
Are Sparse Representations Really Relevant for Image Classification ? ∗

Roberto Rigamonti, Matthew A. Brown, Vincent Lepetit

CVLab, EPFL

Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract

Recent years have seen an increasing interest in sparse

representations for image classification and object recog-

nition, probably motivated by evidence from the analysis

of the primate visual cortex. It is still unclear, however,

whether or not sparsity helps classification. In this pa-

per we evaluate its impact on the recognition rate using a

shallow modular architecture, adopting both standard fil-

ter banks and filter banks learned in an unsupervised way.

In our experiments on the CIFAR-10 and on the Caltech-

101 datasets, enforcing sparsity constraints actually does

not improve recognition performance. This has an impor-

tant practical impact in image descriptor design, as enforc-

ing these constraints can have a heavy computational cost.

1. Introduction

Inspired by work from the neuroscience community [24,

33], there has been increasing interest in computer vision al-

gorithms that rely on sparse image representations [28, 23,

35, 37, 2, 34]. The effectiveness of sparse coding from a

generative point of view, for image restoration for exam-

ple [23], is justified by observing that natural images repre-

sent only a tiny part of the image space.

While sparse representations have been regarded as more

likely to be separable in high-dimensional spaces [29], and

therefore suitable for classification, it is still not clear if they

are actually needed for recognition tasks. To the best of our

knowledge, there is no empirical study showing that sparse

representations improve recognition performance compared

to non-sparse ones.

Understanding if sparse representations are really rele-

vant for image classification is not only interesting from a

theoretical point of view, but also from a practical stance.

Their computation typically requires solving either an NP-

∗This work has been supported in part by the Swiss National Science

Foundation.

pre-processing

classification
category

label

[sparse] feature extraction ...

non-linearity ...

pooling ...

Figure 1: Architectural model of the classification pipeline.

On the right side, the evolution of the internal representation

is depicted for a sample truck image taken from the CIFAR-

10 dataset [14].

hard problem or an alternative problem that still involves a

costly iterative optimisation [6].

In this paper we aim to evaluate the actual importance

of sparsity in image classification, by performing an exten-

sive empirical evaluation and adopting the recognition rate

as a criterion. Using the biologically-inspired modular ar-

chitecture represented in Fig. 1 and closely related to the

ones used in [21, 30, 12, 4], we assess the relevance that

this property has when both handcrafted and learned filter

banks are used in the feature extraction stage.

We experimented on the very challenging CIFAR-10

dataset [32, 14], made of 32× 32 images of objects belong-

ing to 10 different categories, and on the more commonly

used Caltech-101 dataset [7]. The results of our experi-

ments advocate that no advantage is gained by imposing

sparsity at run-time, at least when this sparsity is not tai-

lored in a discriminative fashion. The expensive optimiza-

tion procedure can therefore be replaced by simple convo-

lutions without affecting the recognition rate.

Even though the main point of our study was not getting

a high classification rate per se, our best setup found after

extensive experiments obtains results that are comparable

to the state-of-the-art on the CIFAR-10 dataset, but using

grayscale images in place of the colour ones exploited by

the competing approaches [27, 36, 15].

2. Related Work

Imposing sparsity constraints has recently become pop-

ular in computer vision, especially for image classification

tasks. This is probably due to evidence for sparse represen-

tations in the mammal brain, and because simple algorithms

based on such constraints can reproduce linear filters simi-

lar to receptive fields observed in V1, the first layer of the

visual cortex [24, 29]. These approaches are also attractive

because they require only unlabeled data, which are much

simpler to produce than labeled data.

As a result, such algorithms have been used to extract

features that are assumed to be relevant for classification

tasks [26, 12, 34]. Sparsity is also convenient to constrain

over-complete linear representations.

Sparse coding can be interpreted as learning the input

data distribution with a sparse prior [24]. Deep Belief Net-

works (DBNs) have been used to learn the data distribution

and extract features in an unsupervised way [8], and [18]

showed that sparsity constraints are useful to make them

converge on natural images toward filters that closely re-

semble their biological counterparts.

Despite their popularity and to the best of our knowl-

edge, sparsity constraints have not really been evaluated

in terms of classification performance. Is it really impor-

tant to adopt a sparse representation to learn how to extract

good features? Is it important to enforce sparsity constraints

when extracting the features at run-time, even though it can

be costly?

Very recently, [12] developed an architecture very close

to ours. They showed the importance of taking the abso-

lute value as a non-linear operation between the feature ex-

traction and the pooling stage, and the power of stacking

multiple layers. Nonetheless, they did not really evaluate

the effects of sparsity, as they only compared learned sparse

features against convolutions with random filters.

Zeiler et al. [37] introduced a related model that oper-

ates in a convolutional sense as our system does, and pro-

posed a new approach that improves the convergence speed

by constraining the representation in an annealing fashion.

Again, there is no evaluation of the importance of sparsity

constraints.

A comprehensive review of the applications of sparsity

in the computer vision and pattern recognition domains is

presented in [34], but their claim that sparsity is helpful for

the classification task is supported only by few experiments

in a supervised, or semi-supervised, context, and not in an

unsupervised setting.

Predictive Sparse Decomposition [13] is an endeavor to

avoid the sparsity optimization by learning a regressor that

approximates the optimal reconstruction. The solution pro-

vided by the regressor is, however, only an approximation

of the true, sparse solution.

This paper represents an attempt to fill the gap repre-

sented by the absence of a thorough evaluation of the real

contribution of sparse representations in the image classi-

fication task, in order to focus future analyses towards the

most relevant aspects of image classification architectures.

3. Evaluation Framework

Our framework for evaluation relies on the architecture

shown in Figure 1, which is very similar to the ones used

in recent works [21, 30, 4], particularly to [12]. We first

extract features by using filters which are either learned or

handcrafted. These features either result from a simple con-

volution between the image and the filters, or from a sparse

optimization procedure. We apply a non-linear operation to

the output, and then we “pool” the features to obtain some

robustness to small translations and deformations using dif-

ferent pooling schemes.

We detail below these different parts of our framework,

while the results of the evaluation are given in the next sec-

tion.

3.1. Feature Extraction and Refinement Stage

3.1.1 Learning the filters

To learn image filters, we chose to adopt Olshausen

and Field’s algorithm [24] (OLS), used in many recent

works [22, 12, 34] and known to converge well on natural

image patches. We have only slightly modified it for more

efficiency when processing images.
In [24], Olshausen and Field suggested that V1, the first

layer of the visual cortex, builds a sparse representation of
the images. Under this assumption and the hypothesis that a
perfect reconstruction is attainable, the problem one would
like to solve can be stated as

min
M,{ti}

∑

i

‖ti‖0 s.t.
∑

i

‖xi −Mti‖
2

2
= 0 , (1)

where xi are training images, ti are the corresponding fea-
ture vectors, M is a matrix whose columns form the dictio-
nary, and the ℓ0-norm, the number of non-zero elements,
is the best sparsity measure available. The ℓ0-norm for-
mulation in Eq. (1) is, however, non-convex, making the
optimization very difficult. The version proposed in [24]
therefore learns a dictionary of filters by optimizing the fol-
lowing objective function:

min
M,{ti}

∑

i

‖xi −Mti‖
2

2
+ λlearn ‖ti‖1 , (2)

where the ℓ1-norm enforces sparsity on the ti vectors.

Eq. (2) looks for a dictionary M so that the images xi can

be reconstructed from only a few columns of M by comput-

(a) (b) (c)

Figure 2: Filter banks used in our experiments. (a) & (b)

Filter banks learned using the OLS algorithm on the CIFAR-

10 and Caltech datasets, respectively. (c) The handcrafted

Leung-Malik filter bank taken from [20].

ing the product Mti. The sparseness in the ti vectors is en-

forced by the last term. λlearn is a regularization parameter

that establishes the relative importance of the reconstruc-

tion error ‖xi −Mti‖
2

2
with respect to the regularization

term ‖ti‖1. Moreover, the dictionary is overcomplete: M

has more columns than rows, and this gives us the degrees

of freedom that we need in order to be able to choose among

all the possible representations a sparse one.

Eq. (2) was introduced for small patches only, and using

it on possibly large images is slow and difficult, as many co-

efficients in M would have to be optimized simultaneously.

We therefore adopt here a convolutional approach, where

the matrix-vector product is replaced by a convolution. This

is possible if we assume that the local properties of images

are translation invariant, which seems reasonable. As a side

effect, we get a strongly overcomplete representation. [37]

and [19] use a similar approach.

The optimization problem in Eq. (2) hence becomes:

min
{fj},{t

j

i
}

∑

i





∥

∥

∥

∥

∥

xi −
∑

j

f
j ∗ tji

∥

∥

∥

∥

∥

2

2

+ λlearn

∑

j

∥

∥

∥t
j

i

∥

∥

∥

1



 , (3)

where the f js are linear filters and ∗ denotes the convolution

operator. The t
j
i s can now be seen as a set of images with

the same size as the xi images, whose cardinality is equal

to that of the filter bank. Similar intermediate representa-

tions have been called “feature maps” in the Convolutional

Neural Networks literature [17].

The original problem in Eq. (2) was optimized using

stochastic gradient descent with clipping [5], and it is easy

to also use stochastic gradient descent to find the coeffi-

cients of the f
j filters, alternatively optimizing the filters

f
j and the t

j
i s in Eq. (3).

We evaluated many choices for the regularization param-

eter λlearn. While there is no guarantee that stochastic gra-

dient descent provides the optimal solution, the optimiza-

tion consistently converges from random initializations to

extremely similar solutions for a large interval of λlearn val-

ues. For example, in the case of CIFAR-10, we obtained

a stable solution for λlearn ∈ [0.01, 3], though at different

speeds. The learned filter banks are shown in Figs. 2(a)

and 2(b).

The optimization algorithm, however, revealed to be

very sensitive to the gradient descent steps choice both for

filters and coefficients. For further investigation of the so-

lution stability, we performed an experiment where Leung-

Malik (LM) filters [20], depicted in Fig. 2(c), were used as

initialization. In few iterations, the filter bank dramatically

changes its aspect and converges to a solution similar to the

one reported in Fig. 2(a).

3.1.2 Handcrafted filters

In addition to learned filters, we have also performed feature

extraction with two handcrafted filter banks:

• The Leung-Malik (LM) filter bank [20]. It is composed

of 2 Gaussian derivative filters at 6 orientations and 3

scales, 8 Laplacian of Gaussian filters and 4 Gaussian

filters, for a total of 48 filters.

• A filter bank constituted by 49 randomly generated fil-

ters (RND), with the exception of the first one that is

set to be uniform.

3.1.3 Pre-processing and whitening

We used grayscale images only, therefore the first pre-

processing step transformed input color images into a

grayscale representation in [−1, 1]. Since we had to deal

with convolutions, we replicated the borders in order to ex-

ploit the full image information.

Removing the linear dependencies between the coeffi-

cients of the images, or whitening, revealed to be funda-

mental for the convergence of Eqs. (3) and (4). A whitening

operation can be learned from the covariance matrix C of

the original data [11]. By applying an eigenvalue decom-

position to C, C = EDE
⊤, a whitening matrix W can be

computed as W = ED
−1/2

E
⊤.

Similarly to Eq. (2), this is not really practical for large

images. Nonetheless, owing to the shift invariance of image

statistics, W describes a per pixel linear operation that is

independent of translation, hence we were able to efficiently

implement it as a convolution.

3.1.4 Using the filters for feature extraction

In our evaluations, we used these filters f j to extract features

t
j from an image x in three different ways:

• Sparse features with gradient descent (SPARSEGD).
The t

js are obtained by minimizing the following ob-
jective function by gradient descent:

min
{tj}

∥

∥

∥

∥

∥

x−
∑

j

f
j ∗ tj

∥

∥

∥

∥

∥

2

2

+ λextract

∑

j

∥

∥

∥t
j
∥

∥

∥

1

. (4)

This optimization is the same as the one posed in

Eq. (3) after fixing the filters f
j and considering only

the given image. Note that, in our experiments, the

regularization parameter λextract can be different from

λlearn.

• Sparse features with Matching Pursuit (SPARSEMP).

The t
js are obtained using the Matching Pursuit algo-

rithm [1]. Fixing the number of non-zero coefficients

is equivalent to choosing a proper value for the λextract

parameter in Eq. (4). Nonetheless, Matching Pursuit is

dramatically slower, which prevented us from using it

to optimize Eq. (3).
• Features computed by direct convolution (CONV). The
t
js are obtained by direct convolution, without any

sparsity constraint:

t
j = f

j ∗ x, ∀j . (5)

This is much faster than the two previous options. It is

not, however, unrelated to them, since it corresponds

to the initialization step for the feature maps required

by both algorithms.

3.1.5 Rectification

Before the pooling stage, we apply some non-linear oper-

ation to the feature maps t
j , as it is usually done in multi-

layer architectures. This operation gives a new set of feature

maps uj . Again, we tried different possibilities:
• Taking the absolute values of the coefficients of the t

j

vectors (ABS). The m-th coefficient uj [m] of the u
j

vectors is simply taken to be: uj [m] =
∣

∣t
j [m]

∣

∣. This

operation was identified as very effective in [12] for

recognition performance despite its simplicity.
• Separating the negative coefficients from the positive

ones (POSNEG). If each submap is composed by N
coefficients, the elements u

j [m] of the u
j vectors are

taken to be:

u
j [m] = [tj [m]]+, uN+j [m] = [−t

j [m]]+ , (6)

where [x]+ = x if x > 0 and 0 otherwise. This dou-

bles the number of coefficients in the u
j vectors.

3.2. Pooling stage

This stage pools the coefficients of the uj vectors to pro-

vide invariance to small displacements and distortions. The

choice of having a pooling stage is based on two relevant

aspects:

• From a biological perspective, the pooling stage cor-

responds to the complex cells’ layers in Hubel and

Wiesel’s model of V1 cortex [10]. The role that pool-

ing holds is that of enabling a certain degree of in-

variance to minor pose and appearance changes. The

importance of pooling layers is also acknowledged

by their employment in Convolutional Neural Net-

works [17].

• From a computational perspective, plain descriptors

have a dimensionality that is too high for practical ap-

plications. The presence of a downsampling step is

therefore vital for subsequent operations.

We tried three different pooling mechanisms found in liter-

ature:

• Gaussian pooling (GAUSS). This was used in [31]:

the u
js are first convolved with a Gaussian filter, then

downscaled by a factor that is a multiple of 2. We have

empirically observed that a 5 × 5 filter with σ = 2.0
gave the best results in many cases, and we have there-

fore adopted these values 1.

• Average pooling (BOXCAR). This is similar to GAUSS,

except that we use a boxcar filter.

• Maximum value pooling (MAX). We retain the max-

imum absolute value in a given neighborhood. This

was used for example in [30, 12], and also evaluated

in [3].

The feature maps for a given image after pooling will be

denoted as vj below.

3.3. Classification

The last step of our pipeline applies a classifier to the uni-

tary normalized vectors obtained from the previous stages.

Since the two datasets of choice have different cardinalities

and are composed by images with different resolutions, we

have adopted different strategies for the classification step.

3.3.1 CIFAR-10

The CIFAR-10 images have a resolution of 32 × 32 pix-

els. The feature maps after pooling v
j are nevertheless very

large, and therefore a dimensionality reduction step before

classification is necessary. We investigated the following

methods:

• No dimensionality reduction (NONE).

• Principal Component Analysis (PCA).

• Local Discriminant Embedding (LDE) [9], with a

power regularization fixing the signal to noise ratio to

15%.

• Random Projections (RP). We tried random projec-

tions because they can be applied to sparse signals with

limited information loss. [6].

In both the PCA and the LDE case, a normalization to unit

norm is performed after the projection, as it is deemed to

give significant improvements on the final result [9]. In

order to choose the best size of the eigenspace, for each

specific configuration we performed an extensive cross-

validation for all dimensions in a range d = {8, . . . , 256},

and chose the value that scored best in a Nearest-Neighbor

classification.

1We have performed an extensive evaluation of the different pooling

parametrizations. Please refer to the supplementary material for the quan-

titative results of our investigations.

We then apply one of the two following classification

methods on the feature maps after dimension reduction:

• Nearest Neighbor classification (NN). It provides a di-

rect measure of the discriminative capabilities of the

previous steps.

• Support Vector Machines (SVM). They are com-

monly adopted in pipelines similar to ours and usually

achieved the best results 2.

We also tried other classifiers: Feed-Forward Neural Net-

works, ensembles of Classification Trees, and Naı̈ve Bayes

classifiers. As they did not give better results than SVMs,

we do not report them here.

3.3.2 Caltech-101

The resolution of the Caltech-101 images is much larger

than the one of the CIFAR-10 images, and the direct clas-

sification approach we used for CIFAR-10 is not possible

anymore. Instead, and like [12] and [37], we use the Spatial

Pyramid Matching (SPM) algorithm [16]. We use the code

provided by [16] at the top of our architecture, and pass the

resulting pyramidal histograms to an SVM 3.

We followed the same testing procedure reported in [37],

denoted in the following as SPM. Input images are resized

so that their shortest dimension is 150 pixels. 16 × 16
patches are extracted from the feature maps after pooling

with a stride of 2 pixels and are used as input to the SPM

algorithm. We build a dictionary containing 500 words by

running the K-Means algorithm over the feature maps cor-

responding to 300 randomly chosen images, and use this

dictionary to build a three-level pyramid.

As for the CIFAR-10 case, we tried both approximate

Nearest Neighbor classification (NN) and Support Vector

Machines (SVM).

4. Results and Discussion

4.1. Evaluation datasets

The CIFAR-10 dataset [32, 14] is a hand labelled subset

of a larger dataset consisting of 32 × 32 images collected

from the Web [32]. The images exhibit large variability in

pose, appearance, scale, and background composition, and

some are affected by severe distortions. These reasons jus-

tify the increasing popularity that it is gaining in the com-

puter vision and machine learning community [27, 36, 15].

The above mentioned characteristics make the CIFAR-

10 dataset suitable for our needs, since it avoids the com-

mon pitfalls involved with the uncontrolled exploitation of

natural images [25]. Moreover, the low dimensionality of

2Experiments were performed using the LIBSVM library

(http://www.csie.ntu.edu.tw/˜cjlin/libsvm).
3We used the BSVM implementation bundled within the libHIK library

(http://www.cc.gatech.edu/cpl/projects/libHIK).

the images enables us to perform an extensive exploration

of the parameter space, which would be prohibitively costly

with other datasets.

We have also chosen to do additional experiments using

the Caltech-101 dataset [7], which is widely acknowledged

as a reference dataset in the computer vision community.

Caltech-101 contains images from 101 different categories

(with an additional background category). Since some cat-

egories have a relatively small number of samples, the most

common training procedures use either 15 or 30 randomly

chosen images per category, keeping the remaining ones for

testing.

4.2. Protocol

Because of the large number of different combinations

for our pipeline and the fact that most of them depend on

parameters, we first performed thorough experiments on the

CIFAR-10 images converted to grayscale and downsampled

to 16×16 pixels, as computational costs for extensive exper-

iments on full resolution images or Caltech-101 are much

higher. This allowed us to identify trade-offs and the best

components of our architecture. Once the most effective

combinations were determined, we validated them on the

original 32× 32 images of the CIFAR-10 dataset and, after

having identified the proper parametrization of each com-

ponent, on Caltech-101 images. In the case of Caltech-101,

we had to restrict the number of experiments due to compu-

tation times and adopt ABS as a non-linearity to avoid the

doubling of descriptor’s size. The results, however, are con-

sistent with those obtained on CIFAR-10 and validate our

interpretation.

We report here only the small subset of our trials that

illustrates our main findings. Extensive additional results

are provided as supplementary material.

4.3. Experimental Results and Discussion

4.3.1 Sparsity is not necessarily required for classifica-

tion

Our first experiment aimed to evaluate the influence of the

way the features are extracted on the recognition rate. Fig-

ure 3 reports the results of our classification pipeline for dif-

ferent filter banks and different feature extraction methods.

The other components were set to POSNEG, GAUSS, PCA,

SVM, which is one of the best combinations we found.

A general rule is that, as sparsity increases when com-

puting the features, the recognition rate drops dramatically.

Moreover, the value of λextract used for SPARSEGD must be

much smaller than the one of λlearn used to learn the filter

bank. This was already observed in [28], which noted that

a strong sparsity is important in learning the feature extrac-

tors, but harmful during classification.

But more importantly, using simple convolu-

tions (CONV) performs systematically at least as good as

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cc.gatech.edu/cpl/projects/libHIK

 48

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 0.0001 0.001 0.01

R
ec

og
ni

tio
n

ra
te

 [%
]

λextract

Figure 3: Recognition rate on the CIFAR-10 dataset as a

function of the representation’s sparsity and of the chosen

filter bank.

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 0.0001 0.001 0.01 0.1

R
ec

og
ni

tio
n

ra
te

 [%
]

λextract

OLS-SPARSEGD, 30 training samples
OLS-SPARSEGD, 15 training samples

OLS-CONV, 30 training samples
OLS-CONV, 15 training samples

Figure 4: Recognition rate on the Caltech-101 dataset as a

function of the representation’s sparsity.

enforcing sparsity (SPARSEGD). The tis are significantly

sparser when using SPARSEGD instead of CONV, but this

does not have an influence on the recognition rate. This

is true whatever the way the filter bank was computed,

for both the CIFAR-10 and Caltech-101 benchmarks (see

Fig. 4). Enforcing sparsity clearly does not help here.

To investigate more when sparsity can be useful, we ran

the same experiments on images from the datasets after cor-

ruption by noise. The most significant results are reported

in Table 1. We have experimented with both Gaussian and

structured noise, where the latter consists of randomly gen-

erated lines superimposed to the images. In all these ex-

periments, we worked with the original 32 × 32 images of

CIFAR-10. SPARSEGD performs well in presence of strong

Gaussian noise, but does not help for structured noise, as

Table 1: Recognition rates in presence of noise for different

feature extraction methods using learned filters and an SVM

as a classifier. Image intensities are normalized in [0, 1]. For

the structure noise experiments, random lines were super-

imposed to the images at random positions. SPARSEGD is

more interesting than CONV only in case of strong Gaus-

sian noise, for some values of λextract.

Method λextract ‖t‖
0

Rec. Rate [%]

low Gaussian noise (σ = 0.01)

CONV 1.00 69.44

SPARSEGD 0.0001 0.83 68.66

SPARSEGD 0.0005 0.58 67.07

SPARSEGD 0.001 0.43 64.54

SPARSEGD 0.005 0.11 54.37

strong Gaussian noise (σ = 0.14)

CONV 1.00 60.30

SPARSEGD 0.0001 0.88 61.89

SPARSEGD 0.0005 0.69 63.54

SPARSEGD 0.001 0.55 63.28

SPARSEGD 0.005 0.17 59.94

low structured noise (1 random line)

CONV 1.00 48.53

SPARSEGD 0.0005 0.51 47.00

SPARSEGD 0.005 0.09 31.75

strong structured noise (1 to 3 random lines)

CONV 1.00 35.20

SPARSEGD 0.0005 0.49 33.51

SPARSEGD 0.005 0.09 15.08

it focuses its efforts around the noisy area, skipping the

parts of the images that convey meaningful information.

Nonetheless, since the original images of the datasets are

mostly free of noise, this is a property unexploited when

evaluating algorithms on these benchmarks.

Another relevant result is the impact of the sparsifying

algorithm, either Gradient Descent (SPARSEGD) or Match-

ing Pursuit (SPARSEMP), on the final recognition rate as

reported in Fig. 5. Figure 6 also provides visual results. It

is not straightforward to compare the two methods as they

depend on different parameters. We chose to plot the recog-

nition rate as a function of the ℓ0-norm of the t vectors,

as the two algorithms provide the lowest reconstruction er-

ror they can reach for a given value of this norm. For a

given ℓ0-norm of the t vectors, the performance are signif-

icantly worse for SPARSEMP than SPARSEGD while the

reconstruction errors are similar. A possible explanation for

the very bad performance of the Matching Pursuit algorithm

is that, because it works locally, it tends to focus on details

that are specific to the given instance, hence it tends to in-

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.001 0.01 0.1 1
 0

 0.1

 0.2

 0.3

 0.4

R
ec

og
ni

tio
n

ra
te

 [%
]

R
ec

on
st

ru
ct

io
n

er
ro

r

Fraction of non-zero coefficients

Figure 5: Recognition rate comparison between

SPARSEMP and SPARSEGD when different degrees

of representation’s sparsity are requested (left axis). The

reconstruction error (right axis) is computed as the ℓ2 norm

of the squared differences between the original image and

the reconstruction (both normalized in [0, 1]).

crease intra-class dissimilarities.

A last remark on this aspect is that, in all the experi-

ments we have carried out and reported in the supplemental

material, irrespectively of the chosen feature extraction and

pooling strategies, the results after pooling are dense. In ar-

chitectures that employ pooling stages, sparsity is therefore

a temporary condition only.

4.3.2 Sparsity is important when learning the filters

Although a sparse representation is not necessarily impor-

tant for feature extraction during classification, and can

even hurt the recognition rate when an unsuited sparsifica-

tion algorithm is used, we found that it is still important for

learning the filters.

Figure 3 clearly depicts the advantage gained by adopt-

ing a filter bank learned with sparsity constraints, compared

to relying on handcrafted or random filters. This is true

even when using simple convolutions (CONV) to extract

features. While the handcrafted LM filters perform almost

as well as the learned ones, this is true only when they are

whitened, since the performance of the LM filter bank when

the whitening step is removed is even worse than the perfor-

mance of whitened random filters.

4.3.3 Best results

Thanks to our extensive experiments, we could identify the

components and their parameters that perform best. Due to

lack of space, the complete evaluation results are not shown

Original image OLS-SPARSEMP OLS-SPARSEGD

‖t‖
0
= 0.16 ‖t‖

0
= 0.19

Rec. error = 6e-5 Rec. error = 1.4e-4

Original image OLS-SPARSEGD

‖t‖
0
= 0.34

Rec. error = 1.9e-2

Figure 6: First row. An image from the CIFAR-10 dataset

whitened, and its reconstructions from the t vectors ob-

tained with different algorithms and filter banks. The given

reconstruction error is the first term of Eq. (4). While simi-

lar in terms of sparsity of the features, of reconstruction er-

ror, and visual quality of the reconstruction, Matching Pur-

suit performs significantly worse than Gradient Descent.

Second row. An image taken from the Caltech-101 dataset

and whitened, along with the image reconstructed from the

t vectors using OLS-SPARSEGD. Matching Pursuit is too

slow to be evaluated on large images such as those present

in the Caltech-101 dataset.

in this paper but in the supplemental material. The best

configuration extracts features by convolution with learned

filters (OLS-CONV). POSNEG is the best non-linear oper-

ation. Pooling features is indispensable, and pooling by 4

times downscaling after having smoothed feature maps with

a 5× 5 Gaussian filter with σ = 2 (GAUSS) performs best.

LDE and PCA for subspace projection give almost identical

results. SVMs perform definitively better than NN for final

classification.

Despite its simplicity, our best architecture performs ex-

tremely well. The two-layer convolutional Deep Belief Net-

work presented in [15] achieves a 78.9% recognition rate by

using color images and an unsupervised pre-training set of

1.6 million images, while our architecture accomplishes a

75.18% (averaged on 5 random dataset splits, standard de-

viation = 0.27) by using grayscale images only. Moreover,

our model outperforms specifically designed, complicated,

color-based machine learning architectures like the factor-

ized third-order Boltzmann Machine proposed in [27] or the

improved version of the 2009 PASCAL image classification

challenge winning system presented in [36].

5. Conclusions

We have performed an in-depth analysis of sparse repre-

sentations in image classification. Our experimental results

suggest that solely enforcing sparsity is not helpful in terms

of recognition rate, at least when the level of noise remains

reasonable. We found that while sparsity was not helpful

during classification, with plain convolution with the filters

giving equal results in terms of recognition rate, it is im-

portant when learning the feature dictionary itself. Given

the high computational burden involved in sparse coding

and the increasing interest in biologically inspired multi-

layer architectures, this insight heavily impacts on the de-

sign strategies for image descriptors.

References

[1] F. Bergeaud and S. Mallat. Matching Pursuit of Images. In

ICIP, 1995.

[2] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning

Mid-Level Features for Recognition. In CVPR, 2010.

[3] Y.-L. Boureau, J. Ponce, and Y. LeCun. A Theoretical Analy-

sis of Feature Pooling in Visual Recognition. In ICML, 2010.

[4] M. Brown, G. Hua, and S. Winder. Discriminative Learning

of Local Image Descriptors. PAMI, 2010.

[5] I. Daubechies, M. Defrise, and C. D. Mol. An iterative

thresholding algorithm for linear inverse problems with a

sparsity constraint. CPAM, 2004.

[6] D. L. Donoho. Compressed Sensing. TIT, 2006.

[7] L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative

Visual Models from Few Training Examples: An Incremen-

tal Bayesian Approach Tested on 101 Object Categories. In

CVPR, 2004.

[8] G. E. Hinton. Learning to Represent Visual Input. RSTB,

2010.

[9] G. Hua, M. Brown, and S. Winder. Discriminant Embedding

for Local Image Descriptors. In ICCV, 2007.

[10] D. H. Hubel and T. N. Wiesel. Receptive Fields, Binocular

Interaction and Functional Architecture in the Cat’s Visual

Cortex. JPHYSIO, 1962.

[11] A. Hyvärinen, J. Hurri, and P. O. Hoyer. Natural Image

Statistics. Springer-Verlag, 2009.

[12] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun.

What Is the Best Multi-Stage Architecture for Object Recog-

nition? In ICCV, 2009.

[13] K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. Fast In-

ference in Sparse Coding Algorithms With Applications to

Object Recognition. Technical report, NYU, 2008.

[14] A. Krizhevsky. Learning Multiple Layers of Features from

Tiny Images. Master’s thesis, 2009.

[15] A. Krizhevsky. Convolutional Deep Belief Networks on

CIFAR-10. Technical report, UOFT, 2010.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-

tures: Spatial Pyramid Matching for Recognizing Natural

Scene Categories. In CVPR, 2006.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

Based Learning Applied to Document Recognition. PIEEE,

1998.

[18] H. Lee, C. Ekanadham, and A. Y. Ng. Sparse Deep Belief

Net Model for Visual Area V2. In NIPS, 2007.

[19] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convo-

lutional Deep Belief Networks for Scalable Unsupervised

Learning of Hierarchical Representations. In ICML, 2009.

[20] T. Leung and J. Malik. Representing and Recognizing the

Visual Appearance of Materials Using Three-Dimensional

Textons. IJCV, 2001.

[21] D. G. Lowe. Distinctive Image Features from Scale-

Invariants Keypoints. IJCV, 2004.

[22] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.

Discriminative Learned Dictionaries for Local Image Anal-

ysis. In CVPR, 2008.

[23] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.

Non-Local Sparse Models for Image Restoration. In ICCV,

2009.

[24] B. A. Olshausen and D. J. Field. Sparse Coding With

an Overcomplete Basis Set: A Strategy Employed by V1?

VISR, 1997.

[25] N. Pinto, D. D. Cox, and J. J. DiCarlo. Why Is Real-World

Visual Object Recognition Hard? PLoS, 2008.

[26] M. A. Ranzato, Y.-L. Boureau, and Y. LeCun. Sparse Feature

Learning for Deep Belief Networks. In NIPS, 2007.

[27] M. A. Ranzato and G. E. Hinton. Modeling Pixel Means

and Covariances Using Factorized Third-Order Boltzmann

Machines. In CVPR, 2010.

[28] M. A. Ranzato, F.-J. Huang, Y. Boureau, and Y. LeCun. Un-

supervised Learning of Invariant Feature Hierarchies With

Applications to Object Recognition. In CVPR, 2007.

[29] M. A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Ef-

ficient Learning of Sparse Representations With an Energy-

Based Model. In NIPS, 2006.

[30] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-

gio. Robust Object Recognition With Cortex-Like Mecha-

nisms. PAMI, 2007.

[31] E. Tola, V. Lepetit, and P. Fua. DAISY: An Efficient Dense

Descriptor Applied to Wide-Baseline Stereo. PAMI, 2010.

[32] A. Torralba, R. Fergus, and W. T. Freeman. 80 Million Tiny

Images: A Large Dataset for Non-Parametric Object and

Scene Recognition. PAMI, 2008.

[33] W. E. Vinje and J. L. Gallant. Sparse Coding and Decorre-

lation in Primary Visual Cortex During Natural Vision. SCI-

ENCE, 2000.

[34] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and

S. Yan. Sparse Representation for Computer Vision and Pat-

tern Recognition. PIEEE, 2010.

[35] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyra-

mid Matching Using Sparse Coding for Image Classification.

In CVPR, 2009.

[36] K. Yu and T. Zhang. Improved Local Coordinate Coding

Using Local Tangents. In ICML, 2010.

[37] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. De-

convolutional Networks. In CVPR, 2010.

