and synthetic images, but it also requires some labeled
real images.
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Fig.1: Method overview. We train a depth feature extractor (red box) together
with a pose estimator (blue box). We also train a second network (green box),
which extracts image color features and maps them to the depth space, given
color images and their corresponding depth images. At run-time, given a color
image, we map color features to depth space in order to use the pose estimator
to predict the 3D pose of the object (dashed lines). This removes the need for
labeled color images.

In this paper, we propose a method that learns to predict a 3D pose from
color images, without requiring labeled color images. Instead, it exploits labeled
depth images. These depth images can be real depth images, which are easier
to label than color images, and are already readily available for some problems.
More interestingly, they can also be synthetic depth images: Compared to color
images, synthetic depth images are easier to render, as there is no texture or
illumination present in these images.

An overview of our approach is shown in Fig.[[] Our main idea is to bridge the
domain gap between color images and these synthetic depth images in two steps,
each one solving an easier problem than the original one. We use an RGB-D cam-
era to capture a set of pairs made of color and depth images that correspond to
the same view. Capturing such a set can be done by simply moving the camera
around. We apply [2] to this set and learn to map the features from the color
images to corresponding depth images. However, this mapping alone is not suffi-
cient: A domain gap between the depth images captured by the RGB-D camera
and the available labeled depth images remains, since the labeled depth images
could be captured with another RGB-D camera or rendered synthetically. Fortu-
nately, this remaining gap is easier to bridge than the domain gap between real
and synthetic color images, since illumination and texture effects are not present
in depth images. To handle it, we use Maximum Mean Discrepancy (MMD) [17]
to measure and minimize the distance between the means of the features of
the real and synthetic depth images mapped into a Reproducing Kernel Hilbert
Space (RKHS). MMD is a popular in domain transfer method [16] since it does
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Fig.2: Our method allows very accurate 3D pose estimation from color images
without annotated color images. In case of 3D rigid object pose estimation we
draw the bounding boxes, where blue is the ground truth bounding box and red
the bounding box of our predicted pose. For 3D hand pose estimation, we show
the 3D joint locations projected to the color image, blue denoting the ground
truth and green our estimation.

not require correspondences to align the features of different domains and can
be efficiently implemented.

Our approach is general, and not limited to rigid objects. It can be applied
to many other applications, such as 3D hand pose estimation, human pose es-
timation, etc. Furthermore, in contrast to color rendering, no prior information
about object’s texture has to be known. Fig. [2| shows applications to two dif-
ferent problems: 3D rigid object pose estimation and 3D hand pose estimation
from color images, on the LINEMOD [6] and STB [I8] datasets, respectively.
Our method achieves performance comparable to state-of-the-art methods on
these datasets without requiring any annotations for the color images.

In the remainder of this paper, we discuss related work, then present our
approach and its evaluation.

2 Related Work

We first review relevant works for 3D pose estimation from color images, and
then review related methods on domain transfer learning.

2.1 3D Pose Estimation from Color Images

Inferring the 3D pose from depth images has achieved excellent results [TU5IT9120],
however, inferring the 3D pose from color images still remains challenging. [4]
presented an approach for 3D object pose estimation from color images by pre-
dicting the 2D locations of the object corners and using PnP to infer the 3D
pose, similar to [32T]. Also, [22] first predicts the 2D joint locations for hand
pose estimation, and then lifts these prediction to 3D estimates. [23] predicts 2D
and 3D joint locations jointly, and then applies inverse kinematics to align these
predictions. Similarly, [24] uses inverse kinematics to lift predicted 2D joint loca-
tions to 3D. All these approaches are fully supervised and require annotated color
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images, which are cumbersome to acquire in practice. Recently, [25] uses synthet-
ically generated color images from 3D object models with pretrained features,
however, they require extensive refinement of the initial network predictions,
and we will show that we can reach better performances without annotations for
real color images when using no refinement. To generalize synthetically gener-
ated color images to real images, [26] proposed to use a domain randomization
method, however, the generalization is still limited, and outperformed by our
approach as we show in the Evaluation section.

2.2 Domain Transfer Learning

As we mentioned in the introduction, it is difficult to acquire annotations for real
training data, and training on synthetic data leads to poor results [4)25]. This is
an indication for a domain gap between synthetic and real training data. More-
over, using synthetic data still requires accurately textured models [4/82527]
that require large amount of engineering to model. On the other hand, synthetic
depth data is much simpler to produce, but still it requires a method for domain
transfer.

A popular method is to align the distributions for the extracted features from
the different domains. Generative Adversarial Networks (GANs) [10] and Varia-
tional Autoencoders (VAEs) [28] can be used to learn a common embedding for
the different domains. This usually involves learning a transformation of the data
such that the distributions match in a common subspace [I3I14/T5]. [29] learns
a shared embedding of images and 3D poses, but it requires annotations for the
images to learn this mapping. Although GANs are able to generate visually sim-
ilar images between different domains [12], the synthesized images lack precision
required to train 3D pose estimation methods [2/9]. Therefore, [23] developed
a sophisticated GAN approach to adapt the visual appearance of synthetically
rendered images to real images, but this still requires renderings of high-quality
synthetic color images.

To bridge this domain gap, [2] predicts synthetic features from real features
and use these predicted features for inference, but this works only for a sin-
gle modality, i.e. depth or color images, and requires annotations from both
modalities. Similarly, [30] transfers supervision between images from different
modalities by learning representations from a large labeled modality as a super-
visory signal for training representations for a new unlabeled paired modality. In
our case, however, we have an additional domain gap between real and synthetic
depth data, which is not considered in their work. Also, [31] aims at transforming
the source features into the space of target features by optimizing an adversar-
ial loss. However, they have only demonstrated this for classification, and this
approach works poorly for regression [2]. [I6] proposed a Siamese Network for
domain adaptation, but instead of sharing the weights between the two streams,
their method allows the weights to differ and only regularizes them to keep
them related. However, it has been shown in [2] that the adapted features are
not accurate enough for 3D pose estimation.



Domain Transfer for 3D Pose Estimation 5

Differently, [32] transfers real depth images to clean synthetic-looking depth
images. However, this requires extensive hand-crafted depth image augmentation
to create artificial real-looking depth images during training, and modeling the
noise of real depth cameras is difficult in practice. [33] proposed to randomize
the appearance of objects and rendering parameters during training, in order to
improve generalization of the trained model to real-world scenarios. However,
this requires significant engineering effort and there is no guarantee that these
randomized renderings cover all the visual appearances of a real-world scene.

Several works [34)35] propose a fusion of features from different domains.
[34] fuses color and depth features by using labeled depth images for a few cate-
gories and adapts a color object detector for a new category such that it can use
depth images in addition to color images at test time. [35] propose a combina-
tion method that selects discriminative combinations of layers from the different
source models and target modalities and sums the features before feeding them
to a classifier. However, both works require annotated images in all domains.
[36] uses a shared network that utilizes one modality in both source and target
domain as a bridge between the two modalities, and an additional network that
preserves the cross-modal semantic correlation in the target domain. However,
they require annotations in both domains, whereas we only require annotations
in one, i.e. the synthetic, domain that are much easier to acquire.

When comparing our work to these related works on domain transfer learning,
these methods either require annotated examples in the target domain [23136|3435/23T],
are restricted to two domains [30/35I34J2J31], or require significant engineer-
ing [32033]. By contrast, our method does not require any annotations in the
target domain, i.e. color images, and can be only trained on synthetically ren-
dered depth images that are easy to generate, and the domain transfer is trained
from real data that can be easily acquired using a commodity RGB-D camera.

3 Method

Given a 3D model of a target object, it is easy to generate a training set made
of many depth images of the object under different 3D poses. Alternatively, we
can use an existing dataset of labeled depth images. We use this training set to
train a first network to extract features from such depth images, and a second
network, the pose estimator, to predict the 3D pose of an object, given the
features extracted from a depth image. Because it is trained on many images,
the pose estimator performs well, but only on depth images.

To apply the pose estimator network to color images, we train a network
to map features extracted from color images to features extracted from depth
images, as was done in [2] between real and synthetic images. To learn this
mapping, we capture a set of pairs of color and depth images that correspond
to the same view, using an RGB-D camera. In order to handle the domain gap
between the real and synthetic depth images of two training sets, we apply the
Maximum Mean Discrepancy (MMD) [I7], which aims to map features of each
training set to a Reproducing Kernel Hilbert Space (RKHS) and then minimizes
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Fig. 3: Detailed overview of our approach. It consists of three data streams,
one for each domain. The lower two streams take depth images as input, i.e.
synthetic and real depth images, respectively, and extract features using the
network fp. The upper stream takes color images as input and uses the mapping
network g to map the color features to the depth features used for pose prediction
with network hp. The parameters of the depth feature extractor fp and pose
predictor hp are shared between the synthetic and real depth image (green
arrows). Between the synthetic and the real depth feature we have the MMD
loss Ly p and between the real color and real depth features we use the feature
mapping loss L. For inference at test time, we use only the upper stream
within the dashed lines that takes a real color image as input, extracts features
using the network fc, maps these features to the depth space using g, and uses
the pose estimator hp to predict the 3D pose.

the distance between the means of the mapped features of the two training sets.
An overview of the proposed method is shown in Fig. [3]

3.1 Learning the Mapping

More formally, let 79 = {(x$,y;)}; be a training set of synthetically rendered
depth images x¢ using a 3D renderer engine under 3D poses y;. A second train-

i
ing set TRED = [(xR xP)}; consists of pairs of color images x%, and their

corresponding depth images xP. We jointly train four networks: the feature ex-
tractor for depth images fp, the feature extractor for color images f¢, the pose
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estimator hp, and the feature mapping network g, on the training sets 77 and
TREB-D_

We optimize the following loss function over the parameters of networks fp,
hp, fc, and g as:

£(0D70h70076g;T87TRGB_D) = (1)

Lp(Op,0n;T®) + BLEM(OD, 00, 0g; TF®P) + yLasnip(0p; TS, THED)
where 0p, 0, 0c, and 0, are the parameters of networks fp, hp, fc, and g,
respectively. The losses Lp for the pose, Lgys for the feature mapping between
color and depth features, and Ly p for the MMD between synthetic and real
depth images are weighted by meta parameters g and -.
Lp is the sum of the errors for poses predicted from depth images:

Le(Op 0TS = > |ho(fo(xF:00):0n) = yill*- ()

(x5,y:)€TS

L is the loss used to learn to map features extracted from depth images to
features extracted from their corresponding color images:

Lev(0p,0c,05 T = Y lg(fe(xF:00);:0,) — fo (x5 0p)[% . (3)

(T xP)eTre?

Finally, L3/ p is the Maximum Mean Discrepancy [17] loss to minimize the do-
main shift between the distribution of features extracted from real and synthetic
depth images of these training sets:

Lynp(Op; TS, TREP) = H W > _xP T o(fp(xF;0p)) —
7] Lxsers O(fp(x7:0p))

where ¢(-) denotes the mapping to kernel space, but the exact mapping is typi-
cally unknown in practice. By applying the kernel trick, this rewrites to:

Larvp(0p; TS, TRED) = W Do k(fp(xP;6p), fo(xF;0p))
_I’l'm'i%HTSI Zi)j k(fD(XiD;HD)afD(X}g;aD)) (5)
+ﬁ > k(fp(x5:0p), fo(x5;;0p)) ,

where k(-,-) denotes a kernel function. In this work, we implement k(-,-) as an
RBF kernel, such that

2 (4
|-

_lx=y]?
k(x,y)=e 202, (6)
where we select the bandwidth ¢ = 1. Note that our method is not sensitive to
the exact value of o.
At run-time, given a real color image x™, we extract its features in color space
and map them to the depth feature space by the networks fc and g, respectively,
and then use the pose estimator hp to predict the 3D pose y of the object:

¥ = ho(g(fe(x"))) - (7)
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3.2 Network Details and Optimization

3D Object Pose Estimation For the depth feature extraction network fp,
we use a network architecture similar to the 50-layer Residual Network [37], and
remove the Global Average Pooling [37] as done in [2/5/T9]. The convolutional
layers are followed by two fully-connected layers of 1024 neurons each. The pose
estimator hp consists of one single fully-connected layer with 16 outputs, which
correspond to the 2D projections of the 8 corners of objects’ 3D bounding box [4].
The 3D pose can then be computed from these 2D-3D correspondences with a
PnP algorithm.

In order to do a fair comparison to [2l[4] we use the same feature extractor,
which consists of the first 10 pretrained convolutional layers of the VGG-16
network [38] and two fully-connected layers with 1024 neurons for the color
feature extractor fc.

3D Hand Pose Estimation The architectures of fp and hp are the same
as the ones used for 3D object pose estimation, except hp outputs 3 values for
each of the 21 joints, 63 in total. Additionally, we add a 3D pose prior [5] as a
bottleneck layer to the pose estimator network hp, which was shown to efficiently
constrain the 3D hand poses and also gives better performance in our case.

For the color feature extractor fc, we use the same architecture as the depth
feature extractor, which makes the feature extractor comparable to the one used
in [23129].

Mapping Network and Optimization Following [2], we use a two Residual
blocks [39] network g for mapping the features of size 1024 from color space
to depth space. Each fully-connected layer within the Residual block has 1024
neurons.

In practice, we use § = 0.02 and v = 0.01 for the meta parameters of the
objective function in Eq. [1] for all our experiments. We first pretrain fp and
hp on the synthetic depth dataset 7°. We also pretrain fe by predicting depth
from color images [40]. Pretraining is important in our experiments for improving
convergence. We then jointly train all the networks together using the ADAM
optimizer [41] with a batch size of 128 and an initial learning rate of 107%.

4 Evaluation

In this section, we evaluate our method on two different 3D pose estimation
problems. We apply our method first on 3D rigid object pose estimation, and
then on 3D hand pose estimation, both from color images only.

4.1 3D Object Pose Estimation from Color Images

We use the LINEMOD dataset [6] for benchmarking 3D object pose estimation.
It consists of 13 texture-less objects, each registered with about 1200 real color



Domain Transfer for 3D Pose Estimation 9

images and corresponding depth images under different viewpoints, and pro-
vided with the corresponding ground truth poses. For evaluating 3D object pose
estimation methods using only color images, [1I2/4/42] use 15% of the images of
the LINEMOD dataset for training and the rest for testing. This amounts to
about 180 images per object for training, which had to be registered in 3D with
the help of markers. In contrast to these methods, our approach does not require
any labeled color image. Instead, it uses pairs of real images and depth images
to learn mapping the features from color space to depth space.

Detection ‘ Ground Truth Detection ‘ Real Detection

Metric 2D Projection [42] 2D Projection [42] ADD [6]

Method BB8 [] Feature Mapping [2] Ours|SSD-6D [25] [26]  Ours|SSD-6D [25] [26] Ours
Ape 94.0 96.6 97.3 3.5 364 96.9 2.6 4.0 19.8
Bench Vise 90.0 96.3 92.7 0.9 30.5 88.6 15.1 20.9 69.0
Camera 81.7 94.8 83.4 1.0 56.0 77.4 6.1 30.5 37.6
Can 94.2 96.6 93.2 3.0 49.1 913 27.3 359 42.3
Cat 94.7 98.0 98.7 9.1 59.3  98.0 9.3 179 354
Driller 64.7 83.3 5.7 14 16.7  72.2 12.0 24.0 54.7
Duck 94.4 96.3 95.5 1.2 51.0 91.8 1.3 49 294
Egg Box 93.5 96.1 97.1 1.5 73.5 92.0 2.8 81.0 85.2
Glue 94.8 96.9 97.3 11.0 783 92.4 3.4 455 T77.8
Hole Puncher | 87.2 95.7 97.2 2.8 48.2  96.8 3.1 17.6  36.0
Iron 81.0 92.3 88.8 1.9 321 85.9 14.6 320 63.1
Lamp 76.2 83.5 84.8 0.5 30.8 81.8 11.4 60.5 75.1
Phone 70.6 88.2 90.0 5.3 53.3 85.2 9.7 33.8 44.8
Average | 85.9 93.4 91.7| 33 473 88.5] 9.1 28.7 51.6

Table 1: Evaluation on the LINEMOD dataset [6]. The left part evaluates the
impact of our proposed approach, where all methods predict the 3D object pose
using the 2D projections of the objects’ 3D bounding box [4], given the ground
truth 2D object center without using pose refinement. Both BB8 [4] and Feature
Mapping [2] use annotated color images, while our method achieves better per-
formance than BB8 and similar performance to Feature Mapping without using
any annotated color images at all. The middle and right parts show comparison
of different pose estimation methods without using pose refinement, where no
annotated color image is used for training. Our approach performs best.

In order to do a fair comparison and not learn any context of the scene, we
extract the objects from both color images and depth images for generating the
training set TR . We follow the protocol of 4] to augment the training data
by rescaling the target object, adding a small pixel shift from the center of the
image window and superimpose it on a random background. We pick random
backgrounds from the RGB-D dataset [43] as they provide color images together
with corresponding depth images.

For generating the training set 7, given the CAD model of the target object,
we randomly sample poses from the upper hemisphere of the object, within a
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range of [—45°, +45°] for the in-plane rotation and a camera distance within a
range of [65¢m, 115¢m]. We also superimpose the rendered objects on a random
depth background picked from the RGB-D dataset [43]. We apply a 5 x 5 median
filter to mitigate the noise along the object boundaries. For both training sets
TRED and 7, we use image windows of size 128 x 128, and normalize them to
the range of [—1, +1].

To evaluate the impact of our approach, we first compare it to [4] and [2],
which, similar to us, predict the 2D projection of the 3D object bounding box,
followed by a PnP algorithm to estimate the 3D pose. The left part of Table
shows a comparison with these methods on the LINEMOD dataset by using 15%
of real images for training and the ground truth 2D object center. We use the
widely used 2D Projection metric [42] for comparison. We significantly outper-
form [4] and achieve similar performance to [2], which is the current state-of-the-
art on the LINEMOD dataset. Most notably, we do not require any annotations
for the color images. By using all the available pairs of real images and depth
images, our approach performs with an accuracy of 95.7%. This shows that our
approach almost eliminates the needs of the expensive task of annotating, simply
by capturing data using an RGB-D camera.

We further compare to the approach of [25}E| without the extensive refine-
ment step, which uses only synthetic color images for training. They obtain an
accuracy of 3.3% on the 2D Projection metric. [4] trained only on synthetic color
images also performs poorly with an accuracy of 12% on the same metric. This
shows that while synthetic color images do not resemble real color images for
training 3D pose estimation methods, our approach can effectively transfer fea-
tures between color images and synthetic depth images. Although the domain
randomization of [26] helps to increase the accuracy using synthetically gener-
ated images and generalize to different cameras, it is still not enough to bridge
the domain gap. The comparisons are shown in Table

Finally, we evaluate the domain adaption technique of [I3] that aims to learn
invariant features with respect to the shift between the color and depth domains.
However, this performs with an accuracy of 2% using the 2D Projection metric,
which shows that although this technique helps for general applications such as
classification, the features are not well suited for 3D pose estimation.

4.2 3D Hand Pose Estimation from Color Images

We use the Stereo Hand Pose Benchmark (STB) [I8] and the Rendered Hand
Dataset (RHD) [22] for training and testing our approach for 3D hand pose
estimation. The STB dataset contains 6 sequences each containing 1500 images
of a stereo camera, and an RGB-D camera. It shows an user performing diverse
hand gestures in front of different backgrounds. Each image is annotated with the
corresponding 3D hand pose with 21 joints. The RHD dataset contains over 40k
synthetically rendered images of humans performing various hand articulations.

3 We used their public code to obtain accuracies on 2D Projection and ADD metrics.
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Fig.4: 3D PCK curves for comparison to state-of-the-art 3D hand pose esti-
mation methods on the STB dataset [I8]. Note that all other approaches use
annotated color images for training, whereas we do not use any annotations for
the color images.

It consists of pairs of depth and color images, each with hand segmentation and
3D pose annotations of the same 21 joints.

We follow the protocol of [2212329], which use the first two sequences from
the STB dataset for testing. The remaining ten sequences from the STB dataset
together with the RHD dataset are used for the training set 77, since they
both contain aligned depth and color images. Creating synthetic depth maps for
hands is a relatively simple problem. For generating the training set 7 we use
the publicly available 3D hand model of [44] to render synthetic depth images
of a hand. We use 5M synthetic images of the hand that are rendered online
during training from poses of the NYU 3D hand pose dataset [44] perturbed with
randomly added articulations. Furthermore, [22I23] align their 3D prediction to
the ground truth wrist which we also do for comparison.

We use the pipeline provided by [5] to preprocess the depth images: It crops a
128 x 128 patch around the hand location, and normalizes its depth values to the
range of [—1, +1]. For the color image we also crop a 128 x 128 patch around the
corresponding hand location and subtract the mean RGB values. When a hand
segmentation mask is available, such as for the RHD dataset [22], we superimpose
the segmented hand on random color backgrounds from the RGB-D dataset [43].
During training, we randomly augment the hand scale, in-plane rotation, and
3D translation, as done in [5].

We compare to the following methods: GANerated ﬂZ{ﬂlﬂ which uses a GAN
to adapt synthetic color images for training a CNN; Z&B [22], which uses a

4 The results reported in the paper [23] are tracking-based and include an additional
inverse kinematics step. In order to make their results more comparable to ours, we
denote results predicted for each frame separately without inverse kinematics kindly
provided by the authors.
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learned prior to lift 2D keypoints to 3D locations and the similar approach of
Zhao et al. [45]; Zhang et al. [I8], which use stereo images to estimate depth and
apply a depth-based pose estimator with variants denoted PSO, ICPPSO, and
CHPR; Spurr et al. [29], which project color images to a common embedding
that is shared between images and 3D poses.

Fig. EI shows the Percentage of Correct Keypoints (PCK) over different error
thresholds, which is the most common metric on the STB dataset [I8I22/23]29].
This metric denotes the average percentage of predicted joints below an Eu-
clidean distance from the ground truth 3D joint location. While all methods
that we compare to require annotations for color images, we can achieve com-
parable results without annotations of color images.

Pose prediction on  Pose prediction on  Our approach on
real depth image predicted depth image color image
' (ﬁ : :"é".’-""a:‘

2

Color image

(a) (d)

Fig. 5: We use the paired color and depth images shown in (a) and (b) to predict
depth from color images [40] shown in (c¢). We further apply a 3D pose esti-
mator [5] on these images. These predictions from the predicted and real depth
images are shown in (b) and (c), respectively. Although the predicted depth im-
ages look visually close, the accuracy of the estimated 3D pose is significantly
worse compared to using the real depth images. The results from our method
are shown in (d) and provide a significantly higher accuracy. Our predictions are
shown in blue and the ground truth in green.

3D hand pose estimation methods work very well on depth images [5/T19].
Since we have paired color and depth images, we can train a CNN to predict the
depth image from the corresponding color image [40]. Since the pose estimator
works on cropped image patches, we only use these cropped image patches for
depth prediction, which makes the task easier. We then use the predicted depth
image for a depth-based 3D hand pose estimator with the pretrained model
provided by the authors [5]. Although this approach also does not require any
annotations of color images, our experiments show that this performs signifi-
cantly worse on the STB dataset compared to ours. The 3D pose estimator gives
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an average Euclidean joint error of 17.6mm on the real depth images and 39.8mm
on the predicted depth images. We show a qualitative comparison in Fig. [f]

4.3 Qualitative Results

We show some qualitative results of our method for 3D object pose estimation
and 3D hand pose estimation in Fig. [f] These examples show our approach
predicts very close pose to the ground truth.

Fig. 6: Qualitative results of our method for 3D rigid object pose estimation on
the LINEMOD dataset [6] (top row), and 3D hand pose estimation on the STB
dataset [I8] (middle row). Green denotes ground truth and blue corresponds to
the predicted pose. We applied our trained network on real world RGB images
of different users to estimate the 3D hand joint locations (bottom rows).

Fig. [7] illustrates some failure cases that occur due to the challenges of the
test sets, such as partial occlusion that can easily be handled by training the
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(a) (b) () (d)
Fig. 7: Some failure cases for 3D object pose estimation due to (a) partial occlu-
sion, (b) not generalizing to every poses because of lack of corresponding color
and depth images in the training set. Failure cases for 3D hand pose estimation
due to (c) misalignment/confusion of the fingers, (d) severe self occlusion.

networks with partially occluded examples, or missing poses in the paired dataset
TEED that can be simply resolved by capturing additional data with an RGB-D
camera.

4.4 Computation Times

All experiments are implemented using Tensorflow and run on an Intel Core i7
3.3GHz desktop with a Geforce TITAN X. Given an image window extracted
around the object, our approach takes 3.2ms for 3D object pose estimation to
extract color features, map them to the depth feature space, and estimate the
3D pose. For 3D hand pose estimation, it takes 8.6ms. Training takes about 10
hours in our experiments.

5 Conclusion

In this work we presented a novel approach for 3D pose estimation from color
images, without requiring labeled color images. We showed that a pose estimator
can be trained on a large number of synthetic depth images, and at run-time,
given a color image, we can map its features from color space to depth space.
We showed that this mapping between the two domains can easily be learned by
having corresponding color and depth images captured by a commodity RGB-D
camera. Our approach is simple, general, and can be applied to different ap-
plication domains, such as 3D rigid object pose estimation and 3D hand pose
estimation. While for these tasks our approach achieves performances compara-
ble to state-of-the-art methods, it does not require any annotations for the color
images.
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