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Abstract

In this paper we empirically analyze the importance of sparsifying represen-
tations for classification purposes. We focus on those obtained by convolving
images with linear filters, which can be either hand designed or learned, and
perform extensive experiments on two important Computer Vision problems,
image categorization and pixel classification. To this end, we adopt a simple
modular architecture that encompasses many recently proposed models.

The key outcome of our investigations is that enforcing sparsity con-
straints on features extracted in a convolutional architecture does not im-
prove classification performance, whereas it does so when redundancy is ar-
tificially introduced. This is very relevant for practical purposes, since it
implies that the expensive run-time optimization required to sparsify the
representation is not always justified, and therefore that computational costs
can be drastically reduced.
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1. Introduction

Sparse image representations are at the heart of many modern approaches
to classification, such as [1, 2, 3, 4]. Some neurophysiological evidence [5, 6]
supports their presence in the human visual cortex. Although this evidence
is still in dispute [7], the fact that sparsity constraints can be used to derive
filters exhibiting a structure very close to that of receptive fields in V1 [8, 9]
has played a major role in their widespread acceptance.

On a more practical note, the usefulness of sparsity for image processing
purposes is widely recognized [10, 11, 4] along with its suitability as a regu-
larizer for general inverse problems [12]. Part of the appeal of sparse repre-
sentations is that they are believed to be easily separable in high-dimensional
spaces [1, 13, 14]. They have also been successfully used for classification and
shown to improve performance in specific cases [15].

In this paper, we will show that the reported classification performance
increases [15] stem from the specific setup in which the experiments were
performed and that, under different experimental conditions, they do not
materialize. More specifically, we will demonstrate that in a shallow recog-
nition architecture and when using convolutional features [16, 17] that rely
on the now classic functional proposed by Olshausen and Field [9], no gain
arises from sparsifying the representations prior to classification. Similar or
better results are obtained by directly feeding the features to a classifier. In
this setup, sparsity remains key to learning effective features but becomes un-
necessary at run-time. By contrast, if we replace the convolutional features
by features derived from overlapping patches, which introduce additional re-
dundancy, run-time sparsity helps as reported in [15].

This analysis validates in a systematic manner casual observations about
convolutional architectures that appeared in the literature over the years [1,
18]. It also has important practical consequences since eliminating the run-
time sparsifying step can result in substantial computational savings and
markedly increase the size of the problems that can be handled. This is
because sparsifying remains computationally expensive, even though many
recent efforts [19, 20, 21], driven in part by the needs of the Compressed
Sensing community [22, 23], have produced efficient algorithms.

In this paper we operate in the context of two key Computer Vision tasks,
image categorization and pixel classification. While these two problems might
seem only loosely related, state-of-the-art solutions to both involve comput-
ing image descriptors either at given locations or densely, post-processing
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Figure 1: Our image categorization and pixel classification pipeline. Each module can be
changed independently to encompass different architectures proposed in literature. For
categorization purposes we use the whole pipeline while bypassing the nonlinearity and
pooling modules for pixel classification purposes.

them, and performing a final classification step.
This work extends the investigations performed in [16] by comparing our

results with related studies available in literature, in particular [15]. More-
over, the inclusion of the pixel classification task in our analysis allows us
to validate our claims in two different settings, thus helping us to discount
domain-specific biases.

Our investigation relies on the modular classification pipeline depicted
by Fig. 1, which is designed to encompass representative state-of-the-art
methods and to allow for comparisons. In the following section we briefly
review these methods. We then describe and analyze our experiments in the
fields of image categorization and pixel classification.

2. Related work

Sparsity constraints have featured many image modeling papers [13, 24,
25, 26, 27]. In fact, they pervade the modern Computer Vision and Pat-
tern Recognition literature, where they are used both as a means to tune
feature extractors to the statistics of the data, and as a feature encoding
scheme. A comprehensive review of the applications of sparsity is presented
in [4]. However, the authors’ claim that sparsity is helpful for classification is
supported by only few experiments in a very constrained, supervised or semi-
supervised setting, and not in an unsupervised one. A more systematic inves-
tigation on the different training and encoding schemes is reported in [15].
It analyzes different dictionary learning techniques and the corresponding
sparsity-promoting encoders, and concludes that the main benefit of sparse
coding lies in its nonlinear encoding scheme. The performance of sparse cod-
ing is, therefore, closely matched by simple soft-thresholding, except when
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very few training samples are used. Note that the conclusions of [15] de-
pend on the use of overlapping patches, while we propose a scheme that can
operate efficiently on whole images and avoids stitching artifacts. A similar
choice has been made, independently and concurrently, by [28, 29, 30, 31].
The use of overlapping patches introduces unwanted redundancies which, as
will be discussed below, explains some of the apparent discrepancies between
the outcome of the earlier study [15] and ours.

We now briefly review the relevant literature specific for the two tasks we
used to investigate our claims.

2.1. Image categorization architectures

Image categorization is a well-researched topic. A recent trend focuses
on the analysis of modular architectures, where each component is tuned
to improve the final performance [32, 26, 27]. In particular, the system
developed by Jarrett et al. [26] shares many similarities with ours. In their
work they show both the importance of using the absolute value as a nonlinear
operation between the feature extraction and the pooling stages depicted by
Fig. 1 and the power of stacking multiple layers. They do not, however,
present an evaluation of the effects of sparsity, as they just compare filters
learned under sparsity constraints with random filters.

The image categorization literature contains some works, such as [1, 33],
where sparse representations enforced at learning time but relaxed at test
time to improve performances. None of these works, however, systematically
investigates the issue. An interesting approach which avoids the sparsification
costs is proposed in [29, 26], where a regressor is trained to approximate the
sparse code that is obtained by the optimization process, but no formal
guarantees on the approximation error are given.

2.2. Pixel classification architectures

Tubular structures, such as blood vessels or dendritic arbors, are pervasive
in biological images and their modeling is critical for analysis purposes. Au-
tomated delineation techniques are thus key to exploiting the endless streams
of image data that modern imaging devices produce. Among them there is
a whole class of approaches, such as [34, 35, 36], that take as input image
segmentations in which pixels or voxels within linear structures are labeled
as one and others as zero. The better the initial segmentation, the more
effective these methods are. To generate them, most approaches start by
making strong assumptions on the shape of the corresponding signal. For
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example, assuming the intensity profile is U-Shaped, optimal steerable filters
for neurite tracing can be derived [37]. An even more widespread approach is
to rely on the Hessian matrix of the image and its eigenvalues [38, 39, 40, 41].
To detect filaments of various widths, a range of variances for the Gaussian
derivative filters must be used and compared. Other models use differen-
tial kernels [42], look for parallel edges [43], or fit superellipsoids to the
image [44, 45]. Of particular interest is the Optimally Oriented Flux Fil-
ter (OOF) [46], obtained by convolving the second derivatives of the image
with the indicator of a sphere, which is a steerable filter designed for detect-
ing ideal sharp ridges. Compared to Hessian-based detectors, the OOF is
simpler to normalize over scale and less sensitive to adjacent features of fila-
ments. Real linear structures, however, do not necessarily conform to these
ad hoc models, and this can drastically impact performance. As a result,
machine learning-based approaches that can learn complex appearances are
an attractive alternative. In [47], the distribution of the eigenvalues of the
structure tensor are estimated via Expectation Maximization. Probabilistic
Boosting Trees with sparse rotational features have also been demonstrated
for vessel segmentation purposes [48]. Support Vector Machines operating
on the Hessian’s eigenvalues have been used to discriminate between filament
and non-filament pixels [49].

In our own earlier work [50], we compute the responses of steerable filters
at every pixel and feed them to an SVM to classify pixels as filament-like
or not. Because the filters are separable, they can be implemented very effi-
ciently, which is critical when dealing with very large data volumes. However,
as we will see in the result section, they are less expressive than the ones we
derive here.

3. Image categorization

To properly discuss the influence of sparsity on recognition rates, we
rely on the shallow modular architecture of Fig. 1, which is very similar to
the ones used in recent works, such as [26, 51, 24, 32, 52]. In particular,
it can be considered as the first of a sequence of layers that constitute a
Deep Network architecture [53, 54]. These models recently gained relevance
for their effectiveness in solving multiple Computer Vision problems [55].
Understanding the behavior of a layer as we do in this paper is therefore
important for these promising approaches.
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In our architecture, after a pre-processing step, we extract features by
using filters that are either learned or handcrafted. These dense features
result from a simple convolution between the image and the filters, and their
sparsified version can be obtained using a sparse optimization procedure. The
usual modules of a biologically-inspired classification architecture, namely a
nonlinearization and a pooling step, follow.

We perform extensive experiments on the challenging CIFAR-10 dataset [56,
57], and we validate the resulting insights on the Caltech-101 dataset [58] for
which a thorough analysis would be prohibitively costly. Besides illumi-
nating the role played by sparsity in convolutional models, this methodical
exploration of the architecture and parameter spaces allows us to get useful
insights on the structure of an effective classification model.

We detail below the filter learning algorithms and the individual compo-
nents of our framework. We introduce acronyms for these different modules,
which we will use in our result tables. Finally, we describe the datasets we
use and the comparative results we obtain.

3.1. Learning the filters

Olshausen and Field [9] suggested that V1, the first layer of the visual
cortex, builds a sparse image representation. Under this assumption, and
the hypothesis that a perfect reconstruction is attainable, the problem one
would like to solve can be stated as

argmin
M,{ti}

∑

i

‖ti‖0 s.t. ∀i,Mti = xi, (1)

where xi are training images, ti are the corresponding feature vectors, and M

is a matrix whose columns form the dictionary. The ℓ0 norm formulation in
Eq. (1) is, however, non-convex, making the optimization very difficult. Even
more importantly, the perfect reconstruction premise is never satisfiable with
real images. The version proposed in [9] solves therefore a relaxed problem
that, under certain assumptions, converges to the true solution. In particular,
in many recent works such as [25, 26, 4], a dictionary of filters is learned by
optimizing the objective function

argmin
M,{ti}

∑

i

‖xi −Mti‖
2
2 + λlearn ‖ti‖1 , (2)

where the ℓ1 norm enforces sparsity on the ti vectors and has other desirable
properties that have been thoroughly investigated in the Compressed Sensing
literature [22, 23, 12, 20].
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Solving Eq. (2) yields a dictionary M such that the images xi can be
reconstructed from only a few columns of M by computing the product Mti.
The sparseness in the ti vectors is enforced by the last term. λlearn is a
regularization parameter that establishes the relative importance of the re-
construction error ‖xi −Mti‖

2
2 against the regularization term ‖ti‖1. To

prevent the algorithm from decreasing the ℓ1 norm of the coefficients by in-
creasing the magnitude of the filters, each column of M is normalized at
each optimization step [9]. Moreover, the dictionary is overcomplete: M has
more columns than rows, and this gives us the degrees of freedom we need
to choose a representation among all the possible ones. The resulting filter
bank contains many filters that differ just by a translation [59]. Note that
solving Eq. (2) for large images would be slow and difficult because many co-
efficients in M have to be optimized simultaneously. In earlier approaches it
was therefore done only for relatively small patches. In this work, to handle
whole images, we instead adopt a convolutional approach where the matrix-
vector product is replaced by a convolution. We will refer to it with the
acronym OLS in the remainder of the paper. An underlying assumption is
that local image properties are translation invariant, which seems reasonable.
As a side effect we get a strongly overcomplete representation, since all the
possible translations of the non-zero components of each filter are implicitly
taken into account. The optimization problem in Eq. (2) hence becomes

argmin
{f j},{tj

i
}

∑

i





∥

∥

∥

∥

∥

∥

xi −
∑

j

f j ∗ tji

∥

∥

∥

∥

∥

∥

2

2

+ λlearn

∑

j

∥

∥

∥t
j
i

∥

∥

∥

1



 , (3)

where the f js are linear filters and ∗ denotes the convolution operator. The
t
j
i s can now be seen as a set of images with the same size as the xi images,
whose cardinality is equal to that of the filter bank. Similar intermediate
representations have been called “feature maps” in the Convolutional Neu-
ral Networks literature [60]. The relationship between Eq. (2) and Eq. (3)
is readily understood by analyzing separately the two terms composing the
equations: Since the convolutions in Eq. (3) are linear transformations, they
could actually be written as a matrix-vector product of the form Mti, where
M would be an extremely large matrix, and ti a vector obtained concate-
nating the t

j
i feature maps together. The first terms of Eq. (2) and Eq. (3)

are therefore equivalent. The sum of the ℓ1-norm of the t
j
i maps is equal to

the ℓ1-norm of the corresponding ti vector. The second terms are therefore
equivalent as well.

The optimization problem of Eq. (3) is not convex, but the two sub-
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problems obtained by alternatively minimizing on the filters and on the fea-
ture maps, keeping the other variables fixed, are convex [61]. We there-
fore optimize on the feature maps using a proximal method [19] and on
the filters with Stochastic Gradient Descent [62]. Proximal methods al-
low to extend gradient descent techniques to some nonsmooth problems,
and in the case of ℓ1-norm regularization the corresponding proximal opera-
tor [19] used in the minimization is the soft-thresholding, whose expression
is proxλ(x) = sgn(x)max(|x| − λ, 0). The optimization on the feature maps
thus reduces to performing a step in the direction opposite to the gradient
of the ℓ2-regularized term, followed by a component-wise soft-thresholding
of the argument of the ℓ1-penalized term. This algorithm is also known in
literature as Iterative Thresholding [63].

The resulting filter banks learned on the CIFAR-10 and on the Caltech-
101 dataset are depicted by Fig. 2. While there is no guarantee that the
algorithm converges to a global optimum, the optimization consistently con-
verges from random initializations for a wide range of λlearn values. Never-
theless, the algorithm exhibits a strong sensitivity to the gradient descent
step size both for filters and coefficients; We manually tuned these step sizes.
Each filter in a filter bank being optimized independently from the others,
nothing prevents a subset of them becoming identical. However, in practice,
the large variety of structures present in the used datasets partially mitigates
this problem and we have observed that the presence of some replicated filters
does not severely affect the performance for image categorization purposes.
As we will discuss later, for pixel classification purposes replication is more
of a problem and we had to devise a strategy to prevent it.

3.2. Classification architecture

3.2.1. Pre-processing

We only use grayscale images and the first pre-processing step therefore
maps input color images into a grayscale representation in [−1, 1]. For con-
volution purposes, we replicate the image borders.

To speed up convergence, we found it helpful to whiten the data. Whiten-
ing also happens in the human visual system, where it is performed by the
Lateral Geniculate Nucleus [64]. As we will discuss later, we have observed
that whitening plays an important role in artificial classification systems too.
A whitening operator can be learned from the covariance matrixC of the orig-
inal data [64]. By applying an eigenvalue decomposition to C, C = EDE⊤,
a whitening matrix W can be computed as W = ED−1/2E⊤.
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(a) CIFAR-10 (b) Caltech-101 (c) Whitening

Figure 2: (a),(b) Some of the filter banks we have learned using the OLS algorithm
on the CIFAR-10 and Caltech-101 datasets. Filter values are normalized in [−1, 1]. (c)
Whitening filter learned from the data. To whiten arbitrarily sized images we pick the
filter in the middle of the filter bank and we convolve it with the images.

However, as in Eq. (2), this is not really practical for large images. For-
tunately, owing to the shift invariance of image statistics, W describes a per
pixel linear operation that is independent of translation, we can therefore
efficiently implement whitening as a convolution.

3.2.2. Feature extraction

We evaluate different types of filter banks for feature extraction. As
mentioned earlier, the abbreviations in parentheses are used to denote the
different possible modules:

• Filter banks made of filters learned as discussed in Section 3.1 (OLS ).
As the learning procedure depends on several parameters, many such
filter banks are possible.

• The Leung-Malik (LM ) filter bank [65].

• A filter bank constituted by randomly generated filters (RND), with
values sampled from N (0, 1).

These filters are used to extract features tj from an image x in two different
ways:

• Features computed by direct convolution (CONV ). The tjs result from
direct convolution with the filters, as

tj = f j ∗ x, ∀j. (4)
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• Sparse features with Iterative Thresholding (SPARSEIT ). The tjs,
initialized by direct convolution, are then sparsified using Iterative
Thresholding to solve

argmin
{tj}

∥

∥

∥

∥

∥

∥

x−
∑

j

f j ∗ tj

∥

∥

∥

∥

∥

∥

2

2

+ λextract

∑

j

∥

∥tj
∥

∥

1
. (5)

This optimization is the same as the one posed in Eq. (3) after fixing
the filters f j and considering only the given image. In this setting, the
problem we are solving is convex [61], and therefore the correctness of
the optimization scheme is easily verifiable. We consider a termination
condition for the algorithm based on the amount of variation in the
functional value between two subsequent steps.

3.2.3. Non-linearity

Before the pooling stage we apply a nonlinear transformation to the fea-
ture maps tj, as is usually done in multilayer architectures. This operation
gives a new set of feature maps uj. Again, we try different possibilities:

• Taking the absolute values of the coefficients of the tj vectors (ABS ).
The m-th coefficient uj[m] is simply taken to be: uj[m] = |tj[m]|. This
operation is identified as very effective in [26] for recognition perfor-
mance despite its simplicity.

• Separating the negative coefficients from the positive ones (POSNEG).
The values in tj are spread over u2j and u(2j+1) according to:

u2j [m] = [tj [m]]+,u(2j+1)[m] = [−tj [m]]+, (6)

where [x]+ = x if x > 0 and 0 otherwise. This operation doubles the
descriptor’s size.

3.2.4. Pooling

This stage pools the coefficients of the uj vectors to provide invariance
to small displacements and distortions. Having a pooling stage is advisable
for two reasons:

• From a biological perspective, the pooling stage corresponds to a com-
plex cells’ layer in Hubel and Wiesel’s model of the V1 cortex [66].
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The role of pooling is to enable a certain degree of invariance to mi-
nor pose and appearance changes. The importance of pooling layers is
also acknowledged by their employment in Convolutional Neural Net-
works [60].

• From a computational perspective, plain descriptors have a dimension-
ality which is too high for practical applications. The downsampling
step is therefore vital for subsequent operations.

We test three different pooling mechanisms found in literature:

• Gaussian pooling (GAUSS ). This is used in [67]: the ujs are first
convolved with a Gaussian filter, then downscaled by a factor that
is a multiple of 2.

• Average pooling (BOXCAR). This is similar to GAUSS, except that
we use a boxcar filter.

• Maximum value pooling (MAX ). We retain the maximum absolute
value in a given neighborhood. This is used for example in [24, 26],
and also evaluated in [27].

3.2.5. Classifiers

The final step is to apply a classifier to the unitary normalized vectors
obtained from the previous stages. We report results using two different
methods 1:

• Approximate Nearest Neighbor classification (NN ). It provides a direct
measure of the discriminative capabilities of the derived descriptor.

• Support Vector Machines (SVM ). They are commonly adopted in pipelines
similar to ours and usually achieve the best results 2. In particular, we
use an RBF-SVM, since theoretical results show that it is better than
a sigmoid-SVM [68]. Since we explore thoroughly the parameter space,
we do not need to explicitly consider a linear-SVM [69].

1We have also tried other classifiers: Feed-Forward Neural Networks, ensembles of
Classification Trees, and Naive Bayes classifiers. As they do not give better results than
SVM s, we do not report them.

2We performed our experiments with the LIBSVM library (http://www.csie.ntu.
edu.tw/~cjlin/libsvm).
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• Logistic Regression (LOG-REG). While having generally worse perfor-
mances than Support Vector Machines, it is very fast and can efficiently
operate on large feature vectors; These characteristics made it suitable
for our experiments with the Caltech-101 dataset. We have used the
implementation provided by the authors of [26].

3.3. Image categorization datasets

Solving the image categorization problem involves the derivation of a
mapping from the feature space to the label space, so as to assign to a
given input image the label of the corresponding category. Recent analysis
demonstrated the difficulties in the choice of a dataset that truly gauges the
capabilities of a classification system [70, 71]. We have opted for CIFAR-
10 [56, 57] as our reference dataset, because it avoids the pitfalls exposed
by [70], while at the same time the reduced dimensionality of its images
enabled us to perform extensive experimentations. We have then validated
our insights on the renowned Caltech-101 dataset [58], which is commonly
adopted in other works in the field.

3.3.1. CIFAR-10

The CIFAR-10 dataset is composed of 32×32 pixels images, yet it exhibits
a large variability in pose, appearance, scale, and background composition,
making it an ideal test case. Despite the low resolution of the input images,
the feature maps after pooling vj are very large, and therefore a dimen-
sionality reduction step before classification is desirable. We investigate the
following methods:

• No dimensionality reduction (NONE ).

• Principal Component Analysis (PCA).

• Local Discriminant Embedding (LDE ) [72]. We use a power regulariza-
tion fixing the signal to noise ratio to 15% as was done in the original
paper since it was performing well in our experiments.

• Random Projections (RP). We try random projections because they
can be applied to sparse signals with limited information loss. [23].

In both the PCA and the LDE case we normalize the feature maps to unit
norm after the projection, as this is deemed to give significant improvements
on the final result [72]. To choose the best size of the eigenspace we perform
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for each specific configuration an extensive cross-validation for all dimensions
in a range d = {8, 10, . . . , 256}, and we select the value that scores best in
an Approximate Nearest Neighbor classification. The dimensionality of the
eigenspace, as selected by the procedure above, usually ranges between 20
and 70. To perform more extensive experimentations, we first downsample
the dataset to 16× 16 pixels and identify the various trade-offs and the best
components of the pipeline. Once the most effective choices are determined,
we validate the resulting architectures on the original 32× 32 images.

3.3.2. Caltech-101

We perform additional experiments using the Caltech-101 dataset, which
is widely acknowledged as a reference dataset in the Computer Vision com-
munity, and has been used in the related works [26, 28]. We have adopted the
same testing methodology of [26]; At first, we have learned, on the grayscale
Caltech-101 images resized to 151×151 pixels, the filter bank composed by 64
9×9 filters depicted by Fig. 2(b). We then extracted the features, eventually
imposing sparsity via SPARSEIT, followed by rectification using the ABS

function, and boxcar pooling with a 10× 10 filtering and a 5× downscaling.
The resulting features are passed to the logistic regression classifier provided
by the authors of [26], as their high-dimensionality makes them unsuitable
for SVM classification. Our approach corresponds therefore to the 64.F 9×9

CSG
-

Rabs-PA-log reg architecture of [26]. Experiments have been performed with
30 training and 30 test images, with a fixed choice of the images in both sets
across the different experiments.

3.4. Results and discussion

Our first experiment aims at evaluating the influence of the way the fea-
tures are extracted on the recognition rate. Fig. 3 reports the results of our
classification pipeline for different filter banks and different feature extraction
methods. For the experiment in this section we use either 49 (OLS,RND)
or 48 (LM ) 11 × 11 filters. The other components of the model are set to
POSNEG, GAUSS, PCA, SVM, which is one of the best combinations we
have found 3.

As shown in Fig. 3 the key experimental result is that performing simple
convolutions (CONV ) at detection-time works just as well as enforcing spar-

3For more results, as well as for details on the parameters, please refer to the supple-
mental material.
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CIFAR-10

Caltech-101

Figure 3: (Top) Classification results on the CIFAR-10 dataset. Straight markerless lines
depict the results obtained using simple convolutions (CONV ) while the other curves
represent recognition rates as a function of λextract, when enforcing sparsity (SPARSEIT )
at detection-time. Red curves corresponds to results obtained using filters learned under
sparsity constraints with λlearn = 2, green to handcrafted ones, and blue to random ones.
Note that the red curves and lines are above the others and very close to each other for low
values of λextract. By contrast, for high values of λextract the performance drops abruptly.
The same behavior can be observed for the green and blue curves. (Bottom) Classification
results obtained on the Caltech-101 dataset with a logistic regression classifier. The filters
were obtained under sparsity constraints with λlearn = 0.02.
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(a) (b)

Figure 4: (a) Analysis of the effects of whitening with an handcrafted filter bank (the
Leung-Malik filter bank) on the CIFAR-10 dataset. (b) Sparsity of the descriptor, mea-
sured as the fraction of zeroes in the representation, before and after Gaussian pooling.
After pooling, sparsity is completely lost.

sity (SPARSEIT ), no matter how the filters were derived in the first place.
Furthermore, imposing too much sparsity by increasing the λextract parame-
ter eventually results in a severe performance loss. To prevent this loss, the
λextract used for SPARSEIT must be much smaller than the λlearn used to
learn the filter bank, as also noted in [33].

By contrast, enforcing sparsity at learning time is very useful, as evi-
denced by the fact that filters learned in this way perform better than hand-
crafted or random ones.

To investigate further when sparsity can be useful, we ran the same ex-
periments on images from the CIFAR-10 dataset after corruption by noise.
The most significant results are reported in Tab. 1. We experiment with both
Gaussian and structured noise, where the latter consists of randomly gener-
ated lines superimposed to the images (see Fig. 5). In all these experiments,
we worked with the original 32 × 32 images of CIFAR-10, in order to avoid
that the signal is prevailed by the noise. SPARSEIT performs well in pres-
ence of strong Gaussian noise, but it does not help for structured noise, as it
focuses its efforts around the noisy area skipping the parts of the images that
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Table 1: Classification rates on the noisy CIFAR-10 dataset for different feature extraction
methods, using learned filters and a SVM as a classifier

Method λextract ‖t‖
0

Rec. Rate [%]

small Gaussian noise (σ = 0.01)

CONV 1.00 69.44
SPARSEIT 0.0001 0.83 68.66
SPARSEIT 0.0005 0.58 67.07
SPARSEIT 0.001 0.43 64.54
SPARSEIT 0.005 0.11 54.37

strong Gaussian noise (σ = 0.14)

CONV 1.00 60.30
SPARSEIT 0.0001 0.88 61.89
SPARSEIT 0.0005 0.69 63.54
SPARSEIT 0.001 0.55 63.28
SPARSEIT 0.005 0.17 59.94

small structured noise (1 random line)

CONV 1.00 48.53
SPARSEIT 0.0005 0.51 47.00
SPARSEIT 0.005 0.09 31.75

strong structured noise (1 to 3 random lines)

CONV 1.00 35.20
SPARSEIT 0.0005 0.49 33.51
SPARSEIT 0.005 0.09 15.08

convey discriminative information. This is reasonable, as the sparse coding
equations in [9] were derived under a Gaussian prior on the noise. Since the
original images of the dataset are mostly noise free, the denoising capabil-
ities of sparsity are a property unexploited when evaluating categorization
algorithms on these benchmarks.

Individual choices for the different pipeline components bear a strong
influence on the final outcome. In Tab. 2 the classification rates for dif-
ferent pooling/subspace projection methods are reported, and it can be seen
that Gaussian pooling outperforms the highly acclaimed MAX pooling strat-
egy [27]. Tab. 3 evaluates the two nonlinearities, namely POSNEG and ABS,
for the different choices of the subspace projections and with both learned
and handcrafted filters. POSNEG scores consistently better than ABS. In
Fig. 4(a), we compare the performance of handcrafted filters applied to im-
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(a) (b) (c) (d) (e)

Figure 5: Examples from the noisy version of the CIFAR-10 dataset. (a) Original, noise
free image. (b) Image corrupted by small Gaussian noise. (c) Image corrupted by strong
Gaussian noise. (d) Image corrupted by small structured noise. (e) Image corrupted by
strong structured noise.

Table 2: Comparison between pooling strategies for different subspace projections, (OLS-
CONV-POSNEG-*-*-SVM ), CIFAR-10 dataset

Method Rec. Rate [%]

PCA LDE RP256

GAUSS 67.16 67.13 66.07
MAX 62.62 61.91 59.92
BOXCAR 63.33 63.33 61.33

ages with and without whitening. Since the convolution operator is commu-
tative, applying whitening to an image and then convolving it with a filter
bank is equivalent to applying whitening to the filters and then convolving
them with the original image. From the graph it can be deduced that there
is a huge gap, more than 10%, between the two results. The performance
of the Leung-Malik filter bank without whitening is below that of random
filters with whitening. These structural insights have been confirmed in two
recent papers, namely Coates et al. [52] for what concerns the importance
of the architecture and of the whitening step, and Saxe et al. [73] for the
amazing performance of random filters.

In all of our experiments and irrespective of the chosen feature extrac-
tion and pooling strategies the results after pooling are dense, as shown in
Fig. 4(b) for Gaussian pooling. We have observed a similar behavior with
MAX pooling, despite its alleged sparsity-preserving properties. This sug-
gests that, in architectures that employ pooling stages, sparsity is a tempo-
rary condition only.

Despite its simplicity, our best architecture performs well on the CIFAR-
10 dataset, yielding a 75.18% classification rate (average over 5 random
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Table 3: Comparison between the tested subspace projections, for both learned and hand-
crafted filter banks, and for both POSNEG and ABS (*-CONV-*-GAUSS-*-SVM ). PCA
and LDE perform equally well in our experiments

Method Rec. Rate [%]

OLS LM

POSNEG ABS POSNEG ABS

PCA 67.16 63.17 66.18 62.83
LDE 67.13 63.62 66.34 62.93
RP256 66.07 62.93 64.10 61.26

dataset splits, with standard deviation 0.27%) by using grayscale images only,
whereas competing methods also use color information. On the Caltech-101
dataset, however, the performance are well below the state-of-the-art results
of [74], which achieves an exceptional 84.3%. Nonetheless, the architecture
we propose is not aimed at achieving high classification scores by exploit-
ing, for instance, prior knowledge about the image content, but at studying
systematically a property of feature descriptors. Similar architectures that
were developed with the same goal in mind, such as that of [26], achieve
comparable classification rates.

3.5. Comparison with patch-based architectures

Traditional, sparsity-based image categorization architectures operate on
small overlapping image patches extracted on a regular grid. This is mostly
an heritage of the original optimization scheme for obtaining sparse repre-
sentations proposed by Olshausen and Field [9]. Recently, this approach has
been subject to an accurate analysis where different training and encoding
schemes have been chained and the resulting combinations evaluated in terms
of their recognition capabilities [15].

At first sight, its conclusions appear to contradict ours. In particu-
lar, while soft-thresholding performs comparably with sparse coding most
of the times, some form of sparsification in the encoding is always required
to achieve good performance. Also, using an architecture strongly resembling
ours but using just a linear SVM classifier, they obtain a classification rate
of over 80% on the CIFAR-10 dataset.

Starting with the publicly available source code, we first validated these
insights by observing that, with default parameters – 1600 filters with size
6 × 6, linear SVM classifier – setting to zero the threshold parameter α in
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the soft-thresholding encoding, which corresponds to CONV-POSNEG in
our architecture, negatively affects the performances, moving from 78.18%
when α = 0.25 to 75.80% when α = 0. We then investigated the apparent
discrepancy between our findings.

An obvious difference is that we operate on grayscale images instead of
color ones. While color information is mostly redundant, it still has an impact
on the classification rate. Simply converting the images to grayscale makes
the results drop from 78.18% to 74.08%. Please note that the same reason-
ing applies in the comparison between our architecture and other color-based
machine learning architectures which have been specifically tuned to operate
on the CIFAR-10 dataset, such as the factorized third-order Boltzmann Ma-
chine proposed in [75] or the improved version of the 2009 PASCAL image
classification challenge winning system presented in [76].

A more subtle difference concerns the feature extraction process. In [15]
filters are applied on patches extracted on a regular grid with a stride of one,
while we apply our filters convolutionally. In a convolutional architecture
all the extracted coefficients contribute to the reconstruction of the input
image, and the learned filters account for this. The resulting redundancy is
therefore lower compared to using overlapping patches [29], as altering even a
single coefficient stymies the final image reconstruction. An approach which
exhibits the same characteristics but in a patch-wise setting has to constrain
the patches to be non-overlapping.

To verify how the extraction procedure affects the final score, we have
analyzed the classification rate for different degrees of sparsity imposed by
soft-thresholding the coefficients computed on both overlapping and distinct
patches. We have then compared these results with those obtained by plug-
ging the feature maps computed by the extraction step of our convolutional
architecture in the same code. The results are reported in Tab. 4.

As can be observed, the basic architecture of [15] benefits from a soft-
thresholding of its features when the source image patches are extracted in
an overlapping way (Tab. 4(a)). This is also true when the patches are
distinct, but color information is used (Tab. 4(b)). Note that the number of
filters in the color case has been divided by three, to account for the difference
in size of the descriptors compared with the grayscale case. However, when
either grayscale non-overlapping patches, convolutional extraction, or very
few filters are considered (Tab. 4(b-e)), sparsely-encoded features do not
perform better than non-thresholded ones. When just 500 training samples
per category are considered (Tab. 4(f)), if the same number of filters as in

19



Tab. 4(b) is considered, sparse encoding is again relevant. The same applies
when fewer filters are used.

These results suggest that, when redundant information is introduced in
the feature extraction step, an encoding which removes feeble components
and therefore promotes sparsity has to be preferred. However, when this
redundancy is absent, experimental results do not support the sparsification.
Moreover, by comparing the results in Tab. 4(c-d), for a given number of
filters and total operations, convolutional feature extraction appears to per-
form better than schemes based on overlapping patches, at least when linear
SVMs — which give a significantly better result than Nearest Neighbor clas-
sification – are used as classifiers. Finally, a feature extraction scheme based
overlapping patches scores much better than one based on distinct patches
for a fixed descriptor size.

4. Pixel classification

Starting with [77], pixel classification has become a popular way to ad-
dress the image segmentation problem. A particular case of segmentation
is represented by the extraction of extended linear structures, such as those
present in the images of Fig. 6. In this case the image is not subdivided into
regions, but the elements of interest are enhanced with respect to a back-
ground. It is therefore natural to interpret each pixel as either belonging to
the target structure or not, and it makes sense to express class membership
in probabilistic terms.

We explore here the classification of pixels as belonging or not to extended
linear structures such as those of Fig. 6, in the same spirit of [77, 50]. The
target structures appear at many different scales and in many different con-
texts, such as micrometer scale dendrites in light microscopy image-stacks,
millimeter-scale blood vessels in retinal scans, or meter-scale road networks
in aerial images, and are of fundamental importance in many applications.
To this end, we use a simplified version of the shallow modular architecture of
Fig. 1. It forgoes the whitening and the pooling steps, as we have empirically
found them to negatively affect the classification score. Our interpretation is
that whitening removes important information from the data by eroding the
vessels’ profiles, while pooling drops their localization and erases the thin-
ner ones. Nonlinearization has been removed as well, since the absence of a
pooling step made it unnecessary.
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As in the previous section, we detail below the filter learning algorithms
and the individual components of our framework, describe the datasets we
use, and the comparative results we obtain.

4.1. Learning the filters

We first tried using the unsupervised filter learning algorithm of Sec-
tion 3. As discussed, one key weakness of this formulation is that, even
though the filter replication due to translations is avoided, nothing prevents
two filters from independently converging to an identical solution. This is
usually caused by strong gradients, which dominate the reconstruction error
term. This is particularly true in images containing neat, curvilinear pro-
files, such as those of Fig. 6. While the regularization term pushes for an
economical representation, the regularization parameter λlearn cannot make
the sparsity penalty prevail over the reconstruction error without trivial fil-
ters appearing. Furthermore, the ℓ1 regularizer penalizes similarly all cases
where a certain amount of energy is equally split among similar filters. In
fact, this is the main difficulty in using the ℓ1 norm in place of the ℓ0 norm
for sparsity promotion. The precondition requiring the original image to be
truly sparse, which is requested for the solutions obtained by the two norms
to be equivalent [22, 23], is indeed generally satisfied by natural images [9].
We therefore introduce an additional term in the objective function of Eq. (3)
that penalizes filters that are too similar, where the similarity is expressed
in terms of the squared dot product. We look for
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Even though this does not completely prevent replication, it makes it
much rarer. A related approach has been independently proposed in [78].
Fig. 7 depicts the filter banks learned on the three datasets of Fig. 6. Un-
surprisingly, the resulting shapes match the structures present in each image
type, i.e., curvilinear profiles with ridges for the DRIVE dataset, pointwise
structures for the noisy neurons images, and straight, parallel elements for
the more geometrically defined roads dataset.

4.2. Pixel classification datasets

We used three very different datasets.
The first one is the publicly available DRIVE dataset of retinal images,

where the aim is to automatically segment blood vessels [79]. It is composed
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of 40 RGB-formatted retinal scans, which were originally obtained for the
diagnosis of diabetic retinopathy. In our experiments we used only the green
channel, since it has been shown to give the highest contrast between back-
ground and vessels [80]. Fig. 6(a) shows an example retinal scan from this
dataset. The images typically have a uniform background with the vessels
appearing as dark linear structures. We use segmentations of the underly-
ing vasculatures provided by expert ophthalmologists as ground truth for
performing our evaluations.

The second dataset is made of minimum intensity projections of bright-
field micrographs, such as that of Fig. 6(b), paired up with annotations
made by a human expert. The bright-field micrographs are obtained from
biocityne-dyed rat neurons. Due to irregularities in the staining process, they
contain both structured and unstructured noise that is difficult to distinguish
from the dendrites. Also, the minimum intensity projection of points from a
3D stack to a 2D image introduces a significative noise component.

The third dataset is made of aerial images, such as the one of Fig. 6(c),
which contain road networks of a residential area in the United States. Seg-
menting streets from these images is a challenging task as they are often
occluded by trees along roadsides and medians. Furthermore the image in-
tensities of the streets vary according to the quality of the asphalt, and the
background is cluttered with many complex structures that can be mistaken
for roads such as houses, swimming pools, and parking lots. We manually
annotated the streets and used these annotations as ground truth for both
training and testing.

4.3. Experimental setup

We manually delineated the centerlines of the training images to distin-
guish between the target linear structures and the background in the super-
vised training phase. In total we traced 8 training images for the DRIVE
dataset and 1 high-resolution image for both the neurons and the roads
dataset. Please note that these delineations are only used at training time for
the acquisition of training samples. No such tracing is therefore required for
the test images. We collected potentially ambiguous negative instances by
randomly sampling points within a short distance from the traced centerlines.
These examples constitute half of the negative samples, and the other half
was also randomly selected from the rest of the background. The same train-
ing methodology has been utilized in [50], and therefore the results can be
quantitatively compared. To account for contrast and brightness variations
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across different images we rescale pixel intensity values using a zero-mean
unit-variance normalization. For each sample in the dataset we then com-
pute a feature vector by convolving the learned filters with the normalized
images. These feature vectors are used to train classifiers at training time
and to obtain classification scores at test time. In this paper we use Support
Vector Machines as baseline classifiers.

4.4. Results and discussion

We compare our results against the very widely used Hessian-based tech-
nique of [39], the Oriented Flux Filter of [46], and our earlier supervised
learning approach [50] that relies on steerable filters instead of the learned
filters presented here. We use multiscale implementations for all the compet-
ing methods and compare their output to that of our filter banks learned at
a single scale.

Fig. 8 summarizes the results on our three datasets by using Precision/Recall
curves, while the corresponding F-measure values are reported in Tab. 5. Our
method consistently scores better than our three baselines. As a final remark,
the non-monotonic shape of some curves in Fig. 8 can be explained by strong
responses due to the high contrast present in some areas, such as the image
boundaries or, for the DRIVE dataset case, the optical disc, as discussed
in [81].

While the performance of a classifier on a given dataset is readily es-
tablished by computing the number of successfully classified items, no such
measure exist for the pixel classification task. For this reason we include in
Tab. 5 the Area Under Curve (AUC) and two analytic measures of segmen-
tation quality, namely the Variation of Information (VI) [82] and the Rand
Index (RI) [83]. Both the VI and the RI require a thresholded image, and we
automatically pick the best threshold identified by the F-measure. The re-
sults are consistent with the Precision/Recall curves. More extensive results,
including the ROC curves corresponding to the Precision/Recall curves of
Fig. 8, are included in the appendices.

The method in [50] uses a richer vocabulary of filters than those of [39,
46], which can account for irregularities in the data. Nonetheless, these
filters being weighted sums of Gaussians and Gaussian derivatives, they only
have limited expressive power. Our filters are learned on the data itself and
they are therefore more expressive, especially for non-standard profiles which
cannot be reliably detected by methods such as [39]. The main drawback of
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our filters, compared with steerable ones, is that they can adapt to the data
only at the cost of losing the separability of the Gaussian filters.

In Fig. 8, note the good performance of random filters in both the neurons
and the roads datasets. This result can be easily explained by the fact that
both datasets are heavily corrupted by noise, up to a point that even the
human segmentation presents gross mistakes. The SVM is at ease with the
representation provided by the random filters of such images, which is a sort
of Compressively Sensed representation of them, while it gets confused by the
unstable representation obtained when, for example, the smooth Gaussianly
shaped filters adopted by [50] are fitted to the given data. A visual inspection
of the resulting pixel classifications reveals that the profiles extracted by
random filters are not as sharply defined as those obtained by learned filters
or rotational features (see Fig. 9). Also, the performance of random filters
drops quickly as the number of filters decreases.

Using the result obtained with learned filters as a baseline, we investigate
whether our approach to learning the filters can also be used to optimize
the feature maps as was done for the image categorization task. We there-
fore compare the classification scores for the plain convolution case against
those achieved by the Iterative Thresholding algorithm for different levels of
sparsity by solving the minimization problem of Eq. (5). Since the results
of the learning-based approaches depend on the samples collected during the
supervised training, we fix these points to provide a fair comparison. The
most significant results are reported in Fig. 8(d), and they show that feature
vectors computed by convolution perform better than the ones computed
from sparsified feature maps.

5. Conclusion

We performed an in-depth analysis of the role of sparsity for image cat-
egorization and pixel classification. The consistency of our results for these
two very different tasks suggests that sparsity is essential to learn effective
filter banks at training time but that enforcing it at run-time is not partic-
ularly useful in convolutional architectures, at least when the level of noise
remains reasonable. On the other hand, sparsity turns out to be important
when redundancy is either introduced (e.g., by extracting features on over-
lapping patches) or already present in the data (e.g., by considering strongly
correlated image channels). Given the high computational burden involved

24



in the enforcement of sparsity, these findings should be taken into account
when building actual recognition systems designed to work on large images.

One weakness of our approach is that, since the filters are not separable,
the convolutions are difficult to compute very efficiently, and generalizing
this approach to cubes of data as opposed to images as in [50] would be
prohibitively expensive. Future work will therefore focus on optimizing the
filters so that this difficulty can be overcome.

References

[1] M. A. Ranzato, F. Huang, Y.-L. Boureau, Y. LeCun, Unsupervised
Learning of Invariant Feature Hierarchies with Applications to Object
Recognition, in: IEEE Conf. on Comput. Vis. and Pattern Recogn.
2007.

[2] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning:
Transfer Learning from Unlabeled Data, in: Int. Conf. on Mach. Learn.
2007.

[3] J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Match-
ing Using Sparse Coding for Image Classification, in: IEEE Conf. on
Comput. Vis. and Pattern Recogn. 2009.

[4] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, S. Yan, Sparse
Representation for Computer Vision and Pattern Recognition, IEEE
2010.

[5] R. Baddeley, L. F. Abbott, M. C. Booth, F. Sengpiel, T. Freeman, E. A.
Wakeman, E. T. Rolls, Responses of neurons in primary and inferior
temporal visual cortices to natural scenes, Proc. R. Soc. Lond. [Biol.]
1997.

[6] W. E. Vinje, J. L. Gallant, Sparse Coding and Decorrelation in Primary
Visual Cortex During Natural Vision, Science 2000.

[7] P. Berkes, B. L. White, J. Fiser, No evidence for active sparsification in
the visual cortex, in: Adv. Neural Inf. Process. Syst. 2009.

[8] B. A. Olshausen, D. J. Field, Emergence of simple-cell receptive field
properties by learning a sparse code for natural images, Nature 1996.

25



[9] B. A. Olshausen, D. J. Field, Sparse Coding with an Overcomplete Basis
Set: A Strategy Employed by V1?, Vision Res. 1997.

[10] M. Elad, M. Figueiredo, Y. Ma, On the Role of Sparse and Redundant
Representations in Image Processing, IEEE 2010.

[11] J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local Sparse
Models for Image Restoration, in: Int. Conf. on Comput. Vis. 2009.

[12] J.-L. Starck, M. J. Fadili, An Overview of Inverse Problem Regulariza-
tion using Sparsity, in: Int. Conf. on Image Processing. 2009.

[13] M. A. Ranzato, C. Poultney, S. Chopra, Y. LeCun, Efficient Learning of
Sparse Representations with an Energy-Based Model, in: Adv. Neural
Inf. Process. Syst. 2006.

[14] X. Glorot, A. Bordes, Y. Bengio, Deep Sparse Rectifier Neural Networks,
J. Mach. Learn. Res. 2011.

[15] A. Coates, A. Y. Ng, The Importance of Encoding Versus Training with
Sparse Coding and Vector Quantization, in: Int. Conf. on Mach. Learn.
2011.

[16] R. Rigamonti, M. Brown, V. Lepetit, Are Sparse Representations Really
Relevant for Image Classification?, in: IEEE Conf. on Comput. Vis. and
Pattern Recogn. 2011.
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[79] J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, B. van Gin-
neken, Ridge-Based Vessel Segmentation in Color Images of the Retina,
IEEE Trans. Med. Imag. 2004.

[80] M. Patasius, V. Marozas, D. Jegelevicius, A. Lukoševičius, Ranking
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(a) DRIVE dataset (b) Neurons dataset

(c) Roads dataset

Figure 6: Sample images from the DRIVE dataset (a), the neurons dataset (b), and the
roads dataset (c). The red square in (b) outlines the difficulty of the dendritic images
by showing the point-wise nature of the target structures, which can be easily confused
with the superimposed noise or with segments from the adjacent layers in the image stack.
Stitching artifacts due to the imaging process are also present in the image.
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(a) (b) (c)

Figure 7: Examples of filter banks learned, in an unsupervised way, on the DRIVE dataset
(a), the neurons dataset (b), and the roads dataset (c). The filters are ordered according
to the ℓ2 norm of their responses on a test image.
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(a) DRIVE, P/R curve (b) Neurons, P/R curve

(c) Roads, P/R curve (d) Different refinements

Figure 8: Precision/Recall curves for some images of the used datasets. (a): Image 19 of
the DRIVE dataset. Our method outperforms those presented in [39, 50, 46], and according
to the Precision/Recall curves it provides a pixel classification comparable with that of the
second human expert. This point is validated also by the numerical evaluations presented
in Tab. 5. (b): Neurons dataset. Our method clearly outperforms the results of [39, 50, 46].
Learning a classifier improves the results, but learning both the filter bank and the classifier
yields the best classification. Please note the astonishing performance of the random filters
on this particular dataset. (c): Roads dataset. This dataset is the most challenging one
and, as expected, yields the lowest scores. Our method markedly outperforms [39, 50, 46].
Again, random filters perform better than those methods that assume the presence of neat
and highly structured components in the image. (d): Precision/Recall curves reporting
the classification performances on the image 19 of the DRIVE dataset for different degrees
of sparsity of the representation (classifier SVM, 2500 positive and 2500 negative samples).
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Table 5: Analytic measures of the quality of the pixel classification for the experiments
presented in Fig. 8. Both the VI and the RI are computed on the classification thresholded
at the value found using the F-measure. Please note that VI assumes values in [ 0, ∞), the
lower the better, and RI assumes values in [0, 1], the higher the better. Learned filters with
SVM consistently score better than the competing methods in terms of AUC, F-measure,
VI, and RI

Method AUC F-measure VI RI

DRIVE, image 19

Ground truth 0.8301 0.4780 0.9099
Frangi 0.9311 0.7326 0.5890 0.8810
Oriented Flux Filter 0.9663 0.8106 0.4887 0.9098
Random filters, SVM 0.9364 0.6938 0.6759 0.8585
Rotational features,SVM 0.9581 0.7907 0.5347 0.8986
Learned filters,SVM 0.9717 0.8419 0.4269 0.9245

Neurons

Frangi 0.9385 0.6855 0.3792 0.9261
Oriented Flux Filter 0.9561 0.6684 0.3987 0.9208
Random filters, SVM 0.9782 0.7371 0.3337 0.9381
Rotational features, SVM 0.9467 0.7070 0.3606 0.9311
Learned filters, SVM 0.9742 0.7503 0.3217 0.9411

Roads

Frangi 0.6710 0.2414 1.2501 0.6085
Oriented Flux Filter 0.6286 0.2159 1.4278 0.5120
Random filters, SVM 0.7554 0.3731 0.8686 0.7737
Rotational features, SVM 0.7416 0.3378 0.9848 0.7299
Learned filters, SVM 0.7715 0.3939 0.8178 0.7917
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(a) Original image (b) Rotational features

(c) Random filters (d) Learned filters

Figure 9: Detail of the pixel classification of an image in the neurons dataset. (a) Segment
of the original image. (b) Classification provided by rotational features. (c) Classification
provided by random filters. Please note how the contours of the dendrites are not as
sharply defined as the other two cases. (d) Classification provided by learned filters.
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