
Single Image Depth Prediction with Wavelet Decomposition

Michaël Ramamonjisoa1,∗ Michael Firman2 Jamie Watson2

Vincent Lepetit1 Daniyar Turmukhambetov2

1LIGM, IMAGINE, Ecole des Ponts, Univ Gustave Eiffel, CNRS 2Niantic

www.github.com/nianticlabs/wavelet-monodepth

Abstract

We present a novel method for predicting accurate

depths from monocular images with high efficiency. This

optimal efficiency is achieved by exploiting wavelet de-

composition, which is integrated in a fully differentiable

encoder-decoder architecture. We demonstrate that we can

reconstruct high-fidelity depth maps by predicting sparse

wavelet coefficients.

In contrast with previous works, we show that wavelet

coefficients can be learned without direct supervision on

coefficients. Instead we supervise only the final depth im-

age that is reconstructed through the inverse wavelet trans-

form. We additionally show that wavelet coefficients can be

learned in fully self-supervised scenarios, without access to

ground-truth depth. Finally, we apply our method to differ-

ent state-of-the-art monocular depth estimation models, in

each case giving similar or better results compared to the

original model, while requiring less than half the multiply-

adds in the decoder network.

1. Introduction

Single-image depth estimation methods are useful in

many real-time applications, for example robotics, au-

tonomous driving and augmented reality. These areas are

typically resource-constrained, so efficiency at prediction

time is important.

Neural networks which estimate depth from a single im-

age overwhelmingly use U-Net architectures, with skip con-

nections between encoder and decoder layers [55]. Most

work on single-image depth prediction has focused on

improved depth accuracy, without focusing on efficiency.

Those that have cared about efficiency have typically bor-

rowed tricks from the “efficient network” world [30, 56] to

make faster depth estimation, with the network using stan-

dard convolutions all the way through [65, 51]. All these

∗Work done during an internship at Niantic.

(a) Input color image – (320×1024)

(b) Sparse estimation using wavelets. Our network up-samples and re-

fines a 1/16-resolution depth map (bottom-right), by estimating wavelet

coefficients only in sparse regions.

(c) Reconstruction of the output depth map using the inverse wavelet

transform.

Figure 1: We can represent depth maps more efficiently with

wavelets. Here the network takes image (a) as input and outputs

a low resolution depth map, together with sparse wavelet coeffi-

cients (b). We can reconstruct a high-resolution depth map (c) us-

ing the inverse wavelet transform. In our model we predict multi-

scale wavelet coefficients with an image-to-image network, and

we exploit sparseness of the output to save computation.

approaches still use standard neural network components:

convolutions, additions, summations and multiplications.

Inspired by sparse representations that can be achieved

with wavelet decomposition, we propose an alternative net-

work representation for more efficient depth estimation, us-

ar
X

iv
:2

10
6.

02
02

2v
2 

 [
cs

.C
V

] 
 1

6 
A

ug
 2

02
1

www.github.com/nianticlabs/wavelet-monodepth


ing wavelet decomposition. We call this system Wavelet-

Monodepth. We make the observation that depth images of

the man-made world are typically made up of many piece-

wise flat regions, with a few ‘jumps’ in depth between the

flat regions. This structure lends itself well to wavelets. A

low-frequency component can represent the overall scene

structure, while the ‘jumps’ can be well captured in high-

frequency components. Crucially, the high-frequency com-

ponents are sparse, which means computation can be fo-

cused only in certain areas. This has the effect of sav-

ing run-time computation, while still enabling high-quality

depths to be estimated.

To the best of our knowledge, we are the first to train

a single-image depth estimation network that reconstructs

depth by predicting wavelet coefficients. Furthermore, we

show that our models can be trained with self-supervised

loss on the final depth signal, in contrast to other methods

that directly supervise predicted wavelet coefficients.

We evaluate on NYU and KITTI datasets, where we train

supervised and self-supervised, respectively. We show that

our approach allows us to effectively trade off depth accu-

racy against runtime computation.

2. Related work

We first give an overview of monocular depth estimation,

before looking at works which have made depth estimation

more efficient. We then discuss related works which have

used wavelets for computer vision tasks, before finally look-

ing at other forms of efficient neural networks.

2.1. Monocular Depth Estimation

Beyond early shape-from-shading methods, most works

that estimate depth from a single image have been learning-

based. Early works used a Markov random field [57], but

more recent works have used deep neural networks. Super-

vised approaches use image-to-image networks to regress

depth maps e.g. [12, 11, 38, 13]; however these require

ground truth depth data at training time. Self-supervision

reduces the requirement of supervised data by using stereo

frames [14, 16] or nearby video frames [73] as supervision,

exploiting 3D geometry with image reconstruction losses

to learn a depth estimator. Focus in this area is typically

around improving the depth accuracy scores, e.g. by mod-

elling moving objects at training time [3, 5, 70, 19, 54]

or by modelling occlusion [19, 18]. While these improve-

ments achieve higher scores with equivalently trained archi-

tectures, some works aim for improved depth accuracy at

the expense of efficiency. For example, by using higher res-

olution images [47], larger networks [20] or classification

instead of regression at the output layer [13].

Efficient depth estimation. A relatively small number of

works focus on efficiency specifically for depth. Poggi et

al. [51] introduce PyDNet, which uses an image pyramid

to enable a high receptive field with a small number of pa-

rameters. Wofk et al. [65] introduce FastDepth, which uses

depthwise separable layers and network pruning to achieve

efficient depth estimation. An alternative angle on effi-

cient depth estimation is to focus on the training procedure.

Several works use knowledge distillation to enable a small

depth estimation network to learn some of the knowledge

from a larger network e.g. [59, 44].

In contrast to these works, our contribution is to change

the internal representation of depth within the network it-

self. We note that our contributions could be used in con-

junction with the above efficient architectures or distillation

schemes.

2.2. Wavelets in Computer Vision

Wavelet decomposition is an extensively used technique

in signal processing, image processing and computer vi-

sion. The discrete wavelet transform (DWT) allows a rep-

resentation of a discrete signal which is more redundant

and hence compressible. A notable example is compression

of images with JPEG2000 format [62, 60]. Furthermore,

wavelet decomposition is also a frequency transform, and

can be used for denoising [9, 10, 34]. Wavelet transforms

have also recently been combined with Deep Learning to

restore images affected by Moiré color artifacts, which oc-

cur when RGB sensors are unable to resolve high-frequency

details [48, 43]. Li et al. [42] show that by substituting

pooling operations in neural networks with discrete wavelet

transforms it is possible to filter out high-frequency com-

ponents of the input image during prediction and thus im-

prove noise-robustness in image classification tasks. Super-

resolution methods [21, 33, 8] learn to estimate the high-

frequency wavelet coefficients of an input low-resolution

image to generate high-frequency image through inverse

wavelet transform.

Closer to our work, Yang et al. [67] use wavelets in a

stereo matching network but require supervision of wavelet

coefficients while we do not. Similarly, Luo et al. [46]

replaced the down-sampling and up-sampling operations

of UNet-like architectures with DWTs and inverse DWT

respectively, and replaced standard skip-connection with

high-frequency coefficient skip-connections. However, they

do not directly predict wavelet coefficients of depth and

as such are unable to exploit the sparse representation of

wavelets for efficiency. In contrast with both these works,

we focus on efficient depth prediction from a single image.

2.3. Efficient Neural Networks

Convolutional Neural Networks (CNNs) [40] have rev-

olutionized the field of computer vision as CNN based

methods tend to outperform every other competing meth-

ods on regression or classification tasks, if they are provided



enough training data. However, the best performing neu-

ral networks contain a large number of parameters and re-

quire a large number of floating point operations (FLOPs) at

runtime, making deployment to lightweight platforms prob-

lematic. Many architectures have been developed to im-

prove the accuracy/speed tradeoff in deep nets. For exam-

ple, depth-wise separable convolutions [30], inverted resid-

ual layers [56], and pointwise group convolutions [72]. An

alternative approach though is to train a network before cut-

ting down some of its unnecessary computations.

Channel pruning. One line of research is network prun-

ing [45, 24, 71], which consists of removing some of the

redundant filters in a trained neural network. While this

helps reducing the network memory footprint as well as

the number of FLOPs necessary for inference, sparsity is

typically enforced through regularization terms [64, 25] to

compress the network without losing performance. Using

such regularisation, however, often requires careful tuning

to achieve the desired result [69]. In contrast, our wavelet-

based method intrinsically provides sparsity in outputs and

intermediate activations, and the wavelet predictions coin-

cide with edges in the depth map, knowledge of which has

direct applications e.g. in augmented reality [53, 29].

While most works focus on classification, channel prun-

ing has also been successfully applied to depth estima-

tion in the aforementioned FastDepth [65], which uses Net-

Adapt [68] to perform channel pruning.

Sparse inference. Another recent work considers spa-

tially sparse inference in image-to-image translation tasks.

PointRend [35] treats semantic segmentation as a render-

ing process, where a high-resolution estimate is obtained

from a low-resolution one through a cascade of upsampling

and sparse refinement operations. The location of these

sparse rendering operations is chosen based on an uncer-

tainty measure of the classification method. However, while

they demonstrate the efficiency and applicability of their

method to classification tasks, their method cannot directly

be applied to regression tasks because of the requirement

to evaluate an uncertainty heuristic for all pixel locations.

In contrast, our method can directly be applied to regres-

sion tasks, as rendering locations are directly predicted by

our model as non-zero-valued high-frequency wavelet coef-

ficients.

3. Method

In this section, we first introduce the basics of 2D

wavelet transforms. We chose Haar wavelets [22] due to

their simplicity and provided efficiency. Next, we describe

how to use the cascade nature of wavelet representations to

build our efficient depth estimation architecture, which we

call WaveletMonodepth. Finally, we discuss the computa-

tional benefits of sparse representations.

L

H

H

L
LL1

HH2 LH2 HL2

LL2

LL0

x0.5

x0.5

x0.5

x0.5

HH1 LH1 HL1

(a) Forward transform (DWT). This decomposes the high resolution in-

put (left) into multi-scale low resolution outputs.

LT

HT

HT

LT

HH1 LH1 HL1

HH2 LH2 HL2
x2

x2

x2

x2

LL1
LL2

LL0

(b) Inverse transform (IDWT). This reconstructs the original input from

estimated low resolution inputs.

Figure 2: Illustration of a two-level wavelet representation of a

depth image. The input image LL0 is passed through a two-level

wavelet decomposition (a), to produce a low frequency depth map

together with associated wavelets for high frequency detail. The

inverse wavelet transform (b) can reconstruct the original image

from the wavelet decomposition.

3.1. Haar Wavelet Transform

The Haar wavelet basis is the simplest basis of functions

for wavelet decomposition. A discrete wavelet transform

(DWT) with Haar wavelets decomposes a 2D image into

four coefficient maps: a low-frequency (L) component LL

and three high-frequency (H) components LH, HL, HH at

half the resolution of the input image. For the remainder

of the paper, we refer to the coefficient maps as the output

of the DWT. The DWT is an invertible operation, where

its inverse, IDWT, converts four coefficient maps into a 2D

signal at twice the resolution of the coefficient maps.

The multi-scale and multi-frequency wavelet represen-

tation is build by recursively applying DWT to the low-

frequency coefficient map LL, starting from the input

image—see Figure 2(a). Similarly, the multi-scale repre-

sentation can be recursively inverted to reconstruct a full

resolution image (Figure 2(b)). This synthesis operation is

the building block of our depth reconstruction method.

3.2. WaveletMonoDepth

Our method, which we call WaveletMonoDepth, is sum-

marized in Figure 3. It builds on a recursive use of IDWT

operation applied to predicted coefficient maps. Thus, we

reconstruct a depth map at the input scale by first predict-



IDWT

IDWT

IDWT

IDWT

HH LH

HL LL
LLIDWT

Sparse Conv.

Inverse Discrete Wavelet Transform (IDWT)

x0.5

x0.5

x0.5

x0.5

x2

x2

x2

2H x 2WH x Wx2

x0.5

C

C

C

C

C Concatenate

Figure 3: Our method WaveletMonoDepth predicts depth from a single image using wavelets. At each stage in our decoder, we

predict sparse wavelet coefficients {LH,HL,HH}. These capture the high-frequency details of the depth map, e.g. occlusion boundaries.

These are combined with the low-frequency depth map LL, taken from the previous level in the decoder, and passed through an inverse

discrete wavelet transform (IDWT). This generates a new depth map at twice the resolution of LL. This process is continued through the

decoder until the original input image resolution is reached. Because the wavelet coefficients are sparse, we can save computations; we

need only to evaluate each decoder layer at the non-zero wavelet locations in the previous level. See Algorithm 1 for more details.

ing a coarse estimate at the bottleneck scale of a UNet-like

architecture [55], and iteratively upscale and refine this es-

timate by predicting high-frequency coefficient maps.

In our network architecture, the coarse depth estimate

LL3 is estimated at 1/16 of the input scale. This depth map is

then progressively upscaled and refined using Algorithm 1.

A forward pass of our model generates a collection of 5

depth maps LLs for scales [1/16, 1/8, 1/4, 1/2, 1]. We choose

to supervise only the four last scales as in [18]. It is worth

noting that the coefficient maps are predicted at scales [1/16,

1/8, 1/4, 1/2], thus removing the need for full-resolution

computation.

3.3. Sparse Computations in Decoder

For piecewise flat depth maps, high-frequency coeffi-

cient maps have a small number of non-zero values; these

are located around depth edges. Hence, for full-resolution

depth reconstruction, only some pixel locations need to pre-

dict non-zero coefficient map values at each scale. At any

scale, we assume that these pixel locations with non-zero

values can be determined from high-frequency coefficient

maps estimated at the previous scale defined by a mask M
described in GetSparseMask of Algorithm 1.

The sparsity level achieved by using mask M is

ψ =

∑H,W
r,c=1,1Mr,c

HW
, (1)

which allows us to remove redundant computation in the

decoder layer. Indeed, for a typical K × K convolution

(with a bias term) on a feature tensor of size H ×W that

hasCin input channels andCout output channels, the number

of multiply-add operations is

MACdense = HW (CinK
2 + 1)Cout. (2)

With the sparsity level ψ, it would be

MACsparse = ψHW (CinK
2 + 1)Cout. (3)

Note that our sparsification strategy aims to reduce

FLOPs by decreasing the number of pixel locations at which

we need to compute an output. This approach is orthogonal

and complements other approaches such as channel prun-

ing, which instead reduces Cin and Cout, or separable con-

volutions. We refer to supplementary material for further

details on these.

Considering a quite conservative threshold η = 0.05
used on high-frequency coefficient maps, the sparse decoder



Algorithm 1: Computing depth with wavelets

Result: Depth map at input scale

Input : Pyramid of feature maps [F4, F3, F2, F1];

Current scale s = 3;

LL3 ← DensePredict (F4);

Threshold η ;

Sparse computation mask M = Initialize with 1;

for ( s = 3; s >= 0; s = s− 1 ) {
← LHs, HLs, HHs ← SparsePredict (Fs+1;

M);

LLs−1 ← IDWT(LLs, [LHs, HLs, HHs]);

ηs ← η · (max(LLs−1)−min(LLs−1));
M ← GetSparseMask (LHs, HLs, HHs, ηs);

}
procedure SparsePredict(F, M)

Input : Feature map F , Sparse mask M
for ( all p s.t. M [p] == 1 ) {

H[p] = SparseConv3x3(F[p]);

}
return H;

procedure DensePredict(F)
Input : Feature map F

Initialize M with ones;

return SparsePredict(F, M);

procedure GetSparseMask(H, η)
Input : High frequency coefficient maps H
M = max(|LH|, |HL|, |HH|) > η ;

M = upsample×2(M) ;

return M ;

computation is about 3× lower in FLOPs compared to stan-

dard convolutions at all pixel locations for an image of size

320× 1024.

3.4. Self­supervised Training

Our self-supervised losses are as described in [18],

which we briefly describe here for completeness. See sup-

plemental material for further details. Given a stereo pair

of images (IL, IR), we train our network to predict a depth

map DL, pixel-aligned with the left image. We also assume

access to the camera intrinsics K, and the relative camera

transformation between the images in the stereo pair TR→L.

We use the network’s current estimate of depth to synthesise

an image IR→L, computed as

IR→L = IR

〈

proj(DL, TR→L,K)
〉

, (4)

where proj() are the 2D pixel coordinates obtained by pro-

jecting the depths DL into image IR, and
〈〉

is the sam-

pling operator. We follow standard practice in training with

a photometric reconstruction error pe, so our loss becomes

Lp = pe(IL, IR→L). Following [18, 5] etc., we set pe to a

weighted sum of SSIM and L1 losses.

We also include the depth smoothness loss from [18].

For our experiments which train on monocular and stereo

sequences (‘MS’), we combine reprojection errors from the

three different source images: one frame forward in time,

one frame back in time, and the corresponding stereo pair.

In this case, we create synthesized images from the monoc-

ular sequence using relative poses estimated from a pose

network, as described in [18]. In this setting, we use a per-

pixel minimum reprojection loss, again following [18].

4. Experiments

Our validation experiments explore the task of training

a CNN to predict depth from a single color image, using

wavelets as an intermediate representation. Depending on

the experiment, we compare against known leading base-

lines that supplement, and pre- and post-process the stereo

pairs used for supervision, and the output depth maps.

4.1. Implementation Details

Datasets We conduct experiments on the KITTI and

NYUv2 depth datasets. KITTI [15] consists of 22,600 cali-

brated stereo video pairs captured by a car driving around a

city in Germany. Models are evaluated using the Eigen split

[11] using corresponding LiDAR point clouds; see e.g. [16]

for details. NYUv2 [50] consists of RGBD frames captured

with a Kinect sensor. There are 120K raw frames collected

by scanning various indoor scenes. As in DenseDepth [2],

we use a 50K samples subset of the full dataset where depth

is inpainted using Levin et al. inpainting method [41]. The

NYUv2 evaluation is run on the 654 test frames introduced

by Eigen et al. [12].

Metrics On the KITTI dataset we compute depth esti-

mation scores based on the standard metrics introduced

by Eigen et al. [12]: Abs Rel, Sq Rel, RMSE, RMSElog ,

δ1 = δ < 1.25, δ2 = δ < 1.252, and δ3 = δ < 1.253. We

use the same metrics for NYUv2, but we follow standard

practice (e.g. [13]) in reporting log10 instead of RMSElog .

To evaluate the sharpness of depth maps on NYUv2, we

use the metrics introduced by Koch et al. [36, 37] and the

NYU-OC++ dataset manually annotated by Ramamonjisoa

et al. [53, 52].

Models To demonstrate the efficiency of our method, we

choose two models for experiments on the NYUv2 and

KITTI datasets. Both models are implemented using Py-

torch and use a compatible implementation of IDWT [7].

For KITTI, we choose the weakly-supervised Depth

Hints [63] method, which adds Semi Global Matching [27,

28] supervision to the self-supervised Monodepth2 [18],

without requiring Lidar depth supervision. At each scale

s of the Monodepth2 decoder there is a layer which outputs

a one-channel disparity. We replace this layer at each scale



0.10 0.25 0.50 1.00
density

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

Re
la

tiv
e 

sc
or

e 
lo

ss
 (%

) Abs rel
Sq rel
RMSE

1 < 1.25

Figure 4: Analysis of performance loss vs density on KITTI.

Using our wavelet representation, we can drop up to 90% of the

wavelet coefficients while suffering a maximum relative perfor-

mance loss of less than 1.4%.

with a 3-channel output layer to predict {LHs, HLs, HHs}.
While our baseline consumes decoder feature maps at scales

[1/16, 1/8, 1/4, 1/2, 1], we only need to keep the four scales

[1/16, 1/8, 1/4, 1/2], as the IDWT outputs disparity at 2×
resolution. Both our model and baseline are trained with an

Adam optimizer using a learning rate of 10−4, with batch

size 12 for 20 epochs. Unless otherwise specified, our ex-

periments are done with Resnet50-based model trained with

depth hints loss at 320× 1024 resolution.

For NYUv2, we implement a UNet-like baseline similar

to DenseDepth [2], and detail its architecture in supplemen-

tary material. Similar to our KITTI experiments, we discard

the last layer of the decoder as it is not needed, and add one

extra layer at each scale to predict the wavelet coefficients.

Both our model and baseline are trained using an Adam op-

timizer with standard parameters, for 20 epochs with batch

size 8 and with learning rate 10−4. It is worth noting that

DenseDepth predicts outputs at half the input resolution, but

evaluates at full resolution after bilinearly upsampling.

4.2. Efficiency vs. Accuracy Trade­off Analysis

In this section, we study the relation between accuracy,

sparsity, and efficiency of WaveletMonoDepth. For each

set of experiments, we compare our method to an equiva-

lently trained model without wavelets. We first study how

wavelets contribute to high-frequency details, then show

that they are sparse. Finally, we discuss how we trade off

accuracy against efficiency by varying the threshold η used

in Algorithm 1 to filter out close-to-zero coefficients.

Wavelets enhance high-frequency details. As men-

tioned in Section 3.2, the wavelet representation of depth

maps allows us to output depth at different resolutions, de-

pending on how many levels of coefficients have been com-

puted. Tables 1 and 2 demonstrate evaluation scores for

depth maps produced at different levels of wavelet decom-

position on the KITTI and NYUv2 datasets respectively. As

can be seen, most of the signal is captured in low-frequency

0.05 0.10 0.25 0.50 1.00
density

0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e 

sc
or

e 
lo

ss
 (%

) Abs rel
log10
RMSE

1 < 1.25

Figure 5: Analysis of performance loss vs density on NYUv2.

Using our wavelet representation, we can drop up to 95% of the

wavelet coefficients while suffering a maximum relative perfor-

mance loss of less than 0.2%.

6 8 10 12 14 16 18
GFLOPs

0.096

0.097

0.098

0.099

0.100

Ab
s r

el

Depth Hints 
 (ResNet50)

0.891

0.890

0.889

0.888

0.887

<
1.

25

Depth Hints 
 (ResNet50)

Figure 6: Analysis of performance vs decoder GFLOPs on

KITTI. By adjusting the parameter η, we trade off computation

in GFLOPs (x-axis) against accuracy (y-axis; Abs Rel in red, and

δ1 in green). We show here that we can reduce the computation by

more than half while still remaining on par with our baseline.

estimates of the depth map at the lowest resolution. This

confirms previous works observations [11, 4] that a coarse

estimate of depth is sufficient to capture the global geom-

etry of the scene. Using more wavelet levels adds more

high-frequency details to the depth map, yielding sharper

results. Figure 7 shows the sharpening effect of wavelets

qualitatively on KITTI and NYUv2 images.

Activated HF AbsRel SqRel R Rlog δ1 δ2 δ3

LL only 0.104 0.668 4.415 0.179 0.878 0.962 0.985

[3] 0.097 0.659 4.321 0.177 0.887 0.964 0.984

[3, 2] 0.096 0.679 4.333 0.179 0.890 0.963 0.983

[3, 2, 1] 0.096 0.702 4.366 0.180 0.891 0.963 0.983

[3, 2, 1, 0] 0.097 0.714 4.386 0.181 0.891 0.963 0.983

Table 1: Ablation study on high frequency coefficients on

KITTI. While most of the relevant depth information is captured

by the low-frequency estimate, predicting higher frequency coef-

ficients increases accuracy. Results are evaluated without post-

processing.

Wavelets are sparse. Next, we show that high-frequency

coefficients are sparse. As an example, Figure 1(b) shows

one low-frequency and three high-frequency coefficient



KITTI [15] NYUv2 [58]

RGB input

LL3 only

LL3

{LH3, HL3, HH3}

LL3 + all HF

Sparse

(ψ < 20%)

Figure 7: Qualitative results on wavelet representation of depth maps. When using only a subset of wavelet scales, we run the inverse

wavelet transform up to the highest scale with those coefficients, then perform a bilinear upsampling up to the full resolution. For each

experiment, the bottom line shows the ℓ1 error map between the considered depth maps and the depth map reconstructed with the complete

(dense) set of predicted wavelet coefficients, which shows that wavelets contribute to refining details.

Activated HF
Depth Accuracy Occ. Boundaries

AbsRel RMSE log10 δ1 δ2 δ3 ǫacc ǫcomp

LL only 0.1281 0.5549 0.0548 0.8419 0.9674 0.9915 8.3672 9.8552

[3] 0.1264 0.5517 0.0543 0.8446 0.9680 0.9917 3.3945 8.7933

[3, 2] 0.1259 0.5512 0.0542 0.8451 0.9682 0.9917 2.1259 7.6702

[3, 2, 1] 0.1258 0.5515 0.0542 0.8451 0.9681 0.9917 1.8070 7.1073

Table 2: Ablation study on high frequency coefficients on NYU. While most of the relevant depth information is captured by the low-

frequency estimate, predicting higher frequency coefficients increases depth and occlusion boundaries accuracy. We evaluate occlusion

boundary quality using metrics from Koch et al. [36, 37] and the NYU-OC++ dataset manually annotated by Ramamonjisoa et al. [53, 52].

maps for a given depth map. We observe that the high-

frequency maps have non-zero values near depth edges.

More wavelet predictions can be found in supplementary.

As depth edges are sparse, high-frequency coefficients at

only a few pixel locations are necessary to produce high-

accuracy depth maps.

Trading off accuracy against efficiency using sparsity.

After training our network with standard convolutions,

these are replaced with sparse ones as in Figure 3 and Al-

gorithm 1. Varying the threshold value η allows us to vary

the sparsity level ψ in Equation (3), and consequently to

trade off accuracy against complexity. Because wavelets are

sparse, we can compute them only at a very small number of

pixel locations and suffer a minimal loss in depth accuracy.

Figures 4 and 5 show relative score changes with varying

sparsity threshold on KITTI and NYU datasets respectively.

Note that a fixed value of η produces different sparsity lev-

els depending on the content of an image, so we also plot

standard deviation of sparsity levels for each η value. Fig-

ure 4 indicates that computing the wavelet coefficients at

only 10 percent of pixel locations results in a relative loss

in scores of less than 1.4% for KITTI images. Similarly,

Figure 5 shows that we can compute wavelet coefficients at

only 5 percent of pixel locations while suffering a loss in

scores of less than 0.20% for NYU images.

Finally, we demonstrate how sparsity of high-frequency

coefficient maps can be exploited for efficiency gains in the

decoder. Figure 6 shows Abs Rel and δ1 scores for varying

η used during prediction. As can be seen, the score change

is minimal when using half multiply-add operations in the

decoder and the performance is comparable to SOTA meth-

ods using only a third of multiply-add operations. Note that

biggest efficiency gains are obtained at higher resolution, as

sparsity increases with resolution.



Cit. Method PP Data H × W Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

[18] Monodepth2 Resnet18 ✓ S 192 × 640 0.108 0.842 4.891 0.207 0.866 0.949 0.976

WaveletMonodepth Resnet18 ✓ S 192 × 640 0.110 0.876 4.916 0.206 0.864 0.950 0.976

Monodepth2 Resnet50 ✓ S 192 × 640 0.108 0.802 4.577 0.185 0.886 0.963 0.983

WaveletMonodepth Resnet50 ✓ S 192 × 640 0.106 0.824 4.824 0.205 0.870 0.949 0.975

[63] Depth Hints ✓ SSGM 192 × 640 0.106 0.780 4.695 0.193 0.875 0.958 0.980

WaveletMonodepth Resnet18 ✓ SSGM 192 × 640 0.106 0.813 4.693 0.193 0.876 0.957 0.980

Depth Hints Resnet50 ✓ SSGM 192 × 640 0.102 0.762 4.602 0.189 0.880 0.960 0.981

WaveletMonodepth Resnet50 ✓ SSGM 192 × 640 0.105 0.813 4.625 0.191 0.879 0.959 0.981

[18] Monodepth2 Resnet18 ✓ MS 192 × 640 0.104 0.786 4.687 0.194 0.876 0.958 0.980

WaveletMonodepth Resnet18 ✓ MS 192 × 640 0.109 0.814 4.808 0.198 0.868 0.955 0.980

[63] Depth Hints ✓ MS + SSGM 192 × 640 0.105 0.769 4.627 0.189 0.875 0.959 0.982

WaveletMonodepth Resnet18 ✓ MS + SSGM 192 × 640 0.110 0.840 4.741 0.195 0.868 0.956 0.981

[18] Monodepth2 Resnet18 ✓ S 320 × 1024 0.105 0.822 4.692 0.199 0.876 0.954 0.977

WaveletMonodepth Resnet18 ✓ S 320 × 1024 0.105 0.797 4.732 0.203 0.869 0.952 0.977

[63] Depth Hints ✓ SSGM 320 × 1024 0.099 0.723 4.445 0.187 0.886 0.961 0.982

WaveletMonodepth Resnet18 ✓ SSGM 320 × 1024 0.102 0.739 4.452 0.188 0.883 0.960 0.981

Depth Hints Resnet50 ✓ SSGM 320 × 1024 0.096 0.710 4.393 0.185 0.890 0.962 0.981

WaveletMonodepth Resnet50 ✓ SSGM 320 × 1024 0.097 0.718 4.387 0.184 0.891 0.962 0.982

WaveletMonodepth Resnet50 (η = 0.05) ✓ SSGM 320 × 1024 0.100 0.726 4.444 0.186 0.888 0.962 0.982

Table 3: Quantitative results on KITTI. We compare our method to our baselines on KITTI [15], using the Eigen split. The Data column

indicates the training data modality: S is for self-supervised training on stereo images, MS is for models trained with both monocular

(forward and backward frames) and stereo data and SSGM refers to the extra stereo ground truth which was used in [63].

Method H × W Abs Rel RMSE log10 δ<1.25 δ<1.252 δ<1.253 ǫacc ǫcomp

DenseNet baseline 480 × 640 0.1277 0.5479 0.0539 0.8430 0.9681 0.9917 1.7170 7.0638

WaveletMonodepth (last scale sup.) 480 × 640 0.1280 0.5589 0.0546 0.8436 0.9658 0.9908 1.7678 7.1433

WaveletMonodepth 480 × 640 0.1258 0.5515 0.0542 0.8451 0.9681 0.9917 1.8070 7.1073

WaveletMonodepth (η = 0.04) 480 × 640 0.1259 0.5517 0.0543 0.8450 0.9681 0.9917 1.8790 7.0746

Table 4: Quantitative results on NYUv2 [58] We compare our DenseDepth [2]-inspired baseline to our implementation with wavelets

and with sparsity. All results are evaluated in the Eigen center crop, without post-processing. As in DenseDepth, our network outputs a

240× 320 depth map which is then upsampled for evaluation.

4.3. KITTI results

We summarize our results on the KITTI dataset in Ta-

ble 3. Here we show that our method, which simply re-

places depth or disparity predictions with wavelet predic-

tions, can be applied to a wide range of single image depth

estimation models and losses. In each section of the table,

the off-the-shelf model numbers are reported, together with

numbers from a model trained with our wavelet formula-

tion. For example, we demonstrate that wavelets can be

used in self-supervised depth estimation frameworks such

as Monodepth2 [18], as well as its weakly-supervised ex-

tension Depth Hints [63]. We note that we achieve our best

results when using Depth Hints and high-resolution input

images. This is not surprising, as supervision from SGM

should give better scores, but more importantly using high

resolution inputs and outputs allows for more sparsification,

as edge pixels become sparser as resolution grows. Impor-

tantly, we show overall that replacing fully convolutional

layers with wavelets gives models with comparable perfor-

mance to the off-the-shelf, non-wavelet baselines. We show

qualitative results from KITTI in Figure 7 (left).

4.4. NYUv2 results

Scores on NYUv2 are shown in Table 4. Our method

performs on par with our baseline, which demonstrates

that it is possible to estimate accurate depth and sparse

wavelets without directly supervising the wavelet coeffi-

cients, in contrast with [67]. In Table 4, we show that su-

pervising depth only at the last scale performs on par with

our network supervised at all scales, which shows that a full

multi-scale wavelet reconstruction network can be trained

end-to-end. Qualitative results from NYUv2 are shown in

Figure 7 (right).

5. Conclusion

In this work we combine wavelet representation with

deep learning for a single-image depth prediction task.

We demonstrate that a neural network can learn to predict

wavelet coefficient maps through supervision of the recon-

structed depth map with existing losses. Our experiments

using KITTI and NYUv2 datasets show that we can achieve

scores comparable to SOTA models using similar encoder-

decoder neural network architectures to the baseline mod-

els, but with wavelet representations.

We also analyze sparsity of wavelet coefficients and

show that sparsified wavelet coefficient maps can generate

high-quality depth maps. Finally, we exploit this sparsity to

reduce multiply-add operations in the decoder network by

at least a factor of 2.

Acknowledgements
We would like to thank Aron Monszpart for helping us

set up cloud experiments, and our reviewers for their useful

suggestions.



References

[1] Filippo Aleotti, Giulio Zaccaroni, Luca Bartolomei, Matteo

Poggi, Fabio Tosi, and Stefano Mattoccia. Real-time single

image depth perception in the wild with handheld devices.

Sensors, 2021.

[2] Ibraheem Alhashim and Peter Wonka. High Qual-

ity Monocular Depth Estimation via Transfer Learning.

arXiv:1812.11941, 2018.

[3] Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan,

Chunhua Shen, Ming-Ming Cheng, and Ian Reid. Unsuper-

vised scale-consistent depth and ego-motion learning from

monocular video. In NeurIPS, 2019.

[4] Xiaotian Chen, Xuejin Chen, and Zheng-Jun Zha. Structure-

aware residual pyramid network for monocular depth estima-

tion. 2019.

[5] Yuhua Chen, Cordelia Schmid, and Cristian Sminchis-

escu. Self-supervised learning with geometric constraints in

monocular video: Connecting flow, depth, and camera. In

ICCV, 2019.

[6] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-

iter. Fast and accurate deep network learning by exponential

linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[7] Fergal Cotter. Uses of complex wavelets in deep

convolutional neural networks (doctoral thesis).

https://doi.org/10.17863/CAM.53748, Chapter 3, 2019.

[8] Xin Deng, Ren Yang, Mai Xu, and Pier Luigi Dragotti.

Wavelet domain style transfer for an effective perception-

distortion tradeoff in single image super-resolution. In ICCV,

2019.

[9] David L. Donoho. De-noising by soft-thresholding. IEEE

Transactions on Information Theory, 41(3):613–627, 1995.

[10] David L Donoho and Iain M Johnstone. Ideal spatial adap-

tation by wavelet shrinkage. Biometrika, 81(3):425–455, 09

1994.

[11] David Eigen and Rob Fergus. Predicting Depth, Surface Nor-

mals and Semantic Labels with a Common Multi-Scale Con-

volutional Architecture. In ICCV, 2015.

[12] David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map

Prediction from a Single Image Using a Multi-Scale Deep

Network. In NeurIPS, pages 2366–2374, 2014.

[13] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In CVPR, 2018.

[14] Ravi Garg, Vijay Kumar BG, and Ian Reid. Unsupervised

CNN for single view depth estimation: Geometry to the res-

cue. In ECCV, 2016.

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In CVPR, 2012.

[16] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, 2017.

[17] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised

Monocular Depth Estimation with Left-Right Consistency.

In CVPR, 2017.

[18] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J. Brostow. Digging into self-supervised monocular

depth estimation. In ICCV, 2019.

[19] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia

Angelova. Depth from videos in the wild: Unsupervised

monocular depth learning from unknown cameras. In ICCV,

2019.

[20] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-

tos, and Adrien Gaidon. 3D packing for self-supervised

monocular depth estimation. In CVPR, 2020.

[21] Tiantong Guo, Hojjat Seyed Mousavi, Tiep Huu Vu, and

Vishal Monga. Deep wavelet prediction for image super-

resolution. In CVPR Workshops, 2017.

[22] Alfréd Haar. Zur theorie der orthogonalen funktionensys-

teme. Mathematische Annalen, 69:331–371, 1910.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In CVPR, 2016.

[24] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In ICCV, Oct

2017.

[25] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In CVPR, 2017.

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. arXiv:1503.02531, 2015.

[27] Heiko Hirschmuller. Accurate and efficient stereo processing

by semi-global matching and mutual information. In CVPR,

2005.

[28] Heiko Hirschmuller. Stereo processing by semiglobal match-

ing and mutual information. PAMI, 2007.

[29] Aleksander Holynski and Johannes Kopf. Fast depth densi-

fication for occlusion-aware augmented reality. ACM Trans-

actions on Graphics (TOG), 2018.

[30] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient con-

volutional neural networks for mobile vision applications.

arXiv:1704.04861, 2017.

[31] Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van

Der Maaten, and Kilian Weinberger. Convolutional networks

with dense connectivity. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 2019.

[32] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017.

[33] Huaibo Huang, Ran He, Zhenan Sun, and Tieniu Tan.

Wavelet-srnet: A wavelet-based cnn for multi-scale face su-

per resolution. In ICCV, 2017.

[34] Eunhee Kang, Won Chang, Jaejun Yoo, and Jong Chul Ye.

Deep convolutional framelet denosing for low-dose CT via

wavelet residual network. IEEE Transactions on Medical

Imaging, 37(6):1358–1369, 2018.

[35] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-

shick. Pointrend: Image segmentation as rendering. In

CVPR, 2020.

[36] Tobias Koch, Lukas Liebel, Friedrich Fraundorfer, and

Marco Körner. Evaluation of CNN-Based Single-Image

Depth Estimation Methods. In ECCV, 2018.



[37] Tobias Koch, Lukas Liebel, Marco Körner, and Friedrich

Fraundorfer. Comparison of monocular depth estimation

methods using geometrically relevant metrics on the ibims-1

dataset. CVIU, 2020.

[38] Arun CS Kumar, Suchendra M Bhandarkar, and Mukta

Prasad. DepthNet: A recurrent neural network architecture

for monocular depth prediction. In CVPR Workshops, 2018.

[39] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N.

Navab. Deeper Depth Prediction with Fully Convolutional

Residual Networks. In 3DV, 2016.

[40] Yann LeCun and Yoshua Bengio. Convolutional Networks

for Images, Speech, and Time Series. The handbook of brain

theory and neural networks, 3361(10), 1995.

[41] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization

Using Optimization. In ACM Transactions on Graphics,

2004.

[42] Qiufu Li, Linlin Shen, Sheng Guo, and Zhihui Lai. Wavelet

integrated cnns for noise-robust image classification. In

CVPR, June 2020.

[43] Lin Liu, Jianzhuang Liu, Shanxin Yuan, Gregory Slabaugh,

Ales Leonardis, Wengang Zhou, and Qi Tian. Wavelet-based

dual-branch network for image demoireing. In ECCV, 2020.

[44] Yifan Liu, Changyong Shun, Jingdong Wang, and Chunhua

Shen. Structured knowledge distillation for dense prediction.

PAMI, 2020.

[45] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In ICCV,

2017.

[46] Chenchi Luo, Yingmao Li, Kaimo Lin, George Chen,

Seok-Jun Lee, Jihwan Choi, Youngjun Francis Yoo, and

Michael O. Polley. Wavelet synthesis net for disparity es-

timation to synthesize dslr calibre bokeh effect on smart-

phones. In CVPR, 2020.

[47] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei

Xu, Ram Nevatia, and Alan Yuille. Every pixel counts++:

Joint learning of geometry and motion with 3D holistic un-

derstanding. PAMI, 2019.

[48] Xiaotong Luo, Jiangtao Zhang, Ming Hong, Yanyun Qu,

Yuan Xie, and Cuihua Li. Deep wavelet network with do-

main adaptation for single image demoireing. In CVPR

Workshops, 2020.

[49] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 4040–4048, 2016.

[50] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob

Fergus. Indoor segmentation and support inference from

rgbd images. In ECCV, 2012.

[51] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mat-

toccia. Towards real-time unsupervised monocular depth es-

timation on cpu. In IROS, 2018.

[52] Michael Ramamonjisoa, Yuming Du, and Vincent Lep-

etit. Predicting sharp and accurate occlusion boundaries in

monocular depth estimation using displacement fields. In

CVPR, 2020.

[53] Michael Ramamonjisoa and Vincent Lepetit. SharpNet: Fast

and Accurate Recovery of Occluding Contours in Monocular

Depth Estimation. In ICCV Workshop, 2019.

[54] Anurag Ranjan, Varun Jampani, Kihwan Kim, Deqing Sun,

Jonas Wulff, and Michael J Black. Competitive collabora-

tion: Joint unsupervised learning of depth, camera motion,

optical flow and motion segmentation. In CVPR, 2019.

[55] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional Networks for Biomedical Image Seg-

mentation. In MICCAI, 2015.

[56] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. MobileNetV2: Inverted

residuals and linear bottlenecks. In CVPR, 2018.

[57] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3D:

Learning 3D Scene Structure from a Single Still Image.

IEEE TPAMI, 2009.

[58] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor Segmentation and Support Inference from

RGBD Images. In ECCV, 2012.

[59] Andrew Spek, Thanuja Dharmasiri, and Tom Drummond.

CReaM: Condensed real-time models for depth prediction

using convolutional neural networks. In IROS, 2018.

[60] David Taubman and Michael Marcellin. JPEG2000 Im-

age Compression Fundamentals, Standards and Practice.

Springer Publishing Company, Incorporated, 2013.

[61] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,

Thomas Brox, and Andreas Geiger. Sparsity invariant CNNs.

In 3DV, 2017.

[62] Michael Unser and Thierry Blu. Mathematical properties of

the jpeg2000 wavelet filters. IEEE Transactions on Image

Processing, 12(9):1080–1090, 2003.

[63] Jamie Watson, Michael Firman, Gabriel J. Brostow, and

Daniyar Turmukhambetov. Self-supervised monocular depth

hints. In ICCV, 2019.

[64] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

In NeurIPS, 2016.

[65] Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and

Karaman, Sertac and Sze, Vivienne. FastDepth: Fast Monoc-

ular Depth Estimation on Embedded Systems. In ICRA,

2019.

[66] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical

evaluation of rectified activations in convolutional network.

arXiv preprint arXiv:1505.00853, 2015.

[67] Menglong Yang, Fangrui Wu, and Wei Li. Waveletstereo:

Learning wavelet coefficients of disparity map in stereo

matching. In CVPR, June 2020.

[68] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec

Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-

tadapt: Platform-aware neural network adaptation for mobile

applications. In ECCV, 2018.

[69] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethink-

ing the smaller-norm-less-informative assumption in channel

pruning of convolution layers. arXiv:1802.00124, 2018.

[70] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised learn-

ing of dense depth, optical flow and camera pose. In CVPR,

2018.



[71] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas Huang. Slimmable neural networks. In ICLR, 2019.

[72] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

ShuffleNet: An extremely efficient convolutional neural net-

work for mobile devices. In CVPR, 2018.

[73] Tinghui Zhou, Matthew Brown, Noah Snavely, and David

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, 2017.



Supplementary Material
6. Network Architectures and Losses

6.1. On direct supervision of wavelet coefficients

The previous work WaveletStereo [67] supervises its

wavelet based stereo matching method with ground truth

wavelet coefficients at the different levels of the decom-

position. However, wavelets can only reliably be super-

vised when ground truth depth -or disparity- is provided and

when it does not contain missing values or high-frequency

noise, as they show on the synthetic SceneFlow [49] dataset.

The sparsity of ground truth data in the KITTI dataset es-

pecially around edges makes it impossible to estimate re-

liably ground truth wavelet coefficients. On NYUv2, the

noise in depth maps is also an issue for direct supervision of

wavelets, e.g. with creases in the layout or inaccurate depth

edges. This noise also prohibits the use of Semi Global

Matching ground truth for wavelet coefficient supervision.

As we show in our work, supervising the network on

wavelet reconstructions allows us to ignore missing values

and be robust to noisy labels.

6.2. Experiments on KITTI

Architecture The architecture we use for our experiments

is a modification of the architecture used in [18], as de-

scribed in the main paper. In Table 5, we set out our decoder

architecture in detail.

Self-supervised losses Our self-supervised losses are as

described in [18], which we repeat here for completeness.

Given a stereo pair of images (IL, IR), we train our network

to predict a depth map DL, pixel-aligned with the left im-

age. We also assume access to the camera intrinsics K, and

the relative camera transformation between the images in

the stereo pair TR→L. We use the network’s current esti-

mate of depth to synthesise an image IR→L, computed as

IR→L = IR

〈

proj(DL, TR→L,K)
〉

, (5)

where proj() are the 2D pixel coordinates obtained by pro-

jecting the depthsDL into image IR, and
〈〉

is the sampling

operator. We follow standard practice in training the model

under a photometric reconstruction error pe, so our loss be-

comes

Lp = pe(IL, IR→L). (6)

Following [18, 5] etc. we use a weighted sum of SSIM and

L1 losses

pe(Ia, Ib) = α
1− SSIM(Ia, Ib)

2
+ (1− α)‖Ia − Ib‖1,

∗Work done during an internship at Niantic

where α = 0.85. We additionally follow [18] in using the

smoothness loss:

Ls = |∂xd
∗
L| e

−|∂xIL| + |∂yd
∗
L| e

−|∂yIL|, (7)

where d∗L = dL/dL is the mean-normalized inverse depth

for image IL.

When we train on monocular and stereo se-

quences (‘MS’), we again follow [18] — see our main

paper for an overview, and [18] for full details.

Depth Hints loss When we train with depth hints, we use

the proxy loss from [63], which we recap here. For stereo

training pairs, we compute a proxy depth map D̃L using

semi-global matching [27], an off-the-shelf stereo matching

algorithm. We use this to create a second synthesized image

ĨR→L = IR

〈

proj(D̃L, TR→L,K)
〉

, (8)

We decide whether or not to apply a supervised loss us-

ing D̃L as ground truth on a per-pixel basis. We only add

this supervised loss for pixels where pe(IL, ĨR→L) is lower

pe(IL, IR→L). The supervised loss term we use is logL1,

following [63]. For experiments where Depth Hints are

used for training, we disable the smoothness loss term.

Additional experiments We additionally tried training

using edge-aware sparsity constraints that penalize non-

zero coefficients at non-edge regions, by replacing depth

gradients with wavelets coefficients in Monodepth’s [17]

disparity smoothness loss, which unfortunately made train-

ing unstable. We also tried to supervise wavelet coeffi-

cients using distillation [26, 1] from a teacher depth net-

work, which resulted in lower performances.

6.3. Experiments on NYUv2

Architecture We adapted our architecture from the Py-

Torch implementation of DenseDepth [2]. Our implementa-

tion uses a DenseNet161 encoder instead of a DenseNet169,

and a standard decoder with up-convolutions. We first de-

sign a baseline that does not use wavelets, using the archi-

tecture detailed in Table 7. Our wavelet adaptation of that

baseline is then detailed in Table 8. For experiments re-

ported in the main paper, we follow the DenseDepth strat-

egy and predict outputs at half the input resolution. Hence,

the last level of the depth decoder in Table 8 is discarded.

For experiments using a light-weight decoder discussed

later in Section 9.4, which predicts 224 × 224 depth maps

given a 224 × 224 input image, we keep all four levels of

wavelet decomposition.

Supervised losses For our NYU results in the main paper,

we supervise depth using an L1 loss and SSIM:

LD(y, y∗) = λ1ℓ1(y, y
∗) (9)



Depth Decoder

layer k s chns res input activation

upconv5 3 1 256 32 econv5 ELU [6]

Level 3 coefficients predictions

iconv4 3 1 256 16 ↑upconv5, econv4 ELU

disp4 3 1 1 16 iconv4 Sigmoid

wave4 3 1 3 16 iconv4 Sigmoid

upconv4 3 1 128 16 iconv4 ELU

IDWT3 - - 1 8 disp4, wave4 -

Level 2 coefficients predictions

iconv3 3 1 128 8 ↑upconv4, econv3 ELU

wave3 3 1 3 8 iconv3 Sigmoid

upconv3 3 1 64 8 iconv3 ELU

IDWT2 - - 1 8 IDWT3, wave3 -

Level 1 coefficients predictions

iconv2 3 1 64 4 ↑upconv3, econv2 ELU

wave2 3 1 3 4 iconv2 Sigmoid

upconv2 3 1 32 4 iconv2 ELU

IDWT1 - - 1 8 IDWT2, wave2 -

Level 0 coefficients predictions

iconv1 3 1 32 2 ↑upconv2, econv1 ELU

wave1 3 1 3 2 iconv1 Sigmoid

IDWT0 - - - 1 IDWT1, wave1 -

Table 5: Our decoder network architecture for experiments

on the KITTI [15] dataset using ResNet backbone Here k is the

kernel size, s the stride, chns the number of output channels for

each layer, res is the downscaling factor for each layer relative to

the input image, and input corresponds to the input of each layer

where ↑ is a 2× nearest-neighbor upsampling of the layer. disp4

is used produce the low-resolution estimate LL3, while waveJ is

used to decode {LHJ,HLJ,HHJ} at level J. disp4 and waveJ are

convolution blocks detailed in Table 6.

disp4 Layer

layer k s chns res input activation

disp4(1) 1 1 chns(iconv5) / 4 16 iconv5 LeakyReLU(0.1) [66]

disp4(2) 3 1 1 16 disp4-1 Sigmoid

Wavelet Decoding Layer - waveJ

layer k s chns res input activation

waveJ(1+) 1 1 chns(iconv[J+1]) 2J iconv[J+1] LeakyReLU(0.1)

waveJ(2+) 3 1 3 2J waveJ(1+) Sigmoid

waveJ(1-) 1 1 chns(iconv[J+1]) 2J iconv[J+1] LeakyReLU(0.1)

waveJ(2-) 3 1 3 2J waveJ(1-) Sigmoid

substract 1 1 3 2J
waveJ(2+),

Linear
waveJ(2-)

Table 6: Architecture of our wavelet decoding layer used for

KITTI experiments J denotes the level of the decoder. disp4 is

used produce the low-resolution estimate LL3, while waveJ is used

to decode {LHJ,HLJ,HHJ}.

where y and y∗ are respectively predicted and ground truth

depth and λ1 = 0.1. Similar to [53, 52], we clamp depth

between 0.4 and 10 meters.

7. Scores on Improved KITTI Ground Truth

We report results on the improved KITTI ground

truth [61] in Table 9. As we saw in the main paper, our

method is competitive on scores with non-wavelets base-

Depth Decoder

layer k s chns res input activation

upconv5 3 1 1104 32 econv5 Linear

iconv4 3 1 552 16 ↑upconv5, econv4 LeakyReLU(0.2)

iconv3 3 1 276 8 ↑iconv4, econv3 LeakyReLU(0.2)

iconv2 3 1 138 4 ↑iconv3, econv2 LeakyReLU(0.2)

iconv1 3 1 69 2 ↑iconv2, econv1 LeakyReLU(0.2)

outconv0 1 1 1 2 iconv1 Linear

Table 7: Architecture of our DenseNet baseline decoder

for experiments on the NYUv2 [58] dataset Note that as in

DenseDepth [2] we produce a depth map at half-resolution. Ta-

ble adapted from [18].

Depth Decoder

layer k s chns res input activation

upconv5 3 1 1104 32 econv5 Linear

Level 3 coefficients predictions

iconv4 3 1 552 16 ↑upconv5, econv4 LeakyReLU(0.2)

disp4 1 1 1 16 upconv5 Linear

wave4 3 1 3 16 upconv5 Linear

IDWT3 - - 1 8 disp4, wave4 -

Level 2 coefficients predictions

iconv3 3 1 276 8 ↑iconv4, econv3 LeakyReLU(0.2)

wave3 3 1 3 8 iconv3 Linear

IDWT2 - - 1 4 IDWT3, wave3 -

Level 1 coefficients predictions

iconv2 3 1 138 4 ↑iconv2, econv2 LeakyReLU(0.2)

wave2 3 1 3 4 iconv2 Linear

IDWT1 - - 1 2 IDWT2, wave2 -

Table 8: Our decoder network architecture for experiments

on the NYUv2 [58] dataset Note that since like in DenseDepth [2]

we produce a depth map at half-resolution, we only need to predict

wavelet coefficients until quarter-resolution. Table adapted from

[18].

lines, but as we have shown our wavelet decomposition en-

ables more efficient predictions.

8. Qualitative Results

In this section, we show qualitative results of our

method.

In Figures 10-11-12 and Figures 13-14-15 we first show

our sparse prediction process with corresponding sparse

wavelets and masks, on the NYUv2 and KITTI datasets re-

spectively. While we only need to compute wavelet coef-

ficients in less than 10% of pixel locations in the decoding

process, we show that our wavelets efficiently retain rele-

vant information. Furthermore, we show that wavelets effi-

ciently detect depth edges and their orientation. Therefore,

future work could make efficient use of our wavelet based

depth estimation method for occlusion boundary detection.

In Figure 8, we show comparative results between our

baseline Depth Hints [63] and our wavelet based method.



Input image Baseline model Wavelets prediction

Figure 8: Comparing wavelet predictions to a baseline model on the KITTI dataset. On the left we show the input image, and in the

middle column we show the prediction from an off-the-shelf Depth Hints ResNet 50 model [63]. On the right we show an equivalently

trained ResNet 50 model, but with our wavelets in the decoder. We see that our predictions retain the high quality of the baseline predictions,

but are more efficient to predict.

Cit. Method PP Data H × W Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

[18] Monodepth2 Resnet18 ✓ S 192 × 640 0.079 0.512 3.721 0.131 0.924 0.982 0.994

WaveletMonodepth Resnet18 ✓ S 192 × 640 0.084 0.523 3.807 0.137 0.914 0.980 0.994

WaveletMonodepth Resnet50 ✓ S 192 × 640 0.081 0.477 3.658 0.133 0.920 0.981 0.994

[63] Depth Hints ✓ SSGM 192 × 640 0.085 0.487 3.670 0.131 0.917 0.983 0.996

WaveletMonodepth Resnet18 ✓ SSGM 192 × 640 0.083 0.476 3.635 0.129 0.920 0.983 0.995

Depth Hints Resnet50 ✓ SSGM 192 × 640 0.081 0.432 3.510 0.124 0.924 0.985 0.996

WaveletMonodepth Resnet50 ✓ SSGM 192 × 640 0.081 0.449 3.509 0.125 0.923 0.986 0.996

[18] Monodepth2 Resnet18 ✓ MS 192 × 640 0.084 0.494 3.739 0.132 0.918 0.983 0.995

WaveletMonodepth Resnet18 ✓ MS 192 × 640 0.085 0.497 3.804 0.134 0.912 0.982 0.995

[63] Depth Hints ✓ MS + SSGM 192 × 640 0.087 0.526 3.776 0.133 0.915 0.982 0.995

WaveletMonodepth Resnet18 ✓ MS + SSGM 192 × 640 0.086 0.497 3.699 0.131 0.914 0.983 0.996

[18] Monodepth2 Resnet18 ✓ S 320 × 1024 0.082 0.497 3.637 0.132 0.924 0.982 0.994

WaveletMonodepth Resnet18 ✓ S 320 × 1024 0.080 0.443 3.544 0.130 0.919 0.983 0.995

WaveletMonodepth Resnet50 ✓ S 320 × 1024 0.076 0.413 3.434 0.126 0.926 0.984 0.995

[63] Depth Hints ✓ SSGM 320 × 1024 0.077 0.404 3.345 0.119 0.930 0.988 0.997

WaveletMonodepth Resnet18 ✓ SSGM 320 × 1024 0.078 0.397 3.316 0.121 0.928 0.987 0.997

Depth Hints Resnet50 ✓ SSGM 320 × 1024 0.074 0.363 3.198 0.114 0.936 0.989 0.997

WaveletMonodepth Resnet50 ✓ SSGM 320 × 1024 0.074 0.357 3.170 0.114 0.936 0.989 0.997

Table 9: Quantitative results on the improved KITTI benchmark. We compare our method to our baselines on the KITTI [15] improved

dataset introduced by [61], using the Eigen split. Data column (data source used for training): S is for self-supervised training on stereo

images, MS is for models trained with both M (forward and backward frames) and S data and SSGM refers to the extra stereo ground truth

which was used in [63].



9. Exploring Other Efficiency Tracks

Our paper mainly explores computation reduction in the

decoder of a UNet-like architecture. However, this direction

is orthogonal and complementary with all other complexity

reduction lines of research.

Our approach is for example complementary with the

FastDepth approach, which consists in reducing the overall

complexity of a depth estimation network by compressing it

in many dimensions such as (1) the encoder, (2) the decoder

(3) the input resolution. They argue that the deep network

introduced by Laina et al. [39] suffers from high complex-

ity, while it could largely be reduced. Here we present a

set of experiments we conducted to explore these different

aspects of complexity reduction.

9.1. Experiment with a light­weight MobileNetv2
encoder

First, we replace the costly ResNet [23] or DenseNet [32,

31] backbone encoders with the efficient MobileNetv2 [56].

Indeed, in contrast with FastDepth, in the main paper, we

report results using large encoder models (Resnet18/50 or

Densenet161). Although this helps achieving better scores,

we show in Table 10 and Table 11 that we can reach close

to state-of-the-art results even with a small encoder such as

MobileNetv2.

9.2. Separable convolutions

Secondly, FastDepth also shows that separable convo-

lutions in their ”NNConv” decoder provides the best score-

efficiency trade-off. Since this approach is orthogonal to our

sparsification method, it therefore complements our method

and can be used to improve efficiency. Interestingly, we

show in Table 11 that replacing sparse convolutions with

sparse-depthwise separable convolutions works on par with

standard convolutions. This can be explained by the fact

that IDWT is also a separable operation, and therefore effi-

ciently combines with depthwise separable convolutions.

9.3. Channel pruning

A popular approach to complexity and memory footprint

reduction is channel pruning, which aims at removing some

of the unnecessary channel in convolutional layers. Note

that our wavelet enabled sparse convolutions are comple-

mentary with channel pruning, as can be seen in Figure 9.

While channel pruning can, in practice, greatly reduce both

complexity and memory footprint, it requires heavy hyper-

parameter search that we therefore choose to leave for fu-

ture work.

9.4. Input resolution

Finally, one important factor that makes FastDepth ef-

ficient is that it is trained with 224 × 224 inputs, against

C

H

W

(a)

C

H

W

(b)

Figure 9: Channel pruning (a) vs our sparse computation (b). Our

sparse computation enabled by wavelets is complimentary with the

channel pruning strategy to reduce the amount of computation, as

both computation reduction methods operate in orthogonal dimen-

sions.

our 640 × 480 input. While our method is best designed

for higher-resolution regime where sparsity of wavelets is

stronger, we still show that our method achieves decent re-

sults even at low-resolution, and report our scores in Ta-

ble 12.



Cit. Method PP Data H × W Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

[63] Depth Hints ✓ SSGM 192 × 640 0.106 0.780 4.695 0.193 0.875 0.958 0.980

WaveletMonodepth MobileNetv2 ✓ SSGM 192 × 640 0.109 0.851 4.754 0.194 0.870 0.957 0.980

WaveletMonodepth Resnet18 ✓ SSGM 192 × 640 0.107 0.829 4.693 0.193 0.873 0.957 0.980

WaveletMonodepth Resnet50 ✓ SSGM 192 × 640 0.105 0.813 4.625 0.191 0.879 0.959 0.981

[63] Depth Hints ✓ SSGM 320 × 1024 0.099 0.723 4.445 0.187 0.886 0.961 0.982

WaveletMonodepth MobileNetv2 ✓ SSGM 320 × 1024 0.104 0.772 4.545 0.188 0.880 0.960 0.982

WaveletMonodepth Resnet18 ✓ SSGM 320 × 1024 0.102 0.739 4.452 0.188 0.883 0.960 0.981

Depth Hints Resnet50 ✓ SSGM 320 × 1024 0.096 0.710 4.393 0.185 0.890 0.962 0.981

WaveletMonodepth Resnet50 ✓ SSGM 320 × 1024 0.097 0.718 4.387 0.184 0.891 0.962 0.982

Table 10: Quantitative results on the KITTI dataset using MobileNetv2 encoder. We evaluate results of our method using a lighter

encoder on KITTI [15], using the Eigen split. Data column (data source used for training): S is for self-supervised training on stereo

images, MS is for models trained with both M (forward and backward frames) and S data and SSGM refers to the extra stereo ground truth

which was used in [63].

Method Encoder Depthwise H ×W Abs Rel RMSE log10 δ1 δ2 δ3 ǫacc ǫcomp

Dense baseline DenseNet161 - 480 × 640 0.1277 0.5479 0.0539 0.8430 0.9681 0.9917 1.7170 7.0638

Ours DenseNet161 - 480 × 640 0.1258 0.5515 0.0542 0.8451 0.9681 0.9917 1.8070 7.1073

Ours DenseNet161 ✓ 480 × 640 0.1275 0.5771 0.0557 0.8364 0.9635 0.9897 2.0133 7.1903

Dense baseline MobileNetv2 - 480 × 640 0.1772 0.6638 0.0731 0.7419 0.9341 0.9835 1.8911 7.7960

Ours MobileNetv2 - 480 × 640 0.1727 0.6776 0.0732 0.7380 0.9362 0.9844 1.9732 7.9004

Ours MobileNetv2 ✓ 480 × 640 0.1734 0.6700 0.0731 0.7391 0.9347 0.9844 2.3036 8.0538

Table 11: Quantitative results on NYUv2 [58] using depth-wise convolutions and light-weight encoder We show that our method is

compatible with other efficiency seeking approaches such as depth-wise separable convolutions and lower complexity encoders.

Method Encoder Depthwise H ×W Abs Rel RMSE log10 δ1 δ2 δ3
Dense baseline DenseNet161 - 224 × 224 0.1278 0.5715 0.0557 0.8368 0.9620 0.9901

Ours DenseNet161 - 224 × 224 0.1279 0.5651 0.0549 0.8399 0.9652 0.9899

Ours DenseNet161 ✓ 224 × 224 0.1304 0.5775 0.0564 0.8329 0.9613 0.9892

Dense baseline MobileNetv2 - 224 × 224 0.1505 0.6221 0.0632 0.7984 0.9526 0.9878

Ours MobileNetv2 - 224 × 224 0.1530 0.6409 0.0655 0.7844 0.9500 0.9864

Ours MobileNetv2 ✓ 224 × 224 0.1491 0.6463 0.0646 0.7880 0.9506 0.9871

Table 12: Quantitative results on NYUv2 [58] using depth-wise convolutions and light-weight encoder We show that our method is

compatible with other efficiency seeking approaches such as depth-wise separable convolutions and lower complexity encoders.



RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 10: Qualitative results of predicted wavelets coefficients of depth maps on the NYU dataset (1/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.04. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].



RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 11: Qualitative results of predicted wavelets coefficients of depth maps on the NYU dataset (2/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.04. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].



RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 12: Qualitative results of predicted wavelets coefficients of depth maps on the NYU dataset (3/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.04. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].



RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 13: Qualitative results of predicted wavelets coefficients of depth maps on the KITTI dataset (1/3). Our predicted wavelets

have two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges

without needing to supervise them. Results are obtained with η = 0.05. For each block of results, each row shows coefficients and depth

maps obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the

Depth map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].



RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 14: Qualitative results of predicted wavelets coefficients of depth maps on the KITTI dataset (2/3). Our predicted wavelets

have two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges

without needing to supervise them. Results are obtained with η = 0.05. For each block of results, each row shows coefficients and depth

maps obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the

Depth map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].



RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 15: Qualitative results of predicted wavelets coefficients of depth maps on the KITTI dataset (3/3). Our predicted wavelets

have two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges

without needing to supervise them. Results are obtained with η = 0.05. For each block of results, each row shows coefficients and depth

maps obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the

Depth map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].


