
1

This is the authors version of an article accepted for publication in Computer Vision and Image Understanding (CVIU).

The published version of this paper is available at https://doi.org/10.1016/j.cviu.2020.102947

ALCN: Adaptive Local Contrast Normalization

Mahdi Rada,∗∗, Peter M. Rotha, Vincent Lepetitb,a

aInstitute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
bLIGM, IMAGINE, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

ABSTRACT

To make Robotics and Augmented Reality applications robust to illumination changes, the current

trend is to train a Deep Network with training images captured under many different lighting condi-

tions. Unfortunately, creating such a training set is a very unwieldy and complex task. We therefore

propose a novel illumination normalization method that can easily be used for different problems with

challenging illumination conditions. Our preliminary experiments show that among current normal-

ization methods, the Difference-of-Gaussians method remains a very good baseline, and we introduce

a novel illumination normalization model that generalizes it. Our key insight is then that the normal-

ization parameters should depend on the input image, and we aim to train a Convolutional Neural

Network to predict these parameters from the input image. This, however, cannot be done in a super-

vised manner, as the optimal parameters are not known a priori. We thus designed a method to train

this network jointly with another network that aims to recognize objects under different illuminations:

The latter network performs well when the former network predicts good values for the normalization

parameters. We show that our method significantly outperforms standard normalization methods and

would also be appear to be universal since it does not have to be re-trained for each new application.

Our method improves the robustness to light changes of state-of-the-art 3D object detection and face

recognition methods.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last years, Deep Networks (LeCun et al. (1998);

Krizhevsky et al. (2012); Simonyan and Zisserman (2015))

have spectacularly improved the performance of computer vi-

sion applications. Development efforts to date, however, have

mainly been focused on tasks where large quantities of train-

ing data are available. To be robust to illumination conditions

for example, one can train a Deep Network with many samples

captured under various illumination conditions.

While for some general categories such as faces, cars, or

pedestrians, training data can be exploited from other data,

or the capturing of many images under different conditions is

also possible, these processes become very unwieldy and com-

plex tasks for others. For example, as illustrated in Fig. 1, we

want to estimate the 3D pose of specific objects without hav-

ing to vary the illumination when capturing training images. To

∗∗Corresponding author:

e-mail: rad@icg.tugraz.at (Mahdi Rad)

achieve this, we could use a contrast normalization technique

such as Local Contrast Normalization (Jarrett et al. (2009)),

Difference-of-Gaussians or histogram normalization. Our ex-

periments show, however, that existing methods often fail when

dealing with large magnitudes of illumination changes.

Among the various existing normalization methods,

Difference-of-Gaussians still performs best in our experiments,

which inspired us to introduce a normalization model building

on a linear combination of 2D Gaussian kernels with fixed

standard deviations. But instead of using fixed parameters,

we propose to adapt these parameters to the illumination

conditions of the different image regions: By this means, we

can handle bigger illumination changes and avoid manual

tuning.

However, the link between a given image and the best pa-

rameters is not straightforward. We therefore want to learn to

predict these parameters from the image using a CNN. Since

we do not have a priori knowledge-the parameters to predict,

we cannot train this CNN in a standard supervised manner.

Our solution is to train it jointly in a supervised way together

ar
X

iv
:2

00
4.

07
94

5v
1

 [
cs

.C
V

]
 1

5
A

pr
 2

02
0

https://doi.org/10.1016/j.cviu.2020.102947

2

Training Images Test Images

Fig. 1. We propose a novel approach to illumination normalization, which allows us to deal with strong light changes even when only few training samples

are available. We apply it to 2D detection (first row) and 3D object detection using the methods of Crivellaro et al. (2015) (second row) and of Rad and

Lepetit (2017) (third row): Given training images under constant illumination, we can detect the object and predict its pose under various and drastic

illumination. In the third row, green bounding boxes show the ground truth pose, blue bounding boxes represent the pose obtained with ALCN, and red

bounding boxes the pose obtained without normalization.

with another CNN to achieve object detection under illumina-

tion changes.

We call this method Adaptive Local Contrast Normaliza-

tion (ALCN), as it is related to previous Local Contrast Nor-

malization methods while being adaptive. We show that ALCN

outperforms previous methods for illumination normalization

by a large margin while we do not need any manual tuning.

It also outperforms Deep Networks including VGG (Simonyan

and Zisserman (2015)) and ResNet (He et al. (2016)) trained on

the same images, showing that our approach can generalize bet-

ter with unseen illumination variations than a single network.

In summary, our main contribution is an efficient method that

makes Deep Networks more robust to illumination changes that

have not been seen during training, therefore requiring much

far less training data. Furthermore, we created new datasets

for benchmarking of object detection and 3D pose estimation

under challenging lightening conditions with distractor objects

and cluttered background.

We published a first version of this work in Rad et al. (2017).

This paper extends this work in the following manner:

• We provide an extensive overview of existing normaliza-

tion methods.

• We perform thorough ablation studies to justify our con-

tribution.

• We also perform experiments on network design and the

impact of different activation functions.

• We evaluate our normalization method on other applica-

tions such as 3D object detection and pose estimation and

face recognition, which our approach was not trained for.

In the remainder of this paper, we first discuss related work in

Section 2, we then review the existing normalization methods

and introduce our normalization model in Section 3, and we

evaluate it on different applications in Section 4.

2. Related Work

Reliable computer vision methods need to be invariant, or

at least robust, to many different visual nuisances, including

pose and illumination variations. In the following, we give an

overview of the different, and sometimes complementary ap-

proaches for achieving this.

Image normalization methods. A first approach is to normalize

the input image using image statistics. Several methods have

been proposed, sometimes used together with Deep Networks

such as SLCN and DLCN: Difference-of-Gaussians (DoG),

Whitening, Subtractive and Divisive Local Contrast Normal-

ization (SLCN and DLCN) (Jarrett et al. (2009)), Local Re-

sponse Normalization (LRN) (Krizhevsky et al. (2012)), His-

togram Equalization (HE), Contrast Limited Adaptive His-

togram Equalization (CLAHE) (Pizer et al. (1987)). We detail

these methods in Section 3.1, and compare to them in our ex-

periments in Section 4.

However, illumination is not necessarily uniform over an im-

age: Applying one of these methods locally over regions of the

image handles local light changes better, but unfortunately they

can also become unstable on poorly textured regions. Our ap-

proach overcomes this limitation with an adaptive method that

effectively adjusts the normalization according to the local ap-

pearance of the image.

3

Invariant features. An alternative method is to use locally in-

variant features. For example, Haar wavelets (Viola and Jones

(2004)) and the pairwise intensity comparisons used in Local

Binary Patterns (Ojala et al. (2002)) are invariant to monotonic

changes of the intensities. Features based on image gradients

are invariant to constants added to the intensities. In practice,

they are also often made invariant to affine changes by normal-

izing gradient magnitudes over the bins indexed by their orien-

tations (Levi and Weiss (2004)). The SIFT descriptors are ad-

ditionally normalized by an iterative process that makes them

robust to saturation effects as well (Lowe (2004)). However, it

is difficult to come up with features that are invariant to com-

plex illumination changes on 3D objects, such as changes of

light direction, cast or self shadows.

Intrinsic images. A third approach is to model illumination ex-

plicitly and estimate an intrinsic image or a self quotient im-

age of the input image, to get rid of the illumination and iso-

late the reflectance of the scene as an invariant to illumina-

tion (Wang et al. (2004); Shen et al. (2011a,b, 2013); Zhou

et al. (2015); Nestmeyer and Gehler (2017); Fan et al. (2018);

Bi et al. (2015)). However, it is still difficult to get an intrinsic

image from one single input image that is good enough for com-

puter vision tasks, as our experiments in Section 4 will show for

2D object detection.

Data-driven robustness. The current trend to achieve robust-

ness to illumination changes is to train Deep Networks with

different illuminations present in the training set (Simonyan and

Zisserman (2015); He et al. (2016); Huang et al. (2017); Xie

et al. (2017)). This, however, requires the acquisition of many

training images under various conditions. As we will show, our

approach performs better than single Deep Networks when il-

lumination variations are limited in the training set, which can

be the case in practice for some applications.

3. Adaptive Local Contrast Normalization

In this section, we first provide an overview of the exist-

ing normalization methods, since we will compare our method

against them in Section 4.2.2. We then introduce our normal-

ization model, then we discuss how we train a CNN to predict

the model parameters for a given image region and how we can

efficiently extend this method to a whole image.

3.1. Overview of Existing Normalization Methods

We describe below the main different existing methods to

make object detection techniques invariant to light changes.

These are also the methods we will compare to in Section 4.

In practice, in our 2D object experiments presented below, we

use a detector in a sliding window fashion, and we apply these

normalization methods, including our Adaptive LCN, to each

window independently.

• Normalization by Standardization (NS). A common

method to be robust to light changes is to replace the input

image I by:

INS =
(I − Ī)

σI

, (1)

where Ī and σI are respectively the mean and standard de-

viation of the pixel intensities in I. This transformation

makes the resulting image window INS invariant to affine

transformation of the intensities—if we ignore saturation

effects that clip the intensity values within [0; 255].

• Difference-of-Gaussians (DoG). The Difference-of-

Gaussians is a band-pass filter often used for normaliza-

tion:

IDoG = (kDoG
2 ·GσDoG

2
− kDoG

1 ·GσDoG
1

) ∗ I , (2)

where Gσ is a 2D Gaussian filter of standard deviation σ,

and k1, k2, σ1, σ2 are parameters. ∗ is the 2D convolution

operator. This is also a common mathematical model for

the ON- and OFF-center cells of the retina (Dayan and

Abbott (2005)). In practice, we use Gaussian filters of size

⌈6σ+1⌉, to truncate only very small values of the Gaussian

kernels.

• Whitening. Whitening is sometimes used for illumination

normalization. It is related to DoG as learned whitening

filters computed from natural image patches resemble a

Difference-of-Gaussians (Rigamonti et al. (2011); Good-

fellow et al. (2013); Yang et al. (2015a,b)). In practice,

we first compute the whitening matrix as the inverse of the

square root of the covariance matrix of the image patches.

The columns of the whitening matrix are all translated

versions of the same patch, and we use the middle col-

umn as the whitening convolutional filter (Rigamonti et al.

(2011)).

• Local Contrast Normalization (LCN). When work-

ing with Deep Networks, Local Contrast Normaliza-

tion (LCN) (Jarrett et al. (2009)) is often used. We tried

its two variants. Subtractive LCN is also closely related to

DoG as it subtracts from every value in an image patch a

Gaussian-weighted average of its neighbors:

ISLCN = I −GσSub ∗ I , (3)

where σSub is a parameter. Divisive LCN, the second vari-

ant, makes the image invariant to local affine changes by

dividing the intensities in ISLCN by their standard devia-

tion, computed locally:

IDLCN(m) =
ISLCN(m)

max
(

t,
(

GσDiv ∗ (ISLCN)2
)

(m)
) , (4)

where (ISLCN)2 is an image made of the squared intensities

of ISLCN, and σDiv is a parameter controlling the size of the

region for the local standard deviation of the intensities. t

is a small value to avoid singularities.

• Local Response Normalization (LRN). Local Response

Normalization is related to LCN, and is also used in many

applications to normalize the input image, or the output

of the neurons (Krizhevsky et al. (2012); Badrinarayanan

4

et al. (2015)). The normalized value at location m after

applying kernel i can be written as:

ILRN
(i) (m) =

I(i)(m)
(

k + α
∑min(N−1,i+n/2)

j=max(0,i−n/2)
(I(j)(m))2

)β
(5)

where the sum is over the n kernel maps around index i,

and N is the total number of kernels in the layer. Constants

k, n, α and β are then manually selected. Compared to

LCN, LRN aims more at normalizing the image in terms of

brightness rather than contrast (Krizhevsky et al. (2012)).

• Histogram Equalization (HE). Histogram Equalization

aims at enhancing the image contrast by better distributing

the intensities of the input image. First, a histogram p(λi)

of the image intensities, with λi any possible quantized in-

tensity value, is built. Then, a new intensity λ̃i is assigned

to all the pixels with intensity λi, with

λ̃i = λmin + floor
(

(λmax − λmin)

i
∑

j=0

p(λ j)
)

. (6)

• Contrast Limited Adaptive Histogram Equaliza-

tion (CLAHE). While Histogram Equalization does not

take the spatial location of the pixels into account,

CLAHE (Pizer et al. (1987)) introduces spatial constraints

and attempts to avoid noise amplification: It performs

Histogram equalization locally, and the histograms are

clipped: If p(λi) is higher than a threshold λ̂, it is set to

λ̂ and the histogram is re-normalized.

• Intrinsic Image. An intrinsic image of an input image I

can be obtained by separating the illumination S from the

reflectance R of the scene:

I(m) = S (m)R(m) . (7)

Eq. (7) is ill-posed, but can be solved by adding various

constraints (Shen et al. (2011a,b); Zhou et al. (2015)).

Since R is supposed to be free from illumination effects,

it can then be used as input instead of the original image

to be invariant to illuminations. However, it is still diffi-

cult to estimate R robustly, as our experiments will show.

Moreover, optimizing over S and R under constraints is

computationally expensive, especially for real-time appli-

cations.

• Self Quotient Image (SQI). The Self Quotient Im-

age (Wang et al. (2004)) aims at estimating the object re-

flectance field from a 2D image similarly to the Intrinsic

Image method, but is based on the Lambertian model in-

stead of the reflectance illumination model. The Self Quo-

tient Image Q of image I is defined by:

Q =
I

G
SQI
σ ∗ I

. (8)

3.2. Normalization Model

As our experiments in Section 4 will show, the Difference-

of-Gaussians normalization method performs best among the

existing normalization methods, however, it is difficult to find

the standard deviations that perform well for any input image,

as we will discuss in Section 3.4. We therefore introduce the

following formulation for our ALCN method:

ALCN(I; w) =















N
∑

i=1

wi · GσALCN
i















∗ I , (9)

where I is an input image window, w a vector containing the pa-

rameters of the method and ALCN(I; w) is the normalized im-

age; Gσ denotes a Gaussian kernel of standard deviation σ; the

σALCN
i

are fixed standard deviations, and ∗ denotes the convolu-

tion product. In the experiments, we use ten different 2D Gaus-

sian filters GσALCN
i

, with standard deviation σALCN
i

= i/2 for

i = 1, 2, ..., 10. This model is a generalization of the Difference-

of-Gaussians model, since the normalized image is obtained by

convolution of a linear combination of Gaussian kernels, and

the weights of this linear combination are the parameters of the

model.

Using fixed 2D Gaussian filters allows us to have fast run-

ning time: During training, we can perform the Gaussian con-

volutions on the samples of the mini-batches. It also makes

training easier since the network has to predict only the weights

of a linear combination. During testing, this allows us to ef-

ficiently varies the model parameters with the image locations

efficiently, as will be explained in Section 3.5.

3.3. Joint Training to Predict the Model Parameters

As discussed in the introduction and shown in Fig. 2(a), we

train a Convolutional Neural Network (CNN) to predict the pa-

rameters w of our model for a given image window I, jointly

with an object classifier. We call this CNN the Normalizer.

Like the Normalizer, the classifier is also implemented as a

CNN as well, since deep architectures perform well for such

problems. This will also make joint training of the Normalizer

and the classifier easy. We refer to this classifier as the De-

tector. Joint training is done by minimizing the following loss

function:

(Θ̂, Φ̂) = arg min
Θ,Φ

∑

j

ℓ
(

g(Θ)
(

ALCN(I j; f (Φ)(I j))
)

; y j

)

, (10)

where Θ and Φ are the parameters of the Detector CNN g(·)

and the Normalizer f (·), respectively; ℓ(·; y) is the negative log-

likelihood loss function. I j and y j are training image regions

and their labels: We use image regions extracted from the Phos

dataset (Vonikakis et al. (2013)), including the images shown

in Fig. 3, the labels are either background or the index of the

object contained in the corresponding image region. We use

Phos for our purpose because it is made of various objects under

different illumination conditions, with 9 images captured under

various strengths of uniform illumination and 6 images under

non-uniform illumination from various directions. In practice,

we use Theano (Bergstra et al. (2010)) to optimize Eq. (10).

5

Image

window

I

Normalizer

f

Detector

g

+	
 +	
 +	
 =	

*	

BG

Obj. #1

Obj. #N

f .	
 .	
 .	
 N f 2 f 1

Image

I

Normalizer

f

F N

*	

F 2

F 1

 I

 I

 I

*	

*	

+	

+	

+	

 I

∘!

∘!

∘!

N

ALCN

2

ALCN

1

ALCN

ALCN

(a) (b)

Fig. 2. Overview of our method. (a) We first train our Normalizer jointly with the Detector using image regions from the Phos dataset. (b) We can then

normalize images of previously unseen objects by applying this Normalizer to predict the parameters of our normalization model.

Fig. 3. Four of the ten objects we use from the Phos dataset (Vonikakis et al. (2013)) under different illuminations.

3.4. Different Images Need Different Parameters

In order to show that different images need different parame-

ters when using previous normalization methods, we performed

two studies. For each study we jointly optimizing the four DoG

parameters, at the same time as the Detector:

(Θ̂, Ω̂) = arg min
Θ,Ω

∑

i

ℓ
(

g(Θ)
(

DoG(Ω) ∗ Ii

)

; yi

)

, (11)

where Θ and Ω are the parameters of the Detector CNN g(·)

and DoG respectively, the {(Ii, yi)}i are annotated training image

windows, and ℓ(·; y) is the negative log-likelihood loss function.

Effect of Brightness. In order to evaluate the effect of bright-

ness, we split the training set into dark and bright images, by

simply thresholding the mean intensity, and training two differ-

ent detectors, one for each subset, We will give more details of

the dataset in Section 4.1.

We set the intensity threshold to 80 in our experiments. At

run-time, for each possible image location, we first tested if

the image patch centered on this location is dark or bright, and

apply the corresponding CNN. We also trained two more de-

tectors, one for each subset, but this time with the optimized

parameter values obtained on the other subset.

Fig. 4 shows that the optimized parameters found for one

subset are only optimized for that subset and not the other one.

It also shows that larger values for σDoG
1

and σDoG
2

perform bet-

ter on the dark test images. Fig. 5 shows that our adaptive

Normalizer learns to reproduce this behavior, applying larger

receptive fields to darker images and vice-versa.

Different Objects. In order to evaluate how different objects

with different shapes and material affect on the predicted pa-

rameters, we optimize on only one object of the Phos dataset at

a time. As illustrated in Fig. 6, different kernels are learned for

different objects.

3.5. From Window to Image Normalization

Once trained on windows, we apply the Normalizer to the

whole input images by extending Eq. (9) to

ALCN(I) =

N
∑

k=1

GσALCN
k
∗ (Fk(I) ◦ I) , (12)

where Fk(I) is a weight matrix with the same dimension as

the input image I for the k-th 2D Gaussian filter, and ◦ is the

Hadamard (element-wise) product. The weight matrix Fk(I)

corresponding to the k-th 2D Gaussian filter is computed as

(Fk(I))i j = fk(Ii j), where (·)i j is the entry in the i-th row and j-th

column of the matrix, Ii j is the image window centered at (i, j)

in image I, and fk(·) is the k-th weight predicted by the Nor-

malizer for the given image window. This can be done very ef-

ficiently by sharing the convolutions between windows (Giusti

et al. (2013)).

Normalization is therefore different for each location of the

input image. This allows us to adapt better to the local illumi-

nation conditions. Because it relies on Gaussian filtering, it is

also fast, taking only 50 ms for 10 2D Gaussian filters, on an

Intel Core i7-5820K 3.30 GHz desktop with a GeForce GTX

980 Ti on a 128 × 128 image.

3.6. Color Image Normalization

For some applications, such as 3D object pose estimation, it

is important to be able to normalize not only grayscale images,

but also color images as well, as colors bring very valuable in-

formation. To do so, as in Zhang et al. (2016), we first transform

6

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0
pr

ec
is

io
n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for DoG tested on bright images
Object #1 (IoU=0.8)

Optimized on dark and
trained on bright images
Optimized and trained
on dark images
ALCN - Optimized and trained
on all the images
DoG - Optimized and trained
on all the images

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for DoG tested on dark images
Object #1 (IoU=0.8)

Optimized and trained
on dark images
Optimized on bright and
trained on dark images
ALCN - Optimized and trained
on all the images
DoG - Optimized and trained
on all the images

−4 −2 0 2 4
−0.004

−0.002

0.000

0.002

0.004

0.006

Predicted filters on different training set

Optimized on dark images
Optimized on bright images

Fig. 4. Evaluating the relations between brightness and optimized normalization parameter values. We split our dataset into bright and dark images. The

best performance on the dark images is obtained with larger filters than for the bright images.

(a) (b) (c) (d)

−4 −2 0 2 4
−50

0

50

100

150

200

250

300

350

400 Predicted filters for different input images

a
b
c
d

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

weights
−100

0

100

200

300

400

500

600 Predicted weights for different input images
a
b
c
d

Fig. 5. Left (a-d): Four input window images of the plastic toy under different illuminations. First row: original window. Second row: window after

downscaling, and used as input to the normalizer. Third row: window after normalization by the filter predicted by the Normalizer. Top-right: Predicted

filters using the model of Eq. (9) for the image windows a-d, shown in 1D for clarity. The filters predicted for dark images are larger than the ones predicted

for bright images. Bottom-right: The 10 predicted coefficients wi for the image windows a-d.

the input color image in the CIE Lab colorspace, normalize the

lightness map L with our method, and re-transform the image

in the RGB space without changing the ab channels. An exam-

ple of a normalized color image using this method is shown in

Fig. 7(e).

3.7. Network Architecture and Optimization Details

A relatively simple architecture is sufficient for the Normal-

izer: In all of our experiments, the first layer performs 20 con-

volutions with 5 × 5 filters with 2 × 2 max-pooling. The sec-

ond layer performs 50 5 × 5 convolutions followed by 2 × 2

max-pooling. The third layer is a fully connected layer of 1024

hidden units. The last layer returns the predicted weights. In or-

der to keep optimization tractable, we downscaled the training

images of the target objects by a factor of 10. To avoid border

effects, we use 48 × 48 input patches for the Normalizer, and

use 32 × 32 patches as input to the Detector. We use the tanh

function as activation function, as it performs better than ReLU

on our problem. This difference is because a sigmoid can bet-

ter control the large range of intensities exhibited in the images

of our dataset, while other datasets have much more controlled

illuminations.

7

−6 −4 −2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

Predicted filters for different objects
Object a
Object b
Object c

Object a Object b Object c Predicted filters

Fig. 6. Predicted filters for DoG normalization trained on different objects.

(a) (b) (c) (d) (e)

Fig. 7. (a): original RGB image. (b): ab channel in CIE Lab color space. (c): grayscaled image. (d): normalized grayscale image. (e): normalized color

image.

3.8. Generating Synthetic Images

Since the Phos dataset is small, we augment it by applying

simple random transformations to the original images. We seg-

mented the objects manually, so that we can change the back-

ground easily.

We experimented with several methods to artificially change

the illuminations, and we settled to the following formulas to

generate a new image Inew given an original image Iref. We first

scale the original image, randomly replace the background, and

scale the pixel intensities:

Iinterm = a(bg(scales(Iref)) + b , (13)

where a, b, and s are value randomly sampled from the ranges

[1 − A; 1 + A], [−B;+B], and [1 − S ; 1 + S] respectively. bg(·)

is a function that replaces the background of the image by a

random background, which can be uniform or cropped from an

image from the ImageNet (dataset Deng et al. (2009)). scales(·)

is a function that upscales or downscales the original image by

a factor s.

The generated image is then taken as

Inew = clip(G(Iinterm)) , (14)

where G(·) adds Gaussian noise, and clip(·) is the function that

clips the intensity values to the [0; 255] interval. This function

allows us to simulate saturation effects, and makes the trans-

formation non-linear, even in the absence of noise. Iinterm is an

intermediate image that can influence the amount of noise: In

all our experiments, we use A = 0.5, B = 0.4, and S = 0.1.

We generate 500,000 synthetic images, with the same num-

ber of false and negative images. Once the Normalizer is trained

on the Phos dataset, we can use synthetic images created from

a very small number of real images of the target objects to train

a new classifier to recognize these objects: Some of our exper-

iments presented below use only one real image. At test time,

we run the Detector on all 48 × 48 image windows extracted

from the test image.

4. Experiments

In this section, we first introduce the datasets we used for

evaluating the methods described in the previous section, in-

cluding our own. We then present the network architecture and

optimization details. We perform thorough ablation studies to

demonstrate our contribution, by benchmarking on 2D object

detection under drastic illumination changes when only few im-

ages are available for training. We finally evaluate our normal-

ization to improve the robustness to light changes of state-of-

the-art 3D object detection and pose estimation, face recogni-

tion and semantic segmentation methods.

4.1. Datasets

Some datasets have instances captured under different illu-

minations, such as NORB (LeCun et al. (2004)), ALOI (Geuse-

broek et al. (2005)), CMU Multi-PIE (Gross et al. (2009)) or

Phos (Vonikakis et al. (2013)). However, they are not suitable

for our purposes: NORB has only 6 different lighting direc-

tions; the images of ALOI contain a single object only and over

a black background; CMU Multi-PIE was developed for face

8

Object #1

Object #2

Object #3

Fig. 8. The objects for our ALCN-2D dataset, and representative test images. We selected three objects spanning different material properties: plastic

(Object #1), velvet (Object #2), metal (Object #3) (velvet has a BRDF that is neither Lambertian nor specular, and the metallic object—the watch—is very

specular). By contrast with previous datasets, we have a very large number of test images (1200 for each object), capturing many different illuminations

and background.

recognition and the image is always centered on the face; Phos

was useful for our joint training approach, however, it has only

15 test images and the objects are always at the same locations,

which would make the evaluation dubious.

We thus created a new dataset for benchmarking object

detection under challenging lighting conditions and cluttered

background. We will refer to this dataset as the ALCN-2D

dataset. As shown in Fig. 8, we selected three objects span-

ning different material properties: plastic (Object #1), velvet

(Object #2) and metal (Object #3) (velvet has a BRDF that

is neither Lambertian nor specular (Lu et al. (1998)), and the

metallic object—the watch—is very specular). For each ob-

ject, we have 10 300 × 300 grayscale training images and 1200

1280 × 800 grayscale test images, exhibiting these objects un-

der different illuminations, different lighting colors, and distrac-

tors in the background. The number of test images is therefore

much larger than for previous datasets. We manually annotated

the ground truth bounding boxes in the test images in which

the target object is present. In this first dataset, the objects are

intentionally moved on a planar surface, in order to limit the

perspective appearance changes and focus on the illumination

variations.

The second dataset we consider is the BOX Dataset from the

authors of Crivellaro et al. (2015), which combines perspective

and light changes. It is made of a registered training sequence

of an electric box under various 3D poses but a single illumi-

nation and a test sequence of the same box under various 3D

poses and illuminations. Some images are shown in the second

row of Fig. 1. This test sequence was not actually part of the

experiments performed by Crivellaro et al. (2015) since it was

too challenging in scope. The goal is to estimate the 3D pose of

the box.

Finally, we introduce another dataset for 3D pose estima-

tion. This dataset is made of a training sequence of 1000 regis-

tered frames of the Duck from the Hinterstoisser dataset (Hin-

terstoisser et al. (2012)) obtained by 3D printing under a single

illumination and 8 testing sequences under various illumina-

tions. Some images are shown in the third row of Fig. 1. We

will refer to this dataset as the ALCN-Duck dataset.

4.2. Experiments and Discussion

For evaluation, we use the PASCAL criterion to decide if a

detection is correct with an Intersection over Union of 0.8, with

fixed box sizes of 300 × 300, reporting Precision-Recall (PR)

curves and Areas Under Curve (AUC) in order to compare the

performances of the different methods.

4.2.1. Explicit Normalization vs Illumination Robustness with

Deep Learning

As mentioned in the introduction, Deep Networks can learn

robustness to illumination variations without explicitly han-

dling them, at least to some extent. To show that our method

allows us to go further, we first tried to train several Deep Net-

work architectures from scratch, without normalizing the im-

ages beforehand, by varying the number of layers and the num-

ber of filters for each layer. We use one real example of each

object in the ALCN-2D dataset for this experiment. The best

architecture we found performs with an AUC of 0.606. Our

method, however, still performs better with an AUC of 0.787.

9

This shows that our approach achieves better robustness to il-

lumination than a single CNN, at least when the training set is

limited, as in our scenario.

We also evaluated Deep Residual Learning Network archi-

tectures (He et al. (2016)). We used the same network architec-

tures and training parameters as in He et al. (2016) on CIFAR-

10. ResNets with 20, 32, 44, 56 and 110 layers perform with

AUCs of 0.456, 0.498, 0.518, 0.589 and 0.565 respectively,

which is still outperformed by a much simpler network when

our normalization is used. Between 56 and 110 layers, the net-

work starts overfitting, and increasing the number of layers re-

sults in a decrease of performance.

4.2.2. Comparing ALCN against previous Normalization

Methods

In our evaluations, we consider different existing methods

described in Section 3.1. In order to assess the effects of dif-

ferent normalization techniques on the detection performances,

we employed the same detector architecture for the normaliza-

tion methods, but re-training it for every normalization method.

Fig. 9 compares these methods on the ALCN-2D dataset. For

DoG, Subtractive and Divisive LCN, we optimized their pa-

rameters to perform best on the training set. We tried dif-

ferent method of intrinsic image decomposition and they per-

form with similar accuracy. In this paper, we use the imple-

mentation of (Shen et al. (2013)), which performs slightly bet-

ter on the ALCN-2D dataset, compare to other implementa-

tions. Our method consistently outperforms the others for all

objects of the ALCN dataset. Most of the other methods have

very different performances across the different objects of the

dataset. Whitening obtained an extremely bad score for all ob-

jects, while both versions of LCN failed in detecting Object #3,

the most specular object, obtaining an AUC score lower than

0.1.

4.2.3. Impact of Number of Real Images

Once the Normalizer is trained on the Phos dataset, we freeze

its weights and plug it to a detector to detect target object. To

train the Detector, we use 500,000 synthetically generated im-

ages with the same way as described in Section 3.8. Some syn-

thetic images generated are shown in Fig. 11. These 500,000

images can be generated either from only one single real im-

age, or more. In Section 4.2.2, we showed that using only one

real image to generate the whole training set already gives us

good results. Fig. 10 illustrates that using more real images

while keeping the total number of synthetically generated im-

ages same as before, improves the performances further, 10 real

images are enough for very good performance. This shows that

we can learn to detect objects under very different drastic illu-

minations from very few real examples augmented with simple

synthetic examples.

4.2.4. Activation Functions

While sigmoid functions were originally used in early neu-

ral networks and CNNs, the popular choice is now the ReLU

operator, because it often eases tuning the convergence as the

derivatives are constant, while special care is to be taken when

using sigmoids.

However, Fig. 12 shows that using the hyperbolic tangent

tanh sigmoid function yields clearly better results than using

the ReLU activation functions on our problem. This difference

is because a sigmoid can control better the large range of inten-

sities exhibited in the images of our dataset, while other datasets

have much more controlled illuminations.

4.3. Image Normalization for Other Applications

In this section, we evaluate our normalization method on ap-

plications for which it was not trained for: 1) 3D object detec-

tion, 2) 3D object pose estimation, and 3) face detection and

recognition.

4.3.1. 3D Object Pose Estimation

As mentioned in the introduction, our main goal is to train

Deep Networks methods for 3D pose estimation, without re-

quiring large quantities of training data while being robust to

light changes. We evaluate here ALCN for this goal on two

different datasets.

BOX dataset. To evaluate ALCN for 3D object detection

and pose estimation, we first applied it on the BOX dataset

described in Section 4.1 using the method of Crivellaro et al.

(2015), which is based on part detection: It first learns to de-

tect some parts of the target object, then it predicts the 3D pose

of each part to finally combine them to estimate the object 3D

pose.

The test videos from Crivellaro et al. (2015) exhibit chal-

lenging dynamic complex background and light changes. We

changed the code provided by the authors to apply ALCN be-

fore the part detection. We evaluated DoG normalization, the

second best method according to our previous experiments,

optimized on these training images, against our Normalizer.

Fig. 13 shows the results; ALCN allows us to detect the parts

more robustly and thus to compute much more stable poses.

ALCN-Duck dataset. The method proposed in Rad and

Lepetit (2017) first detects the target object using a detector and

then, given the image window centered on the object, predicts

the 3D pose of the object using a regressor. For both, detec-

tor and regressor, (Rad and Lepetit (2017)) finetunes convolu-

tion and fully connected layers of VGG (Simonyan and Zisser-

man (2015)), and achieved very good results on the LineMOD

dataset. However, this dataset does not exhibit strong light

changes, and we evaluated our approach on the ALCN-Duck

dataset described in Section 4.1. Here, we use color images as

input to the detector and the regressor. To apply ALCN to these

images, we use the method proposed in Section 3.6. We nor-

malized color images by normalizing the L channel in CIE color

space. As our experiments show even if ALCN was trained on

grayscale images, we get reasonably good normalized color im-

ages. Fig. 14 shows the normalized images of the ALCN-Duck

dataset.

Table 1 gives the percentage of correctly estimated poses us-

ing the 2D Projection metric (Brachmann et al. (2016)) with

and without our ALCN normalization. Rad and Lepetit (2017),

with and without ALCN, performs very well on video sequence

#1, which has no illumination changes. It performs much worse

when ALCN is not used on Sequences #2, #3 and #4, where the

10

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0
pr
ec
is
io
n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for different Normalization
Object #1 (IoU=0.8)

ALCN (AUC = 0.787)
NS (AUC = 0.347)
DoG (AUC = 0.611)
SLCN (AUC = 0.505)
DLCN (AUC = 0.442)
LRN (AUC = 0.599)
HE (AUC = 0.420)
CLAHE (AUC = 0.462)
Intrinsic (AUC = 0.290)
SQI (AUC = 0.487)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for different Normalization
Object #2 (IoU=0.8)

ALCN (AUC = 0.803)
NS (AUC = 0.432)
DoG (AUC = 0.603)
SLCN (AUC = 0.469)
DLCN (AUC = 0.415)
LRN (AUC = 0.418)
HE (AUC = 0.651)
CLAHE (AUC = 0.161)
Intrinsic (AUC = 0.458)
SQI (AUC = 0.170)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for different Normalization
Object #3 (IoU=0.8)

ALCN (AUC = 0.947)
NS (AUC = 0.807)
DoG (AUC = 0.818)
LRN (AUC = 0.793)
HE (AUC = 0.728)
CLAHE (AUC = 0.648)
Intrinsic (AUC = 0.789)
SQI (AUC = 0.192)

Fig. 9. Comparing different normalization methods using the best parameter values for each method for Objects #1, #2 and #3 of ALCN-2D. ALCN

systematically performs best by a large margin.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for ALCN - on Object #1 (IoU=0.8)

1 Real Image (AUC = 0.787)
3 Real Images (AUC = 0.903)
5 Real Images (AUC = 0.929)
10 Real Images (AUC = 0.965)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for ALCN - Object #2 (IoU=0.8)

1 Real Image (AUC = 0.803)
3 Real Images (AUC = 0.806)
5 Real Images (AUC = 0.831)
10 Real Images (AUC = 0.885)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for ALCN - Object #3 (IoU=0.8)

1 Real Image (AUC = 0.947)
3 Real Images (AUC = 0.946)
5 Real Images (AUC = 0.969)
10 Real Images (AUC = 0.976)

Fig. 10. Evaluating the influence of the number of real images used for training the detector on Objects #1, #2 and #3 of ALCN-2D. The detection accuracy

keeps increasing when using more real images for generating the training set.

Fig. 11. Some synthetic images generated from the object #1 shown in

Fig. 8.

illuminations are slightly different from training. For the other

sequences, which have much more challenging lightening con-

ditions, it dramatically fails to recover the object poses. This

shows that ALCN can provide illumination invariance at a level

to which deep networks such as VGG cannot. Some qualitative

results are shown on the last row of Fig. 1.

4.3.2. Application to the Viola-Jones Detector

In this experiment, we evaluate the performance of the Viola-

Jones detection algorithm trained with a training set created

from 10 real images, and normalized using different methods.

Fig. 15 shows that Viola-Jones (Viola and Jones (2004)) per-

forms very poorly with an AUC of 0.286 in best cases. How-

ever, by simply normalizing the training and test images using

our ALCN, Viola-Jones suddenly performs significantly better

with an AUC of 0.671, while it still does not perform very well

with other normalization methods. It may be surprising that

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for different
activation function - on Object #1 (IoU=0.8)

tanh (AUC = 0.787)
ReLU (AUC = 0.456)

Fig. 12. Influence of the activation function. The plots show the PR curves

using our normalization, applying either the ReLU operator, or the sig-

moid tanh function as activation function. tanh appears to perform better,

probably because it helps to control the range of intensity values in our test

images.

Viola-Jones needs image normalization at all, as the Haar cas-

cade image features it relies on are very robust to light changes.

However, robustness comes at the price of low discriminative

power. With image normalization, the features do not have to

be as robust as they must be without it.

11

w/o illumination changes with illumination changes

sequence #1 #2 #3 #4 #5 #6 #7 #8

VGG 100 47.26 18.33 32.65 0.00 0.00 0.00 0.00

VGG+ALCN 100 77.78 60.71 70.68 64.08 51.37 76.20 50.10

Table 1. Percentage of correctly estimated poses using the 2D Projection metric of Brachmann et al. (2016), when the method of Rad and Lepetit (2017)

is applied to our ALCN-Duck sequences, with and without ALCN. Using VGG—trained to predict the 3D pose—alone is not sufficient when illumination

changes. ALCN allows us to retrieve accurate poses.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for different Normalization
Crivellaro dataset: Box - Top-Left(IoU=0.8)

ALCN (AUC = 0.858)
DoG (AUC = 0.686)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for different Normalization
Crivellaro dataset: Box - Top-right(IoU=0.8)

ALCN (AUC = 0.859)
DoG (AUC = 0.623)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for different Normalization
Crivellaro dataset: Box - Bottom-Left(IoU=0.8)

ALCN (AUC = 0.790)
DoG (AUC = 0.633)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for different Normalization
Crivellaro dataset: Box - Bottom-right(IoU=0.8)

ALCN (AUC = 0.634)
DoG (AUC = 0.488)

Fig. 13. Comparing ALCN and DoG on the BOX dataset - Video #3 from

Crivellaro (Crivellaro et al. (2015)). Our ALCN performs best at detecting

the corners of the box.

4.3.3. Application to Face Recognition

Finally we evaluate our normalization for face recognition to

see if our normalization can improve the performance of current

recognition algorithms. Hence, we test our normalization on

YaleBExt (Georghiades et al. (2001)) using Eigenfaces (Turk

and Pentland (1991)) and Fisherfaces (Belhumeur et al. (1997)),

where both perform poorly with different normalization meth-

ods. Han et al. (2013) studied 13 different normalizations on

face recognition. The best recognition rates among the 13 nor-

malizations are 59.3% and 78.0% VS 70.5% and 98.6% us-

ing our normalization, with Eigenfaces and Fisherfaces respec-

tively.

5. Conclusion

We proposed an efficient approach to illumination normal-

ization, which improves robustness to light changes for ob-

ject detection and 3D pose estimation methods without requir-

ing many training images. We have shown that our proposed

method can bring the power of Deep Learning to applications

for which large quantities of training data are not available,

since it can be plugged easily to other applications.

Acknowledgments

This work was supported by the Christian Doppler Labora-

tory for Semantic 3D Computer Vision, funded in part by Qual-

comm Inc.

References

Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. SegNet: A Deep Convo-

lutional Encoder-Decoder Architecture for Image Segmentation, in: arXiv

Preprint.

Belhumeur, P.N., Hespanha, J., Kriegman, D.J., 1997. Eigenfaces Vs. Fisher-

faces: Recognition Using Class Specific Linear Projection. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 19, 711–720.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., , Desjardins,

G., Turian, J., Warde-Farley, D., Bengio, Y., 2010. Theano: A CPU and

GPU Math Expression Compiler, in: Python for Scientific Computing Con-

ference.

Bi, S., Han, X., Yu, Y., 2015. An l 1 image transform for edge-preserving

smoothing and scene-level intrinsic decomposition. ACM Transactions on

Graphics (TOG) 34, 78.

Brachmann, E., Michel, F., Krull, A., Yang, M.M., Gumhold, S., Rother, C.,

2016. Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a

Single RGB Image, in: Conference on Computer Vision and Pattern Recog-

nition.

Crivellaro, A., Rad, M., Verdie, Y., Yi, K., Fua, P., Lepetit, V., 2015. A Novel

Representation of Parts for Accurate 3D Object Detection and Tracking in

Monocular Images, in: International Conference on Computer Vision.

Dayan, P., Abbott, L., 2005. Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. Triliteral.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet:

A Large-Scale Hierarchical Image Database, in: Conference on Computer

Vision and Pattern Recognition.

Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D., 2018. Revisiting deep intrinsic

image decompositions, in: The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J., 2001. From Few to Many:

Illumination Cone Models for Face Recognition Under Variable Lighting

and Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence

.

Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M., 2005. The Amsterdam

Library of Object Images. International Journal of Computer Vision 61,

103–112.

Giusti, A., Ciresan, D.C., Masci, J., Gambardella, L.M., Schmidhuber, J., 2013.

Fast Image Scanning with Deep Max-Pooling Convolutional Neural Net-

works, in: International Conference on Image Processing.

Goodfellow, I.J., Warde-Farkey, D., Mira, M., Courville, A., Bengio, Y., 2013.

Maxout Networks. Journal of Machine Learning Research .

Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S., 2009. Multi-Pie. Image

and Vision Computing 28, 807–813.

Han, H., Shan, S., Chen, X., Gao, W., 2013. A Comparative Study on Illumina-

tion Preprocessing in Face Recognition. Pattern Recognition 46, 1691–1699.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image

Recognition, in: Conference on Computer Vision and Pattern Recognition.

Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit,

V., 2012. Gradient Response Maps for Real-Time Detection of Textureless

Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence

34, 876–888.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely

connected convolutional networks, in: Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 4700–4708.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., 2009. What is the Best

Multi-Stage Architecture for Object Recognition?, in: Conference on Com-

puter Vision and Pattern Recognition.

Krizhevsky, A., Sutskever, I., Hinton, G., 2012. ImageNet Classification with

12

Fig. 14. First row: Original color images from the ALCN-Duck dataset. Second row: Normalized color images after adding the ab channels of the images

on the first row to the normalized L channel of the images by our method.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR-curve for Viola-Jones - on Object #1 (IoU=0.8)

ALCN (AUC = 0.671)
DoG (AUC = 0.579)
LCN-Sub (AUC = 0.194)
LCN-Div (AUC = 0.125)
LRN (AUC = 0.490)
CLAHE (AUC = 0.469)
HE (AUC = 0.273)
Intrinsic (AUC = 0.292)
GN (AUC = 0.284)
No norm (AUC = 0.286)

Fig. 15. Evaluating different normalization methods for the Viola-Jones

detection method. By simply pre-processing the training and test images

using our ALCN, we can improve the performance of Viola-Jones detec-

tion with an AUC from 0.286 to 0.671. ALCN outperforms all the other

normalization methods.

Deep Convolutional Neural Networks, in: Advances in Neural Information

Processing Systems.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-Based Learning

Applied to Document Recognition. Proceedings of the IEEE 86, 2278–2324.

LeCun, Y., Huang, F.J., Bottou, L., 2004. Learning Methods for Generic Ob-

ject Recognition with Invariance to Pose and Lighting, in: Conference on

Computer Vision and Pattern Recognition.

Levi, K., Weiss, Y., 2004. Learning Object Detection from a Small Number of

Examples: the Importance of Good Features, in: Conference on Computer

Vision and Pattern Recognition.

Lowe, D., 2004. Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision 60, 91–110.

Lu, R., Koenderink, J.J., Kappers, A.M., 1998. Optical properties (bidirectional

reflection distribution functions) of velvet. Applied Optics 37.

Nestmeyer, T., Gehler, P.V., 2017. Reflectance adaptive filtering improves in-

trinsic image estimation, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 6789–6798.

Ojala, T., Pietikäinen, M., Mäenpää, T., 2002. Multiresolution Gray-Scale and

Rotation Invariant Texture Classification with Local Binary Patterns. IEEE

Transactions on Pattern Analysis and Machine Intelligence 24, 971–987.

Pizer, S., Amburn, E., Austin, J., Cromartie, R., Geselowitz, A., Greer, T.,

Romeny, B., Zimmerman, J., 1987. Adaptive Histogram Equalization and

Its Variations. Computer Vision, Graphics, and Image Processing 39, 355–

368.

Rad, M., Lepetit, V., 2017. BB8: A Scalable, Accurate, Robust to Partial Oc-

clusion Method for Predicting the 3D Poses of Challenging Objects without

Using Depth, in: International Conference on Computer Vision. (accepted).

Rad, M., Roth, P.M., Lepetit, V., 2017. Alcn: Adaptive local contrast nor-

malization for robust object detection and 3d pose estimation, in: British

Machine Vision Conference.

Rigamonti, R., Brown, M., Lepetit, V., 2011. Are Sparse Representations Re-

ally Relevant for Image Classification?, in: Conference on Computer Vision

and Pattern Recognition.

Shen, J., Yang, X., Jia, Y., Li, X., 2011a. Intrinsic Images Using Optimization,

in: Conference on Computer Vision and Pattern Recognition.

Shen, J., Yang, X., Li, X., Jia, Y., 2013. Intrinsic image decomposition using

optimization and user scribbles. IEEE transactions on cybernetics 43, 425–

436.

Shen, L., Yeo, C., Hua, B.S., 2011b. Intrinsic Image Decomposition Using a

Sparse Representation of Reflectance. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence 35, 2904–2915.

Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for

Large-Scale Image Recognition, in: International Conference for Learning

Representations.

Turk, M., Pentland, A., 1991. Eigenfaces for Recognition. J. Cognitive Neuro-

science 3, 71–86.

Viola, P., Jones, M., 2004. Robust Real-Time Face Detection. International

Journal of Computer Vision 57, 137–154.

Vonikakis, V., Chrysostomou, D., Kouskouridas, R., Gasteratos, A., 2013. A

Biologically Inspired Scale-Space for Illumination Invariant Feature Detec-

tion. Measurement Science and Technology 24, 074024.

Wang, H., Li, S.Z., Wang, Y., 2004. Face Recognition Under Varying Lighting

Conditions Using Self Quotient Image, in: Automated Face and Gesture

Recognition.

Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual

transformations for deep neural networks, in: Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pp. 1492–1500.

Yang, B., Yan, J., Lei, Z., Li, S.Z., 2015a. Convolutional Channel Features, in:

International Conference on Computer Vision.

Yang, B., Yan, J., Lei, Z., Li, S.Z., 2015b. Local Convolutional Features with

Unsupervised Training for Image Retrieval, in: International Conference on

Computer Vision.

Zhang, R., Isola, P., Efros, A.A., 2016. Colorful Image Colorization. CoRR

abs/1603.08511.

Zhou, T., Krahenbuhl, P., Efros, A., 2015. Learning Data-Driven Reflectance

Priors for Intrinsic Image Decomposition, in: International Conference on

Computer Vision.

	1 Introduction
	2 Related Work
	3 Adaptive Local Contrast Normalization
	3.1 Overview of Existing Normalization Methods
	3.2 Normalization Model
	3.3 Joint Training to Predict the Model Parameters
	3.4 Different Images Need Different Parameters
	3.5 From Window to Image Normalization
	3.6 Color Image Normalization
	3.7 Network Architecture and Optimization Details
	3.8 Generating Synthetic Images

	4 Experiments
	4.1 Datasets
	4.2 Experiments and Discussion
	4.2.1 Explicit Normalization vs Illumination Robustness with Deep Learning
	4.2.2 Comparing ALCN against previous Normalization Methods
	4.2.3 Impact of Number of Real Images
	4.2.4 Activation Functions

	4.3 Image Normalization for Other Applications
	4.3.1 3D Object Pose Estimation
	4.3.2 Application to the Viola-Jones Detector
	4.3.3 Application to Face Recognition

	5 Conclusion

